golang-image/draw/impl.go

6671 lines
205 KiB
Go
Raw Permalink Normal View History

// generated by "go run gen.go". DO NOT EDIT.
package draw
import (
"image"
"image/color"
"math"
2018-12-06 17:03:52 +01:00
"git.gutmet.org/golang-image.git/math/f64"
)
func (z nnInterpolator) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, op Op, opts *Options) {
// Try to simplify a Scale to a Copy when DstMask is not specified.
// If DstMask is not nil, Copy will call Scale back with same dr and sr, and cause stack overflow.
if dr.Size() == sr.Size() && (opts == nil || opts.DstMask == nil) {
Copy(dst, dr.Min, src, sr, op, opts)
return
}
var o Options
if opts != nil {
o = *opts
}
// adr is the affected destination pixels.
adr := dst.Bounds().Intersect(dr)
adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP)
draw: make Scale an Interpolator method instead of a function. This means that only Kernel values have a NewScaler method, which re-uses computation when scaling multiple images of the same dst and src dimensions. The NearestNeighbor and ApproxBiLinear scalers don't get any pre-computation to re-use, so don't need a NewScaler method just to satisfy the previous Interpolator interface. As a small bonus, NN.Scale and ABL.Scale should no longer allocate on the fast paths. This change is consistent the upcoming Transformer method, so that the Interpolator interface will be type Interpolator interface { Scale(etc) Transform(etc) } instead of type Interpolator interface { NewScaler(etc) Scaler Transform(etc) } I don't have a good theory for why the "func (ablInterpolator) scale_RGBA_RGBA" benchmark is such a dramatic improvement, but at least it's in the right direction. I'm calling the other benchmark changes as noise. benchmark old ns/op new ns/op delta BenchmarkScaleLargeDownNN 3233406 3169060 -1.99% BenchmarkScaleLargeDownAB 12018178 12011348 -0.06% BenchmarkScaleLargeDownBL 1420827834 1409335695 -0.81% BenchmarkScaleLargeDownCR 2820669690 2795534035 -0.89% BenchmarkScaleDownNN 866628 869241 +0.30% BenchmarkScaleDownAB 3175963 3216041 +1.26% BenchmarkScaleDownBL 26639767 26677003 +0.14% BenchmarkScaleDownCR 51720996 51621628 -0.19% BenchmarkScaleUpNN 42758485 43258611 +1.17% BenchmarkScaleUpAB 156693813 156943367 +0.16% BenchmarkScaleUpBL 69511444 69621698 +0.16% BenchmarkScaleUpCR 124530191 124885601 +0.29% BenchmarkScaleSrcGray 8992205 9129321 +1.52% BenchmarkScaleSrcNRGBA 9807837 9894466 +0.88% BenchmarkScaleSrcRGBA 1333188 1104282 -17.17% BenchmarkScaleSrcUniform 1147788 1162488 +1.28% BenchmarkScaleSrcYCbCr 12164542 12305373 +1.16% Change-Id: I2aee6c392eb7437e843260775aed97ce145b4d47 Reviewed-on: https://go-review.googlesource.com/6556 Reviewed-by: Rob Pike <r@golang.org>
2015-03-03 06:54:53 +01:00
if adr.Empty() || sr.Empty() {
return
}
// Make adr relative to dr.Min.
adr = adr.Sub(dr.Min)
if op == Over && o.SrcMask == nil && opaque(src) {
op = Src
}
// sr is the source pixels. If it extends beyond the src bounds,
// we cannot use the type-specific fast paths, as they access
// the Pix fields directly without bounds checking.
//
// Similarly, the fast paths assume that the masks are nil.
