golang-image/draw/gen.go

1148 lines
31 KiB
Go
Raw Normal View History

// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
package main
import (
"bytes"
"flag"
"fmt"
"go/format"
"io/ioutil"
"log"
"os"
"strings"
)
var debug = flag.Bool("debug", false, "")
func main() {
flag.Parse()
w := new(bytes.Buffer)
w.WriteString("// generated by \"go run gen.go\". DO NOT EDIT.\n\n" +
"package draw\n\nimport (\n" +
"\"image\"\n" +
"\"image/color\"\n" +
"\"math\"\n" +
"\n" +
"\"golang.org/x/image/math/f64\"\n" +
")\n")
gen(w, "nnInterpolator", codeNNScaleLeaf, codeNNTransformLeaf)
gen(w, "ablInterpolator", codeABLScaleLeaf, codeABLTransformLeaf)
genKernel(w)
if *debug {
os.Stdout.Write(w.Bytes())
return
}
out, err := format.Source(w.Bytes())
if err != nil {
log.Fatal(err)
}
if err := ioutil.WriteFile("impl.go", out, 0660); err != nil {
log.Fatal(err)
}
}
var (
// dsTypes are the (dst image type, src image type) pairs to generate
// scale_DType_SType implementations for. The last element in the slice
// should be the fallback pair ("Image", "image.Image").
//
// TODO: add *image.CMYK src type after Go 1.5 is released.
dsTypes = []struct{ dType, sType string }{
{"*image.RGBA", "*image.Gray"},
{"*image.RGBA", "*image.NRGBA"},
{"*image.RGBA", "*image.RGBA"},
{"*image.RGBA", "*image.YCbCr"},
{"*image.RGBA", "image.Image"},
{"Image", "image.Image"},
}
dTypes, sTypes []string
sTypesForDType = map[string][]string{}
subsampleRatios = []string{
"444",
"422",
"420",
"440",
}
)
func init() {
dTypesSeen := map[string]bool{}
sTypesSeen := map[string]bool{}
for _, t := range dsTypes {
if !sTypesSeen[t.sType] {
sTypesSeen[t.sType] = true
sTypes = append(sTypes, t.sType)
}
if !dTypesSeen[t.dType] {
dTypesSeen[t.dType] = true
dTypes = append(dTypes, t.dType)
}
sTypesForDType[t.dType] = append(sTypesForDType[t.dType], t.sType)
}
sTypesForDType["anyDType"] = sTypes
}
type data struct {
dType string
sType string
sratio string
receiver string
}
func gen(w *bytes.Buffer, receiver string, codes ...string) {
expn(w, codeRoot, &data{receiver: receiver})
for _, code := range codes {
for _, t := range dsTypes {
expn(w, code, &data{
dType: t.dType,
sType: t.sType,
receiver: receiver,
})
}
}
}
func genKernel(w *bytes.Buffer) {
expn(w, codeKernelRoot, &data{})
for _, sType := range sTypes {
expn(w, codeKernelScaleLeafX, &data{
sType: sType,
})
}
for _, dType := range dTypes {
expn(w, codeKernelScaleLeafY, &data{
dType: dType,
})
}
for _, t := range dsTypes {
expn(w, codeKernelTransformLeaf, &data{
dType: t.dType,
sType: t.sType,
})
}
}
func expn(w *bytes.Buffer, code string, d *data) {
if d.sType == "*image.YCbCr" && d.sratio == "" {
for _, sratio := range subsampleRatios {
e := *d
e.sratio = sratio
expn(w, code, &e)
}
return
}
for _, line := range strings.Split(code, "\n") {
line = expnLine(line, d)
if line == ";" {
continue
}
fmt.Fprintln(w, line)
}
}
func expnLine(line string, d *data) string {
for {
i := strings.IndexByte(line, '$')
if i < 0 {
break
}
prefix, s := line[:i], line[i+1:]
i = len(s)
for j, c := range s {
if !('A' <= c && c <= 'Z' || 'a' <= c && c <= 'z') {
i = j
break
}
}
dollar, suffix := s[:i], s[i:]
e := expnDollar(prefix, dollar, suffix, d)
if e == "" {
log.Fatalf("couldn't expand %q", line)
}
line = e
}
return line
}
// expnDollar expands a "$foo" fragment in a line of generated code. It returns
// the empty string if there was a problem. It returns ";" if the generated
// code is a no-op.
func expnDollar(prefix, dollar, suffix string, d *data) string {
switch dollar {
case "dType":
return prefix + d.dType + suffix
case "dTypeRN":
return prefix + relName(d.dType) + suffix
case "sratio":
return prefix + d.sratio + suffix
case "sType":
return prefix + d.sType + suffix
case "sTypeRN":
return prefix + relName(d.sType) + suffix
case "receiver":
return prefix + d.receiver + suffix
case "switch":
return expnSwitch("", true, suffix)
case "switchD":
return expnSwitch("", false, suffix)
case "switchS":
return expnSwitch("anyDType", false, suffix)
case "preOuter":
switch d.dType {
default:
return ";"
case "Image":
return "" +
"dstColorRGBA64 := &color.RGBA64{}\n" +
"dstColor := color.Color(dstColorRGBA64)"
}
case "preInner":
switch d.dType {
default:
return ";"
case "*image.RGBA":
return "d := " + pixOffset("dst", "dr.Min.X+adr.Min.X", "dr.Min.Y+int(dy)", "*4", "*dst.Stride")
}
case "preKernelInner":
switch d.dType {
default:
return ";"
case "*image.RGBA":
return "d := " + pixOffset("dst", "dr.Min.X+int(dx)", "dr.Min.Y+adr.Min.Y", "*4", "*dst.Stride")
}
case "blend":
args, _ := splitArgs(suffix)
if len(args) != 4 {
return ""
}
switch d.sType {
default:
return fmt.Sprintf(""+
"%sr = %s*%sr + %s*%sr\n"+
"%sg = %s*%sg + %s*%sg\n"+
"%sb = %s*%sb + %s*%sb\n"+
"%sa = %s*%sa + %s*%sa",
args[3], args[0], args[1], args[2], args[3],
args[3], args[0], args[1], args[2], args[3],
args[3], args[0], args[1], args[2], args[3],
args[3], args[0], args[1], args[2], args[3],
)
case "*image.Gray":
return fmt.Sprintf(""+
"%sr = %s*%sr + %s*%sr",
args[3], args[0], args[1], args[2], args[3],
)
case "*image.YCbCr":
return fmt.Sprintf(""+
"%sr = %s*%sr + %s*%sr\n"+
"%sg = %s*%sg + %s*%sg\n"+
"%sb = %s*%sb + %s*%sb",
args[3], args[0], args[1], args[2], args[3],
args[3], args[0], args[1], args[2], args[3],
args[3], args[0], args[1], args[2], args[3],
)
}
case "outputu":
args, _ := splitArgs(suffix)
if len(args) != 3 {
return ""
}
switch d.dType {
default:
log.Fatalf("bad dType %q", d.dType)
case "Image":
switch d.sType {
default:
return fmt.Sprintf(""+
"dstColorRGBA64.R = uint16(%sr)\n"+
"dstColorRGBA64.G = uint16(%sg)\n"+
"dstColorRGBA64.B = uint16(%sb)\n"+
"dstColorRGBA64.A = uint16(%sa)\n"+
"dst.Set(%s, %s, dstColor)",
args[2], args[2], args[2], args[2],
args[0], args[1],
)
case "*image.Gray":
return fmt.Sprintf(""+
"out := uint16(%sr)\n"+
"dstColorRGBA64.R = out\n"+
"dstColorRGBA64.G = out\n"+
"dstColorRGBA64.B = out\n"+
"dstColorRGBA64.A = 0xffff\n"+
"dst.Set(%s, %s, dstColor)",
args[2],
args[0], args[1],
)
case "*image.YCbCr":
return fmt.Sprintf(""+
"dstColorRGBA64.R = uint16(%sr)\n"+
"dstColorRGBA64.G = uint16(%sg)\n"+
"dstColorRGBA64.B = uint16(%sb)\n"+
"dstColorRGBA64.A = 0xffff\n"+
"dst.Set(%s, %s, dstColor)",
args[2], args[2], args[2],
args[0], args[1],
)
}
case "*image.RGBA":
switch d.sType {
default:
return fmt.Sprintf(""+
"dst.Pix[d+0] = uint8(uint32(%sr) >> 8)\n"+
"dst.Pix[d+1] = uint8(uint32(%sg) >> 8)\n"+
"dst.Pix[d+2] = uint8(uint32(%sb) >> 8)\n"+
"dst.Pix[d+3] = uint8(uint32(%sa) >> 8)",
args[2], args[2], args[2], args[2],
)
case "*image.Gray":
return fmt.Sprintf(""+
"out := uint8(uint32(%sr) >> 8)\n"+
"dst.Pix[d+0] = out\n"+
"dst.Pix[d+1] = out\n"+
"dst.Pix[d+2] = out\n"+
"dst.Pix[d+3] = 0xff",
args[2],
)
case "*image.YCbCr":
return fmt.Sprintf(""+
"dst.Pix[d+0] = uint8(uint32(%sr) >> 8)\n"+
"dst.Pix[d+1] = uint8(uint32(%sg) >> 8)\n"+
"dst.Pix[d+2] = uint8(uint32(%sb) >> 8)\n"+
"dst.Pix[d+3] = 0xff",
args[2], args[2], args[2],
)
}
}
case "outputf":
args, _ := splitArgs(suffix)
if len(args) != 5 {
return ""
}
ret := ""
switch d.dType {
default:
log.Fatalf("bad dType %q", d.dType)
case "Image":
switch d.sType {
default:
ret = fmt.Sprintf(""+
"dstColorRGBA64.R = %s(%sr * %s)\n"+
"dstColorRGBA64.G = %s(%sg * %s)\n"+
"dstColorRGBA64.B = %s(%sb * %s)\n"+
"dstColorRGBA64.A = %s(%sa * %s)\n"+
"dst.Set(%s, %s, dstColor)",
args[2], args[3], args[4],
args[2], args[3], args[4],
args[2], args[3], args[4],
args[2], args[3], args[4],
args[0], args[1],
)
case "*image.Gray":
ret = fmt.Sprintf(""+
"out := %s(%sr * %s)\n"+
"dstColorRGBA64.R = out\n"+
"dstColorRGBA64.G = out\n"+
"dstColorRGBA64.B = out\n"+
"dstColorRGBA64.A = 0xffff\n"+
"dst.Set(%s, %s, dstColor)",
args[2], args[3], args[4],
args[0], args[1],
)
case "*image.YCbCr":
ret = fmt.Sprintf(""+
"dstColorRGBA64.R = %s(%sr * %s)\n"+
"dstColorRGBA64.G = %s(%sg * %s)\n"+
"dstColorRGBA64.B = %s(%sb * %s)\n"+
"dstColorRGBA64.A = 0xffff\n"+
"dst.Set(%s, %s, dstColor)",
args[2], args[3], args[4],
args[2], args[3], args[4],
args[2], args[3], args[4],
args[0], args[1],
)
}
case "*image.RGBA":
switch d.sType {
default:
ret = fmt.Sprintf(""+
"dst.Pix[d+0] = uint8(%s(%sr * %s) >> 8)\n"+
"dst.Pix[d+1] = uint8(%s(%sg * %s) >> 8)\n"+
"dst.Pix[d+2] = uint8(%s(%sb * %s) >> 8)\n"+
"dst.Pix[d+3] = uint8(%s(%sa * %s) >> 8)",
args[2], args[3], args[4],
args[2], args[3], args[4],
args[2], args[3], args[4],
args[2], args[3], args[4],
)
case "*image.Gray":
ret = fmt.Sprintf(""+
"out := uint8(%s(%sr * %s) >> 8)\n"+
"dst.Pix[d+0] = out\n"+
"dst.Pix[d+1] = out\n"+
"dst.Pix[d+2] = out\n"+
"dst.Pix[d+3] = 0xff",
args[2], args[3], args[4],
)
case "*image.YCbCr":
ret = fmt.Sprintf(""+
"dst.Pix[d+0] = uint8(%s(%sr * %s) >> 8)\n"+
"dst.Pix[d+1] = uint8(%s(%sg * %s) >> 8)\n"+
"dst.Pix[d+2] = uint8(%s(%sb * %s) >> 8)\n"+
"dst.Pix[d+3] = 0xff",
args[2], args[3], args[4],
args[2], args[3], args[4],
args[2], args[3], args[4],
)
}
}
return strings.Replace(ret, " * 1)", ")", -1)
case "srcf", "srcu":
lhs, eqOp := splitEq(prefix)
if lhs == "" {
return ""
}
args, extra := splitArgs(suffix)
if len(args) != 2 {
return ""
}
tmp := ""
if dollar == "srcf" {
tmp = "u"
}
// TODO: there's no need to multiply by 0x101 in the switch below if
// the next thing we're going to do is shift right by 8.