if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) {
switch op {
case Over:
z.scale_Image_Image_Over(dst, dr, adr, src, sr, &o)
case Src:
z.scale_Image_Image_Src(dst, dr, adr, src, sr, &o)
}
} else if _, ok := src.(*image.Uniform); ok {
Draw(dst, dr, src, src.Bounds().Min, op)
} else {
switch op {
case Over:
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.NRGBA:
z.scale_RGBA_NRGBA_Over(dst, dr, adr, src, sr, &o)
case *image.RGBA:
z.scale_RGBA_RGBA_Over(dst, dr, adr, src, sr, &o)
default:
z.scale_RGBA_Image_Over(dst, dr, adr, src, sr, &o)
}
default:
switch src := src.(type) {
default:
z.scale_Image_Image_Over(dst, dr, adr, src, sr, &o)
}
}
case Src:
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.Gray:
z.scale_RGBA_Gray_Src(dst, dr, adr, src, sr, &o)
case *image.NRGBA:
z.scale_RGBA_NRGBA_Src(dst, dr, adr, src, sr, &o)
case *image.RGBA:
z.scale_RGBA_RGBA_Src(dst, dr, adr, src, sr, &o)
case *image.YCbCr:
switch src.SubsampleRatio {
default:
z.scale_RGBA_Image_Src(dst, dr, adr, src, sr, &o)
case image.YCbCrSubsampleRatio444:
z.scale_RGBA_YCbCr444_Src(dst, dr, adr, src, sr, &o)
case image.YCbCrSubsampleRatio422:
z.scale_RGBA_YCbCr422_Src(dst, dr, adr, src, sr, &o)
case image.YCbCrSubsampleRatio420:
z.scale_RGBA_YCbCr420_Src(dst, dr, adr, src, sr, &o)
case image.YCbCrSubsampleRatio440:
z.scale_RGBA_YCbCr440_Src(dst, dr, adr, src, sr, &o)
}
default:
z.scale_RGBA_Image_Src(dst, dr, adr, src, sr, &o)
}
default:
switch src := src.(type) {
default:
z.scale_Image_Image_Src(dst, dr, adr, src, sr, &o)
}
}
}
}
}
func (z nnInterpolator) Transform(dst Image, s2d f64.Aff3, src image.Image, sr image.Rectangle, op Op, opts *Options) {
// Try to simplify a Transform to a Copy.
if s2d[0] == 1 && s2d[1] == 0 && s2d[3] == 0 && s2d[4] == 1 {
dx := int(s2d[2])
dy := int(s2d[5])
if float64(dx) == s2d[2] && float64(dy) == s2d[5] {
Copy(dst, image.Point{X: sr.Min.X + dx, Y: sr.Min.X + dy}, src, sr, op, opts)
return
}
}
var o Options
if opts != nil {
o = *opts
}
dr := transformRect(&s2d, &sr)
// adr is the affected destination pixels.
adr := dst.Bounds().Intersect(dr)
adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP)
if adr.Empty() || sr.Empty() {
return
}
if op == Over && o.SrcMask == nil && opaque(src) {
op = Src
}
d2s := invert(&s2d)
// bias is a translation of the mapping from dst coordinates to src
// coordinates such that the latter temporarily have non-negative X
// and Y coordinates. This allows us to write int(f) instead of
// int(math.Floor(f)), since "round to zero" and "round down" are
// equivalent when f >= 0, but the former is much cheaper. The X--
// and Y-- are because the TransformLeaf methods have a "sx -= 0.5"
// adjustment.
bias := transformRect(&d2s, &adr).Min
bias.X--
bias.Y--
d2s[2] -= float64(bias.X)
d2s[5] -= float64(bias.Y)
// Make adr relative to dr.Min.
adr = adr.Sub(dr.Min)
// sr is the source pixels. If it extends beyond the src bounds,
// we cannot use the type-specific fast paths, as they access
// the Pix fields directly without bounds checking.
//
// Similarly, the fast paths assume that the masks are nil.
if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) {
switch op {
case Over:
z.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
case Src:
z.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
}
} else if u, ok := src.(*image.Uniform); ok {
transform_Uniform(dst, dr, adr, &d2s, u, sr, bias, op)
} else {
switch op {
case Over:
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.NRGBA:
z.transform_RGBA_NRGBA_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
case *image.RGBA:
z.transform_RGBA_RGBA_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
default:
z.transform_RGBA_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
}
default:
switch src := src.(type) {
default:
z.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
}
}
case Src:
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.Gray:
z.transform_RGBA_Gray_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case *image.NRGBA:
z.transform_RGBA_NRGBA_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case *image.RGBA:
z.transform_RGBA_RGBA_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case *image.YCbCr:
switch src.SubsampleRatio {
default:
z.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case image.YCbCrSubsampleRatio444:
z.transform_RGBA_YCbCr444_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case image.YCbCrSubsampleRatio422:
z.transform_RGBA_YCbCr422_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case image.YCbCrSubsampleRatio420:
z.transform_RGBA_YCbCr420_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case image.YCbCrSubsampleRatio440:
z.transform_RGBA_YCbCr440_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
}
default:
z.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
}
default:
switch src := src.(type) {
default:
z.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
}
}
}
}
}
func (nnInterpolator) scale_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.Gray, sr image.Rectangle, opts *Options) {
draw: make Scale an Interpolator method instead of a function. This means that only Kernel values have a NewScaler method, which re-uses computation when scaling multiple images of the same dst and src dimensions. The NearestNeighbor and ApproxBiLinear scalers don't get any pre-computation to re-use, so don't need a NewScaler method just to satisfy the previous Interpolator interface. As a small bonus, NN.Scale and ABL.Scale should no longer allocate on the fast paths. This change is consistent the upcoming Transformer method, so that the Interpolator interface will be type Interpolator interface { Scale(etc) Transform(etc) } instead of type Interpolator interface { NewScaler(etc) Scaler Transform(etc) } I don't have a good theory for why the "func (ablInterpolator) scale_RGBA_RGBA" benchmark is such a dramatic improvement, but at least it's in the right direction. I'm calling the other benchmark changes as noise. benchmark old ns/op new ns/op delta BenchmarkScaleLargeDownNN 3233406 3169060 -1.99% BenchmarkScaleLargeDownAB 12018178 12011348 -0.06% BenchmarkScaleLargeDownBL 1420827834 1409335695 -0.81% BenchmarkScaleLargeDownCR 2820669690 2795534035 -0.89% BenchmarkScaleDownNN 866628 869241 +0.30% BenchmarkScaleDownAB 3175963 3216041 +1.26% BenchmarkScaleDownBL 26639767 26677003 +0.14% BenchmarkScaleDownCR 51720996 51621628 -0.19% BenchmarkScaleUpNN 42758485 43258611 +1.17% BenchmarkScaleUpAB 156693813 156943367 +0.16% BenchmarkScaleUpBL 69511444 69621698 +0.16% BenchmarkScaleUpCR 124530191 124885601 +0.29% BenchmarkScaleSrcGray 8992205 9129321 +1.52% BenchmarkScaleSrcNRGBA 9807837 9894466 +0.88% BenchmarkScaleSrcRGBA 1333188 1104282 -17.17% BenchmarkScaleSrcUniform 1147788 1162488 +1.28% BenchmarkScaleSrcYCbCr 12164542 12305373 +1.16% Change-Id: I2aee6c392eb7437e843260775aed97ce145b4d47 Reviewed-on: https://go-review.googlesource.com/6556 Reviewed-by: Rob Pike <r@golang.org>
2015-03-03 06:54:53 +01:00
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