buf := new(bytes.Buffer)
switch d.sType {
default:
log.Fatalf("bad sType %q", d.sType)
case "image.Image":
fmt.Fprintf(buf, ""+
"%sr%s, %sg%s, %sb%s, %sa%s := src.At(%s, %s).RGBA()\n",
lhs, tmp, lhs, tmp, lhs, tmp, lhs, tmp, args[0], args[1],
)
case "*image.Gray":
fmt.Fprintf(buf, ""+
"%si := %s\n"+
"%sr%s := uint32(src.Pix[%si]) * 0x101\n",
lhs, pixOffset("src", args[0], args[1], "", "*src.Stride"),
lhs, tmp, lhs,
)
case "*image.NRGBA":
fmt.Fprintf(buf, ""+
"%si := %s\n"+
"%sa%s := uint32(src.Pix[%si+3]) * 0x101\n"+
"%sr%s := uint32(src.Pix[%si+0]) * %sa%s / 0xff\n"+
"%sg%s := uint32(src.Pix[%si+1]) * %sa%s / 0xff\n"+
"%sb%s := uint32(src.Pix[%si+2]) * %sa%s / 0xff\n",
lhs, pixOffset("src", args[0], args[1], "*4", "*src.Stride"),
lhs, tmp, lhs,
lhs, tmp, lhs, lhs, tmp,
lhs, tmp, lhs, lhs, tmp,
lhs, tmp, lhs, lhs, tmp,
)
case "*image.RGBA":
fmt.Fprintf(buf, ""+
"%si := %s\n"+
"%sr%s := uint32(src.Pix[%si+0]) * 0x101\n"+
"%sg%s := uint32(src.Pix[%si+1]) * 0x101\n"+
"%sb%s := uint32(src.Pix[%si+2]) * 0x101\n"+
"%sa%s := uint32(src.Pix[%si+3]) * 0x101\n",
lhs, pixOffset("src", args[0], args[1], "*4", "*src.Stride"),
lhs, tmp, lhs,
lhs, tmp, lhs,
lhs, tmp, lhs,
lhs, tmp, lhs,
)
case "*image.YCbCr":
fmt.Fprintf(buf, ""+
"%si := %s\n"+
"%sj := %s\n"+
"%s\n"+
"%sr%s := uint32(%sr8) * 0x101\n"+
"%sg%s := uint32(%sg8) * 0x101\n"+
"%sb%s := uint32(%sb8) * 0x101\n",
lhs, pixOffset("src", args[0], args[1], "", "*src.YStride"),
lhs, cOffset(args[0], args[1], d.sratio),
ycbcrToRGB(lhs),
lhs, tmp, lhs,
lhs, tmp, lhs,
lhs, tmp, lhs,
)
}
if dollar == "srcf" {
switch d.sType {
default:
fmt.Fprintf(buf, ""+
"%sr %s float64(%sru)%s\n"+
"%sg %s float64(%sgu)%s\n"+
"%sb %s float64(%sbu)%s\n"+
"%sa %s float64(%sau)%s\n",
lhs, eqOp, lhs, extra,
lhs, eqOp, lhs, extra,
lhs, eqOp, lhs, extra,
lhs, eqOp, lhs, extra,
)
case "*image.Gray":
fmt.Fprintf(buf, ""+
"%sr %s float64(%sru)%s\n",
lhs, eqOp, lhs, extra,
)
case "*image.YCbCr":
fmt.Fprintf(buf, ""+
"%sr %s float64(%sru)%s\n"+
"%sg %s float64(%sgu)%s\n"+
"%sb %s float64(%sbu)%s\n",
lhs, eqOp, lhs, extra,
lhs, eqOp, lhs, extra,
lhs, eqOp, lhs, extra,
)
}
}
return strings.TrimSpace(buf.String())
case "tweakD":
if d.dType == "*image.RGBA" {
return "d += dst.Stride"
}
return ";"
case "tweakDx":
if d.dType == "*image.RGBA" {
return strings.Replace(prefix, "dx++", "dx, d = dx+1, d+4", 1)
}
return prefix
case "tweakDy":
if d.dType == "*image.RGBA" {
return strings.Replace(prefix, "for dy, s", "for _, s", 1)
}
return prefix
case "tweakP":
switch d.sType {
case "*image.Gray":
if strings.HasPrefix(strings.TrimSpace(prefix), "pa * ") {
return "1,"
}
return "pr,"
case "*image.YCbCr":
if strings.HasPrefix(strings.TrimSpace(prefix), "pa * ") {
return "1,"
}
}
return prefix
case "tweakPr":
if d.sType == "*image.Gray" {
return "pr *= s.invTotalWeightFFFF"
}
return ";"
case "tweakVarP":
switch d.sType {
case "*image.Gray":
return strings.Replace(prefix, "var pr, pg, pb, pa", "var pr", 1)
case "*image.YCbCr":
return strings.Replace(prefix, "var pr, pg, pb, pa", "var pr, pg, pb", 1)
}
return prefix
}
return ""
}
func expnSwitch(dType string, expandBoth bool, template string) string {
switchVar := "dst"
if dType != "" {
switchVar = "src"
}
lines := []string{fmt.Sprintf("switch %s := %s.(type) {", switchVar, switchVar)}
fallback, values := "Image", dTypes
if dType != "" {
fallback, values = "image.Image", sTypesForDType[dType]
}
for _, v := range values {
if v == fallback {
lines = append(lines, "default:")
} else {
lines = append(lines, fmt.Sprintf("case %s:", v))
}
if dType != "" {
if v == "*image.YCbCr" {
lines = append(lines, expnSwitchYCbCr(dType, template))
} else {
lines = append(lines, expnLine(template, &data{dType: dType, sType: v}))
}
} else if !expandBoth {
lines = append(lines, expnLine(template, &data{dType: v}))
} else {
lines = append(lines, expnSwitch(v, false, template))
}
}
lines = append(lines, "}")
return strings.Join(lines, "\n")
}
func expnSwitchYCbCr(dType, template string) string {
lines := []string{
"switch src.SubsampleRatio {",
"default:",
expnLine(template, &data{dType: dType, sType: "image.Image"}),
}
for _, sratio := range subsampleRatios {
lines = append(lines,
fmt.Sprintf("case image.YCbCrSubsampleRatio%s:", sratio),
expnLine(template, &data{dType: dType, sType: "*image.YCbCr", sratio: sratio}),
)
}
lines = append(lines, "}")
return strings.Join(lines, "\n")
}
func pixOffset(m, x, y, xstride, ystride string) string {
return fmt.Sprintf("(%s-%s.Rect.Min.Y)%s + (%s-%s.Rect.Min.X)%s", y, m, ystride, x, m, xstride)
}
func cOffset(x, y, sratio string) string {
switch sratio {
case "444":
return fmt.Sprintf("( %s - src.Rect.Min.Y )*src.CStride + ( %s - src.Rect.Min.X )", y, x)
case "422":
return fmt.Sprintf("( %s - src.Rect.Min.Y )*src.CStride + ((%s)/2 - src.Rect.Min.X/2)", y, x)
case "420":
return fmt.Sprintf("((%s)/2 - src.Rect.Min.Y/2)*src.CStride + ((%s)/2 - src.Rect.Min.X/2)", y, x)
case "440":
return fmt.Sprintf("((%s)/2 - src.Rect.Min.Y/2)*src.CStride + ( %s - src.Rect.Min.X )", y, x)
}
return fmt.Sprintf("unsupported sratio %q", sratio)
}
// TODO: should we have a color.YCbCrToRGB48 function that returns 16-bit
// color?
func ycbcrToRGB(lhs string) string {
return strings.Replace(`
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
$yy1 := int(src.Y[$i])<<16 + 1<<15
$cb1 := int(src.Cb[$j]) - 128
$cr1 := int(src.Cr[$j]) - 128
$r8 := ($yy1 + 91881*$cr1) >> 16
$g8 := ($yy1 - 22554*$cb1 - 46802*$cr1) >> 16
$b8 := ($yy1 + 116130*$cb1) >> 16
if $r8 < 0 {
$r8 = 0
} else if $r8 > 0xff {
$r8 = 0xff
}
if $g8 < 0 {
$g8 = 0
} else if $g8 > 0xff {
$g8 = 0xff
}
if $b8 < 0 {
$b8 = 0
} else if $b8 > 0xff {
$b8 = 0xff
}
`, "$", lhs, -1)
}
func split(s, sep string) (string, string) {
if i := strings.Index(s, sep); i >= 0 {
return strings.TrimSpace(s[:i]), strings.TrimSpace(s[i+len(sep):])
}
return "", ""
}
func splitEq(s string) (lhs, eqOp string) {
s = strings.TrimSpace(s)
if lhs, _ = split(s, ":="); lhs != "" {
return lhs, ":="
}
if lhs, _ = split(s, "+="); lhs != "" {
return lhs, "+="
}
return "", ""
}
func splitArgs(s string) (args []string, extra string) {
s = strings.TrimSpace(s)
if s == "" || s[0] != '[' {
return nil, ""
}
s = s[1:]
i := strings.IndexByte(s, ']')
if i < 0 {
return nil, ""
}
args, extra = strings.Split(s[:i], ","), s[i+1:]
for i := range args {
args[i] = strings.TrimSpace(args[i])
}
return args, extra
}
func relName(s string) string {
if i := strings.LastIndex(s, "."); i >= 0 {
return s[i+1:]
}
return s
}
const (
codeRoot = `
func (z $receiver) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
draw: make Scale an Interpolator method instead of a function. This means that only Kernel values have a NewScaler method, which re-uses computation when scaling multiple images of the same dst and src dimensions. The NearestNeighbor and ApproxBiLinear scalers don't get any pre-computation to re-use, so don't need a NewScaler method just to satisfy the previous Interpolator interface. As a small bonus, NN.Scale and ABL.Scale should no longer allocate on the fast paths. This change is consistent the upcoming Transformer method, so that the Interpolator interface will be type Interpolator interface { Scale(etc) Transform(etc) } instead of type Interpolator interface { NewScaler(etc) Scaler Transform(etc) } I don't have a good theory for why the "func (ablInterpolator) scale_RGBA_RGBA" benchmark is such a dramatic improvement, but at least it's in the right direction. I'm calling the other benchmark changes as noise. benchmark old ns/op new ns/op delta BenchmarkScaleLargeDownNN 3233406 3169060 -1.99% BenchmarkScaleLargeDownAB 12018178 12011348 -0.06% BenchmarkScaleLargeDownBL 1420827834 1409335695 -0.81% BenchmarkScaleLargeDownCR 2820669690 2795534035 -0.89% BenchmarkScaleDownNN 866628 869241 +0.30% BenchmarkScaleDownAB 3175963 3216041 +1.26% BenchmarkScaleDownBL 26639767 26677003 +0.14% BenchmarkScaleDownCR 51720996 51621628 -0.19% BenchmarkScaleUpNN 42758485 43258611 +1.17% BenchmarkScaleUpAB 156693813 156943367 +0.16% BenchmarkScaleUpBL 69511444 69621698 +0.16% BenchmarkScaleUpCR 124530191 124885601 +0.29% BenchmarkScaleSrcGray 8992205 9129321 +1.52% BenchmarkScaleSrcNRGBA 9807837 9894466 +0.88% BenchmarkScaleSrcRGBA 1333188 1104282 -17.17% BenchmarkScaleSrcUniform 1147788 1162488 +1.28% BenchmarkScaleSrcYCbCr 12164542 12305373 +1.16% Change-Id: I2aee6c392eb7437e843260775aed97ce145b4d47 Reviewed-on: https://go-review.googlesource.com/6556 Reviewed-by: Rob Pike <r@golang.org>
2015-03-03 06:54:53 +01:00
// adr is the affected destination pixels, relative to dr.Min.
adr := dst.Bounds().Intersect(dr).Sub(dr.Min)
if adr.Empty() || sr.Empty() {
return
}
// sr is the source pixels. If it extends beyond the src bounds,
// we cannot use the type-specific fast paths, as they access
// the Pix fields directly without bounds checking.
draw: make Scale an Interpolator method instead of a function. This means that only Kernel values have a NewScaler method, which re-uses computation when scaling multiple images of the same dst and src dimensions. The NearestNeighbor and ApproxBiLinear scalers don't get any pre-computation to re-use, so don't need a NewScaler method just to satisfy the previous Interpolator interface. As a small bonus, NN.Scale and ABL.Scale should no longer allocate on the fast paths. This change is consistent the upcoming Transformer method, so that the Interpolator interface will be type Interpolator interface { Scale(etc) Transform(etc) } instead of type Interpolator interface { NewScaler(etc) Scaler Transform(etc) } I don't have a good theory for why the "func (ablInterpolator) scale_RGBA_RGBA" benchmark is such a dramatic improvement, but at least it's in the right direction. I'm calling the other benchmark changes as noise. benchmark old ns/op new ns/op delta BenchmarkScaleLargeDownNN 3233406 3169060 -1.99% BenchmarkScaleLargeDownAB 12018178 12011348 -0.06% BenchmarkScaleLargeDownBL 1420827834 1409335695 -0.81% BenchmarkScaleLargeDownCR 2820669690 2795534035 -0.89% BenchmarkScaleDownNN 866628 869241 +0.30% BenchmarkScaleDownAB 3175963 3216041 +1.26% BenchmarkScaleDownBL 26639767 26677003 +0.14% BenchmarkScaleDownCR 51720996 51621628 -0.19% BenchmarkScaleUpNN 42758485 43258611 +1.17% BenchmarkScaleUpAB 156693813 156943367 +0.16% BenchmarkScaleUpBL 69511444 69621698 +0.16% BenchmarkScaleUpCR 124530191 124885601 +0.29% BenchmarkScaleSrcGray 8992205 9129321 +1.52% BenchmarkScaleSrcNRGBA 9807837 9894466 +0.88% BenchmarkScaleSrcRGBA 1333188 1104282 -17.17% BenchmarkScaleSrcUniform 1147788 1162488 +1.28% BenchmarkScaleSrcYCbCr 12164542 12305373 +1.16% Change-Id: I2aee6c392eb7437e843260775aed97ce145b4d47 Reviewed-on: https://go-review.googlesource.com/6556 Reviewed-by: Rob Pike <r@golang.org>
2015-03-03 06:54:53 +01:00
if !sr.In(src.Bounds()) {
z.scale_Image_Image(dst, dr, adr, src, sr)
} else if _, ok := src.(*image.Uniform); ok {
// TODO: get the Op from opts.
Draw(dst, dr, src, src.Bounds().Min, Src)
} else {
$switch z.scale_$dTypeRN_$sTypeRN$sratio(dst, dr, adr, src, sr)
}
}
func (z $receiver) Transform(dst Image, s2d *f64.Aff3, src image.Image, sr image.Rectangle, opts *Options) {
dr := transformRect(s2d, &sr)
// adr is the affected destination pixels.
adr := dst.Bounds().Intersect(dr)
if adr.Empty() || sr.Empty() {
return
}
d2s := invert(s2d)
// bias is a translation of the mapping from dst co-ordinates to
// src co-ordinates such that the latter temporarily have
// non-negative X and Y co-ordinates. This allows us to write
// int(f) instead of int(math.Floor(f)), since "round to zero" and
// "round down" are equivalent when f >= 0, but the former is much
// cheaper. The X-- and Y-- are because the TransformLeaf methods
// have a "sx -= 0.5" adjustment.
bias := transformRect(&d2s, &adr).Min
bias.X--
bias.Y--
d2s[2] -= float64(bias.X)
d2s[5] -= float64(bias.Y)
// Make adr relative to dr.Min.
adr = adr.Sub(dr.Min)
// sr is the source pixels. If it extends beyond the src bounds,
// we cannot use the type-specific fast paths, as they access
// the Pix fields directly without bounds checking.
if !sr.In(src.Bounds()) {
z.transform_Image_Image(dst, dr, adr, &d2s, src, sr, bias)
} else if u, ok := src.(*image.Uniform); ok {
// TODO: get the Op from opts.
transform_Uniform(dst, dr, adr, &d2s, u, sr, bias, Src)
} else {
$switch z.transform_$dTypeRN_$sTypeRN$sratio(dst, dr, adr, &d2s, src, sr, bias)
}
}
`
codeNNScaleLeaf = `
func (nnInterpolator) scale_$dTypeRN_$sTypeRN$sratio(dst $dType, dr, adr image.Rectangle, src $sType, sr image.Rectangle) {
draw: make Scale an Interpolator method instead of a function. This means that only Kernel values have a NewScaler method, which re-uses computation when scaling multiple images of the same dst and src dimensions. The NearestNeighbor and ApproxBiLinear scalers don't get any pre-computation to re-use, so don't need a NewScaler method just to satisfy the previous Interpolator interface. As a small bonus, NN.Scale and ABL.Scale should no longer allocate on the fast paths. This change is consistent the upcoming Transformer method, so that the Interpolator interface will be type Interpolator interface { Scale(etc) Transform(etc) } instead of type Interpolator interface { NewScaler(etc) Scaler Transform(etc) } I don't have a good theory for why the "func (ablInterpolator) scale_RGBA_RGBA" benchmark is such a dramatic improvement, but at least it's in the right direction. I'm calling the other benchmark changes as noise. benchmark old ns/op new ns/op delta BenchmarkScaleLargeDownNN 3233406 3169060 -1.99% BenchmarkScaleLargeDownAB 12018178 12011348 -0.06% BenchmarkScaleLargeDownBL 1420827834 1409335695 -0.81% BenchmarkScaleLargeDownCR 2820669690 2795534035 -0.89% BenchmarkScaleDownNN 866628 869241 +0.30% BenchmarkScaleDownAB 3175963 3216041 +1.26% BenchmarkScaleDownBL 26639767 26677003 +0.14% BenchmarkScaleDownCR 51720996 51621628 -0.19% BenchmarkScaleUpNN 42758485 43258611 +1.17% BenchmarkScaleUpAB 156693813 156943367 +0.16% BenchmarkScaleUpBL 69511444 69621698 +0.16% BenchmarkScaleUpCR 124530191 124885601 +0.29% BenchmarkScaleSrcGray 8992205 9129321 +1.52% BenchmarkScaleSrcNRGBA 9807837 9894466 +0.88% BenchmarkScaleSrcRGBA 1333188 1104282 -17.17% BenchmarkScaleSrcUniform 1147788 1162488 +1.28% BenchmarkScaleSrcYCbCr 12164542 12305373 +1.16% Change-Id: I2aee6c392eb7437e843260775aed97ce145b4d47 Reviewed-on: https://go-review.googlesource.com/6556 Reviewed-by: Rob Pike <r@golang.org>
2015-03-03 06:54:53 +01:00
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
$preOuter
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
draw: make Scale an Interpolator method instead of a function. This means that only Kernel values have a NewScaler method, which re-uses computation when scaling multiple images of the same dst and src dimensions. The NearestNeighbor and ApproxBiLinear scalers don't get any pre-computation to re-use, so don't need a NewScaler method just to satisfy the previous Interpolator interface. As a small bonus, NN.Scale and ABL.Scale should no longer allocate on the fast paths. This change is consistent the upcoming Transformer method, so that the Interpolator interface will be type Interpolator interface { Scale(etc) Transform(etc) } instead of type Interpolator interface { NewScaler(etc) Scaler Transform(etc) } I don't have a good theory for why the "func (ablInterpolator) scale_RGBA_RGBA" benchmark is such a dramatic improvement, but at least it's in the right direction. I'm calling the other benchmark changes as noise. benchmark old ns/op new ns/op delta BenchmarkScaleLargeDownNN 3233406 3169060 -1.99% BenchmarkScaleLargeDownAB 12018178 12011348 -0.06% BenchmarkScaleLargeDownBL 1420827834 1409335695 -0.81% BenchmarkScaleLargeDownCR 2820669690 2795534035 -0.89% BenchmarkScaleDownNN 866628 869241 +0.30% BenchmarkScaleDownAB 3175963 3216041 +1.26% BenchmarkScaleDownBL 26639767 26677003 +0.14% BenchmarkScaleDownCR 51720996 51621628 -0.19% BenchmarkScaleUpNN 42758485 43258611 +1.17% BenchmarkScaleUpAB 156693813 156943367 +0.16% BenchmarkScaleUpBL 69511444 69621698 +0.16% BenchmarkScaleUpCR 124530191 124885601 +0.29% BenchmarkScaleSrcGray 8992205 9129321 +1.52% BenchmarkScaleSrcNRGBA 9807837 9894466 +0.88% BenchmarkScaleSrcRGBA 1333188 1104282 -17.17% BenchmarkScaleSrcUniform 1147788 1162488 +1.28% BenchmarkScaleSrcYCbCr 12164542 12305373 +1.16% Change-Id: I2aee6c392eb7437e843260775aed97ce145b4d47 Reviewed-on: https://go-review.googlesource.com/6556 Reviewed-by: Rob Pike <r@golang.org>
2015-03-03 06:54:53 +01:00
sy := (2*uint64(dy) + 1) * sh / dh2
$preInner
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { $tweakDx
draw: make Scale an Interpolator method instead of a function. This means that only Kernel values have a NewScaler method, which re-uses computation when scaling multiple images of the same dst and src dimensions. The NearestNeighbor and ApproxBiLinear scalers don't get any pre-computation to re-use, so don't need a NewScaler method just to satisfy the previous Interpolator interface. As a small bonus, NN.Scale and ABL.Scale should no longer allocate on the fast paths. This change is consistent the upcoming Transformer method, so that the Interpolator interface will be type Interpolator interface { Scale(etc) Transform(etc) } instead of type Interpolator interface { NewScaler(etc) Scaler Transform(etc) } I don't have a good theory for why the "func (ablInterpolator) scale_RGBA_RGBA" benchmark is such a dramatic improvement, but at least it's in the right direction. I'm calling the other benchmark changes as noise. benchmark old ns/op new ns/op delta BenchmarkScaleLargeDownNN 3233406 3169060 -1.99% BenchmarkScaleLargeDownAB 12018178 12011348 -0.06% BenchmarkScaleLargeDownBL 1420827834 1409335695 -0.81% BenchmarkScaleLargeDownCR 2820669690 2795534035 -0.89% BenchmarkScaleDownNN 866628 869241 +0.30% BenchmarkScaleDownAB 3175963 3216041 +1.26% BenchmarkScaleDownBL 26639767 26677003 +0.14% BenchmarkScaleDownCR 51720996 51621628 -0.19% BenchmarkScaleUpNN 42758485 43258611 +1.17% BenchmarkScaleUpAB 156693813 156943367 +0.16% BenchmarkScaleUpBL 69511444 69621698 +0.16% BenchmarkScaleUpCR 124530191 124885601 +0.29% BenchmarkScaleSrcGray 8992205 9129321 +1.52% BenchmarkScaleSrcNRGBA 9807837 9894466 +0.88% BenchmarkScaleSrcRGBA 1333188 1104282 -17.17% BenchmarkScaleSrcUniform 1147788 1162488 +1.28% BenchmarkScaleSrcYCbCr 12164542 12305373 +1.16% Change-Id: I2aee6c392eb7437e843260775aed97ce145b4d47 Reviewed-on: https://go-review.googlesource.com/6556 Reviewed-by: Rob Pike <r@golang.org>
2015-03-03 06:54:53 +01:00
sx := (2*uint64(dx) + 1) * sw / dw2
p := $srcu[sr.Min.X + int(sx), sr.Min.Y + int(sy)]
$outputu[dr.Min.X + int(dx), dr.Min.Y + int(dy), p]
}
}
}
`
codeNNTransformLeaf = `
func (nnInterpolator) transform_$dTypeRN_$sTypeRN$sratio(dst $dType, dr, adr image.Rectangle, d2s *f64.Aff3, src $sType, sr image.Rectangle, bias image.Point) {
$preOuter
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y + int(dy)) + 0.5
$preInner
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { $tweakDx
dxf := float64(dr.Min.X + int(dx)) + 0.5
sx0 := int(d2s[0]*dxf + d2s[1]*dyf + d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf + d2s[4]*dyf + d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
p := $srcu[sx0, sy0]
$outputu[dr.Min.X + int(dx), dr.Min.Y + int(dy), p]
}
}
}
`
codeABLScaleLeaf = `
func (ablInterpolator) scale_$dTypeRN_$sTypeRN$sratio(dst $dType, dr, adr image.Rectangle, src $sType, sr image.Rectangle) {
draw: make Scale an Interpolator method instead of a function. This means that only Kernel values have a NewScaler method, which re-uses computation when scaling multiple images of the same dst and src dimensions. The NearestNeighbor and ApproxBiLinear scalers don't get any pre-computation to re-use, so don't need a NewScaler method just to satisfy the previous Interpolator interface. As a small bonus, NN.Scale and ABL.Scale should no longer allocate on the fast paths. This change is consistent the upcoming Transformer method, so that the Interpolator interface will be type Interpolator interface { Scale(etc) Transform(etc) } instead of type Interpolator interface { NewScaler(etc) Scaler Transform(etc) } I don't have a good theory for why the "func (ablInterpolator) scale_RGBA_RGBA" benchmark is such a dramatic improvement, but at least it's in the right direction. I'm calling the other benchmark changes as noise. benchmark old ns/op new ns/op delta BenchmarkScaleLargeDownNN 3233406 3169060 -1.99% BenchmarkScaleLargeDownAB 12018178 12011348 -0.06% BenchmarkScaleLargeDownBL 1420827834 1409335695 -0.81% BenchmarkScaleLargeDownCR 2820669690 2795534035 -0.89% BenchmarkScaleDownNN 866628 869241 +0.30% BenchmarkScaleDownAB 3175963 3216041 +1.26% BenchmarkScaleDownBL 26639767 26677003 +0.14% BenchmarkScaleDownCR 51720996 51621628 -0.19% BenchmarkScaleUpNN 42758485 43258611 +1.17% BenchmarkScaleUpAB 156693813 156943367 +0.16% BenchmarkScaleUpBL 69511444 69621698 +0.16% BenchmarkScaleUpCR 124530191 124885601 +0.29% BenchmarkScaleSrcGray 8992205 9129321 +1.52% BenchmarkScaleSrcNRGBA 9807837 9894466 +0.88% BenchmarkScaleSrcRGBA 1333188 1104282 -17.17% BenchmarkScaleSrcUniform 1147788 1162488 +1.28% BenchmarkScaleSrcYCbCr 12164542 12305373 +1.16% Change-Id: I2aee6c392eb7437e843260775aed97ce145b4d47 Reviewed-on: https://go-review.googlesource.com/6556 Reviewed-by: Rob Pike <r@golang.org>
2015-03-03 06:54:53 +01:00
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw - 1, sh - 1
$preOuter
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
$preInner
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { $tweakDx
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00 := $srcf[sr.Min.X + int(sx0), sr.Min.Y + int(sy0)]
s10 := $srcf[sr.Min.X + int(sx1), sr.Min.Y + int(sy0)]
$blend[xFrac1, s00, xFrac0, s10]
s01 := $srcf[sr.Min.X + int(sx0), sr.Min.Y + int(sy1)]
s11 := $srcf[sr.Min.X + int(sx1), sr.Min.Y + int(sy1)]
$blend[xFrac1, s01, xFrac0, s11]
$blend[yFrac1, s10, yFrac0, s11]
$outputu[dr.Min.X + int(dx), dr.Min.Y + int(dy), s11]
}
}
}
`
codeABLTransformLeaf = `
func (ablInterpolator) transform_$dTypeRN_$sTypeRN$sratio(dst $dType, dr, adr image.Rectangle, d2s *f64.Aff3, src $sType, sr image.Rectangle, bias image.Point) {
$preOuter
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y + int(dy)) + 0.5
$preInner
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { $tweakDx
dxf := float64(dr.Min.X + int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00 := $srcf[sx0, sy0]
s10 := $srcf[sx1, sy0]
$blend[xFrac1, s00, xFrac0, s10]
s01 := $srcf[sx0, sy1]
s11 := $srcf[sx1, sy1]
$blend[xFrac1, s01, xFrac0, s11]
$blend[yFrac1, s10, yFrac0, s11]
$outputu[dr.Min.X + int(dx), dr.Min.Y + int(dy), s11]
}
}
}
`
codeKernelRoot = `
func (z *kernelScaler) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
draw: make Scale an Interpolator method instead of a function. This means that only Kernel values have a NewScaler method, which re-uses computation when scaling multiple images of the same dst and src dimensions. The NearestNeighbor and ApproxBiLinear scalers don't get any pre-computation to re-use, so don't need a NewScaler method just to satisfy the previous Interpolator interface. As a small bonus, NN.Scale and ABL.Scale should no longer allocate on the fast paths. This change is consistent the upcoming Transformer method, so that the Interpolator interface will be type Interpolator interface { Scale(etc) Transform(etc) } instead of type Interpolator interface { NewScaler(etc) Scaler Transform(etc) } I don't have a good theory for why the "func (ablInterpolator) scale_RGBA_RGBA" benchmark is such a dramatic improvement, but at least it's in the right direction. I'm calling the other benchmark changes as noise. benchmark old ns/op new ns/op delta BenchmarkScaleLargeDownNN 3233406 3169060 -1.99% BenchmarkScaleLargeDownAB 12018178 12011348 -0.06% BenchmarkScaleLargeDownBL 1420827834 1409335695 -0.81% BenchmarkScaleLargeDownCR 2820669690 2795534035 -0.89% BenchmarkScaleDownNN 866628 869241 +0.30% BenchmarkScaleDownAB 3175963 3216041 +1.26% BenchmarkScaleDownBL 26639767 26677003 +0.14% BenchmarkScaleDownCR 51720996 51621628 -0.19% BenchmarkScaleUpNN 42758485 43258611 +1.17% BenchmarkScaleUpAB 156693813 156943367 +0.16% BenchmarkScaleUpBL 69511444 69621698 +0.16% BenchmarkScaleUpCR 124530191 124885601 +0.29% BenchmarkScaleSrcGray 8992205 9129321 +1.52% BenchmarkScaleSrcNRGBA 9807837 9894466 +0.88% BenchmarkScaleSrcRGBA 1333188 1104282 -17.17% BenchmarkScaleSrcUniform 1147788 1162488 +1.28% BenchmarkScaleSrcYCbCr 12164542 12305373 +1.16% Change-Id: I2aee6c392eb7437e843260775aed97ce145b4d47 Reviewed-on: https://go-review.googlesource.com/6556 Reviewed-by: Rob Pike <r@golang.org>
2015-03-03 06:54:53 +01:00
if z.dw != int32(dr.Dx()) || z.dh != int32(dr.Dy()) || z.sw != int32(sr.Dx()) || z.sh != int32(sr.Dy()) {
z.kernel.Scale(dst, dr, src, sr, opts)
return
}
draw: make Scale an Interpolator method instead of a function. This means that only Kernel values have a NewScaler method, which re-uses computation when scaling multiple images of the same dst and src dimensions. The NearestNeighbor and ApproxBiLinear scalers don't get any pre-computation to re-use, so don't need a NewScaler method just to satisfy the previous Interpolator interface. As a small bonus, NN.Scale and ABL.Scale should no longer allocate on the fast paths. This change is consistent the upcoming Transformer method, so that the Interpolator interface will be type Interpolator interface { Scale(etc) Transform(etc) } instead of type Interpolator interface { NewScaler(etc) Scaler Transform(etc) } I don't have a good theory for why the "func (ablInterpolator) scale_RGBA_RGBA" benchmark is such a dramatic improvement, but at least it's in the right direction. I'm calling the other benchmark changes as noise. benchmark old ns/op new ns/op delta BenchmarkScaleLargeDownNN 3233406 3169060 -1.99% BenchmarkScaleLargeDownAB 12018178 12011348 -0.06% BenchmarkScaleLargeDownBL 1420827834 1409335695 -0.81% BenchmarkScaleLargeDownCR 2820669690 2795534035 -0.89% BenchmarkScaleDownNN 866628 869241 +0.30% BenchmarkScaleDownAB 3175963 3216041 +1.26% BenchmarkScaleDownBL 26639767 26677003 +0.14% BenchmarkScaleDownCR 51720996 51621628 -0.19% BenchmarkScaleUpNN 42758485 43258611 +1.17% BenchmarkScaleUpAB 156693813 156943367 +0.16% BenchmarkScaleUpBL 69511444 69621698 +0.16% BenchmarkScaleUpCR 124530191 124885601 +0.29% BenchmarkScaleSrcGray 8992205 9129321 +1.52% BenchmarkScaleSrcNRGBA 9807837 9894466 +0.88% BenchmarkScaleSrcRGBA 1333188 1104282 -17.17% BenchmarkScaleSrcUniform 1147788 1162488 +1.28% BenchmarkScaleSrcYCbCr 12164542 12305373 +1.16% Change-Id: I2aee6c392eb7437e843260775aed97ce145b4d47 Reviewed-on: https://go-review.googlesource.com/6556 Reviewed-by: Rob Pike <r@golang.org>
2015-03-03 06:54:53 +01:00
// adr is the affected destination pixels, relative to dr.Min.
adr := dst.Bounds().Intersect(dr).Sub(dr.Min)
if adr.Empty() || sr.Empty() {
return
}
if _, ok := src.(*image.Uniform); ok && sr.In(src.Bounds()) {
// TODO: get the Op from opts.
Draw(dst, dr, src, src.Bounds().Min, Src)
return
}
// Create a temporary buffer:
// scaleX distributes the source image's columns over the temporary image.
// scaleY distributes the temporary image's rows over the destination image.
// TODO: is it worth having a sync.Pool for this temporary buffer?
tmp := make([][4]float64, z.dw*z.sh)
// sr is the source pixels. If it extends beyond the src bounds,
// we cannot use the type-specific fast paths, as they access
// the Pix fields directly without bounds checking.
draw: make Scale an Interpolator method instead of a function. This means that only Kernel values have a NewScaler method, which re-uses computation when scaling multiple images of the same dst and src dimensions. The NearestNeighbor and ApproxBiLinear scalers don't get any pre-computation to re-use, so don't need a NewScaler method just to satisfy the previous Interpolator interface. As a small bonus, NN.Scale and ABL.Scale should no longer allocate on the fast paths. This change is consistent the upcoming Transformer method, so that the Interpolator interface will be type Interpolator interface { Scale(etc) Transform(etc) } instead of type Interpolator interface { NewScaler(etc) Scaler Transform(etc) } I don't have a good theory for why the "func (ablInterpolator) scale_RGBA_RGBA" benchmark is such a dramatic improvement, but at least it's in the right direction. I'm calling the other benchmark changes as noise. benchmark old ns/op new ns/op delta BenchmarkScaleLargeDownNN 3233406 3169060 -1.99% BenchmarkScaleLargeDownAB 12018178 12011348 -0.06% BenchmarkScaleLargeDownBL 1420827834 1409335695 -0.81% BenchmarkScaleLargeDownCR 2820669690 2795534035 -0.89% BenchmarkScaleDownNN 866628 869241 +0.30% BenchmarkScaleDownAB 3175963 3216041 +1.26% BenchmarkScaleDownBL 26639767 26677003 +0.14% BenchmarkScaleDownCR 51720996 51621628 -0.19% BenchmarkScaleUpNN 42758485 43258611 +1.17% BenchmarkScaleUpAB 156693813 156943367 +0.16% BenchmarkScaleUpBL 69511444 69621698 +0.16% BenchmarkScaleUpCR 124530191 124885601 +0.29% BenchmarkScaleSrcGray 8992205 9129321 +1.52% BenchmarkScaleSrcNRGBA 9807837 9894466 +0.88% BenchmarkScaleSrcRGBA 1333188 1104282 -17.17% BenchmarkScaleSrcUniform 1147788 1162488 +1.28% BenchmarkScaleSrcYCbCr 12164542 12305373 +1.16% Change-Id: I2aee6c392eb7437e843260775aed97ce145b4d47 Reviewed-on: https://go-review.googlesource.com/6556 Reviewed-by: Rob Pike <r@golang.org>
2015-03-03 06:54:53 +01:00
if !sr.In(src.Bounds()) {
z.scaleX_Image(tmp, src, sr)
} else {
$switchS z.scaleX_$sTypeRN$sratio(tmp, src, sr)
}
draw: make Scale an Interpolator method instead of a function. This means that only Kernel values have a NewScaler method, which re-uses computation when scaling multiple images of the same dst and src dimensions. The NearestNeighbor and ApproxBiLinear scalers don't get any pre-computation to re-use, so don't need a NewScaler method just to satisfy the previous Interpolator interface. As a small bonus, NN.Scale and ABL.Scale should no longer allocate on the fast paths. This change is consistent the upcoming Transformer method, so that the Interpolator interface will be type Interpolator interface { Scale(etc) Transform(etc) } instead of type Interpolator interface { NewScaler(etc) Scaler Transform(etc) } I don't have a good theory for why the "func (ablInterpolator) scale_RGBA_RGBA" benchmark is such a dramatic improvement, but at least it's in the right direction. I'm calling the other benchmark changes as noise. benchmark old ns/op new ns/op delta BenchmarkScaleLargeDownNN 3233406 3169060 -1.99% BenchmarkScaleLargeDownAB 12018178 12011348 -0.06% BenchmarkScaleLargeDownBL 1420827834 1409335695 -0.81% BenchmarkScaleLargeDownCR 2820669690 2795534035 -0.89% BenchmarkScaleDownNN 866628 869241 +0.30% BenchmarkScaleDownAB 3175963 3216041 +1.26% BenchmarkScaleDownBL 26639767 26677003 +0.14% BenchmarkScaleDownCR 51720996 51621628 -0.19% BenchmarkScaleUpNN 42758485 43258611 +1.17% BenchmarkScaleUpAB 156693813 156943367 +0.16% BenchmarkScaleUpBL 69511444 69621698 +0.16% BenchmarkScaleUpCR 124530191 124885601 +0.29% BenchmarkScaleSrcGray 8992205 9129321 +1.52% BenchmarkScaleSrcNRGBA 9807837 9894466 +0.88% BenchmarkScaleSrcRGBA 1333188 1104282 -17.17% BenchmarkScaleSrcUniform 1147788 1162488 +1.28% BenchmarkScaleSrcYCbCr 12164542 12305373 +1.16% Change-Id: I2aee6c392eb7437e843260775aed97ce145b4d47 Reviewed-on: https://go-review.googlesource.com/6556 Reviewed-by: Rob Pike <r@golang.org>
2015-03-03 06:54:53 +01:00
$switchD z.scaleY_$dTypeRN(dst, dr, adr, tmp)
}
func (q *Kernel) Transform(dst Image, s2d *f64.Aff3, src image.Image, sr image.Rectangle, opts *Options) {
dr := transformRect(s2d, &sr)
// adr is the affected destination pixels.
adr := dst.Bounds().Intersect(dr)
if adr.Empty() || sr.Empty() {
return
}
d2s := invert(s2d)
// bias is a translation of the mapping from dst co-ordinates to
// src co-ordinates such that the latter temporarily have
// non-negative X and Y co-ordinates. This allows us to write
// int(f) instead of int(math.Floor(f)), since "round to zero" and
// "round down" are equivalent when f >= 0, but the former is much
// cheaper. The X-- and Y-- are because the TransformLeaf methods
// have a "sx -= 0.5" adjustment.
bias := transformRect(&d2s, &adr).Min
bias.X--
bias.Y--
d2s[2] -= float64(bias.X)
d2s[5] -= float64(bias.Y)
// Make adr relative to dr.Min.
adr = adr.Sub(dr.Min)
if u, ok := src.(*image.Uniform); ok && sr.In(src.Bounds()) {
// TODO: get the Op from opts.
transform_Uniform(dst, dr, adr, &d2s, u, sr, bias, Src)
return
}
xscale := abs(d2s[0])
if s := abs(d2s[1]); xscale < s {
xscale = s
}
yscale := abs(d2s[3])
if s := abs(d2s[4]); yscale < s {
yscale = s
}
// sr is the source pixels. If it extends beyond the src bounds,
// we cannot use the type-specific fast paths, as they access
// the Pix fields directly without bounds checking.
if !sr.In(src.Bounds()) {
q.transform_Image_Image(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale)
} else {
$switch q.transform_$dTypeRN_$sTypeRN$sratio(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale)
}
}
`
codeKernelScaleLeafX = `
func (z *kernelScaler) scaleX_$sTypeRN$sratio(tmp [][4]float64, src $sType, sr image.Rectangle) {
t := 0
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr, pg, pb, pa float64 $tweakVarP
for _, c := range z.horizontal.contribs[s.i:s.j] {
p += $srcf[sr.Min.X + int(c.coord), sr.Min.Y + int(y)] * c.weight
}
$tweakPr
tmp[t] = [4]float64{
pr * s.invTotalWeightFFFF, $tweakP
pg * s.invTotalWeightFFFF, $tweakP
pb * s.invTotalWeightFFFF, $tweakP
pa * s.invTotalWeightFFFF, $tweakP
}
t++
}
}
}
`
codeKernelScaleLeafY = `
draw: make Scale an Interpolator method instead of a function. This means that only Kernel values have a NewScaler method, which re-uses computation when scaling multiple images of the same dst and src dimensions. The NearestNeighbor and ApproxBiLinear scalers don't get any pre-computation to re-use, so don't need a NewScaler method just to satisfy the previous Interpolator interface. As a small bonus, NN.Scale and ABL.Scale should no longer allocate on the fast paths. This change is consistent the upcoming Transformer method, so that the Interpolator interface will be type Interpolator interface { Scale(etc) Transform(etc) } instead of type Interpolator interface { NewScaler(etc) Scaler Transform(etc) } I don't have a good theory for why the "func (ablInterpolator) scale_RGBA_RGBA" benchmark is such a dramatic improvement, but at least it's in the right direction. I'm calling the other benchmark changes as noise. benchmark old ns/op new ns/op delta BenchmarkScaleLargeDownNN 3233406 3169060 -1.99% BenchmarkScaleLargeDownAB 12018178 12011348 -0.06% BenchmarkScaleLargeDownBL 1420827834 1409335695 -0.81% BenchmarkScaleLargeDownCR 2820669690 2795534035 -0.89% BenchmarkScaleDownNN 866628 869241 +0.30% BenchmarkScaleDownAB 3175963 3216041 +1.26% BenchmarkScaleDownBL 26639767 26677003 +0.14% BenchmarkScaleDownCR 51720996 51621628 -0.19% BenchmarkScaleUpNN 42758485 43258611 +1.17% BenchmarkScaleUpAB 156693813 156943367 +0.16% BenchmarkScaleUpBL 69511444 69621698 +0.16% BenchmarkScaleUpCR 124530191 124885601 +0.29% BenchmarkScaleSrcGray 8992205 9129321 +1.52% BenchmarkScaleSrcNRGBA 9807837 9894466 +0.88% BenchmarkScaleSrcRGBA 1333188 1104282 -17.17% BenchmarkScaleSrcUniform 1147788 1162488 +1.28% BenchmarkScaleSrcYCbCr 12164542 12305373 +1.16% Change-Id: I2aee6c392eb7437e843260775aed97ce145b4d47 Reviewed-on: https://go-review.googlesource.com/6556 Reviewed-by: Rob Pike <r@golang.org>
2015-03-03 06:54:53 +01:00
func (z *kernelScaler) scaleY_$dTypeRN(dst $dType, dr, adr image.Rectangle, tmp [][4]float64) {
$preOuter
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
$preKernelInner
for dy, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] { $tweakDy
var pr, pg, pb, pa float64
for _, c := range z.vertical.contribs[s.i:s.j] {
p := &tmp[c.coord*z.dw+dx]
pr += p[0] * c.weight
pg += p[1] * c.weight
pb += p[2] * c.weight
pa += p[3] * c.weight
}
$outputf[dr.Min.X + int(dx), dr.Min.Y + int(adr.Min.Y + dy), ftou, p, s.invTotalWeight]
$tweakD
}
}
}
`
codeKernelTransformLeaf = `
func (q *Kernel) transform_$dTypeRN_$sTypeRN$sratio(dst $dType, dr, adr image.Rectangle, d2s *f64.Aff3, src $sType, sr image.Rectangle, bias image.Point, xscale, yscale float64) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1 + 2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1 + 2*int(math.Ceil(yHalfWidth)))
$preOuter
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y + int(dy)) + 0.5
$preInner
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { $tweakDx
dxf := float64(dr.Min.X + int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx - ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky - iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb, pa float64 $tweakVarP
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky - iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx - ix] * yWeight; w != 0 {
p += $srcf[kx, ky] * w
}
}
}
}
$outputf[dr.Min.X + int(dx), dr.Min.Y + int(dy), fffftou, p, 1]
}
}
}
`
)