draw: make Scale an Interpolator method instead of a function. This means that only Kernel values have a NewScaler method, which re-uses computation when scaling multiple images of the same dst and src dimensions. The NearestNeighbor and ApproxBiLinear scalers don't get any pre-computation to re-use, so don't need a NewScaler method just to satisfy the previous Interpolator interface. As a small bonus, NN.Scale and ABL.Scale should no longer allocate on the fast paths. This change is consistent the upcoming Transformer method, so that the Interpolator interface will be type Interpolator interface { Scale(etc) Transform(etc) } instead of type Interpolator interface { NewScaler(etc) Scaler Transform(etc) } I don't have a good theory for why the "func (ablInterpolator) scale_RGBA_RGBA" benchmark is such a dramatic improvement, but at least it's in the right direction. I'm calling the other benchmark changes as noise. benchmark old ns/op new ns/op delta BenchmarkScaleLargeDownNN 3233406 3169060 -1.99% BenchmarkScaleLargeDownAB 12018178 12011348 -0.06% BenchmarkScaleLargeDownBL 1420827834 1409335695 -0.81% BenchmarkScaleLargeDownCR 2820669690 2795534035 -0.89% BenchmarkScaleDownNN 866628 869241 +0.30% BenchmarkScaleDownAB 3175963 3216041 +1.26% BenchmarkScaleDownBL 26639767 26677003 +0.14% BenchmarkScaleDownCR 51720996 51621628 -0.19% BenchmarkScaleUpNN 42758485 43258611 +1.17% BenchmarkScaleUpAB 156693813 156943367 +0.16% BenchmarkScaleUpBL 69511444 69621698 +0.16% BenchmarkScaleUpCR 124530191 124885601 +0.29% BenchmarkScaleSrcGray 8992205 9129321 +1.52% BenchmarkScaleSrcNRGBA 9807837 9894466 +0.88% BenchmarkScaleSrcRGBA 1333188 1104282 -17.17% BenchmarkScaleSrcUniform 1147788 1162488 +1.28% BenchmarkScaleSrcYCbCr 12164542 12305373 +1.16% Change-Id: I2aee6c392eb7437e843260775aed97ce145b4d47 Reviewed-on: https://go-review.googlesource.com/6556 Reviewed-by: Rob Pike <r@golang.org>
2015-03-03 06:54:53 +01:00
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
draw: make Scale an Interpolator method instead of a function. This means that only Kernel values have a NewScaler method, which re-uses computation when scaling multiple images of the same dst and src dimensions. The NearestNeighbor and ApproxBiLinear scalers don't get any pre-computation to re-use, so don't need a NewScaler method just to satisfy the previous Interpolator interface. As a small bonus, NN.Scale and ABL.Scale should no longer allocate on the fast paths. This change is consistent the upcoming Transformer method, so that the Interpolator interface will be type Interpolator interface { Scale(etc) Transform(etc) } instead of type Interpolator interface { NewScaler(etc) Scaler Transform(etc) } I don't have a good theory for why the "func (ablInterpolator) scale_RGBA_RGBA" benchmark is such a dramatic improvement, but at least it's in the right direction. I'm calling the other benchmark changes as noise. benchmark old ns/op new ns/op delta BenchmarkScaleLargeDownNN 3233406 3169060 -1.99% BenchmarkScaleLargeDownAB 12018178 12011348 -0.06% BenchmarkScaleLargeDownBL 1420827834 1409335695 -0.81% BenchmarkScaleLargeDownCR 2820669690 2795534035 -0.89% BenchmarkScaleDownNN 866628 869241 +0.30% BenchmarkScaleDownAB 3175963 3216041 +1.26% BenchmarkScaleDownBL 26639767 26677003 +0.14% BenchmarkScaleDownCR 51720996 51621628 -0.19% BenchmarkScaleUpNN 42758485 43258611 +1.17% BenchmarkScaleUpAB 156693813 156943367 +0.16% BenchmarkScaleUpBL 69511444 69621698 +0.16% BenchmarkScaleUpCR 124530191 124885601 +0.29% BenchmarkScaleSrcGray 8992205 9129321 +1.52% BenchmarkScaleSrcNRGBA 9807837 9894466 +0.88% BenchmarkScaleSrcRGBA 1333188 1104282 -17.17% BenchmarkScaleSrcUniform 1147788 1162488 +1.28% BenchmarkScaleSrcYCbCr 12164542 12305373 +1.16% Change-Id: I2aee6c392eb7437e843260775aed97ce145b4d47 Reviewed-on: https://go-review.googlesource.com/6556 Reviewed-by: Rob Pike <r@golang.org>
2015-03-03 06:54:53 +01:00
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx) - src.Rect.Min.X)
pr := uint32(src.Pix[pi]) * 0x101
out := uint8(pr >> 8)
dst.Pix[d+0] = out
dst.Pix[d+1] = out
dst.Pix[d+2] = out
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) scale_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.NRGBA, sr image.Rectangle, opts *Options) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx)-src.Rect.Min.X)*4
pa := uint32(src.Pix[pi+3]) * 0x101
pr := uint32(src.Pix[pi+0]) * pa / 0xff
pg := uint32(src.Pix[pi+1]) * pa / 0xff
pb := uint32(src.Pix[pi+2]) * pa / 0xff
pa1 := (0xffff - pa) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
}
}
}
func (nnInterpolator) scale_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.NRGBA, sr image.Rectangle, opts *Options) {
draw: make Scale an Interpolator method instead of a function. This means that only Kernel values have a NewScaler method, which re-uses computation when scaling multiple images of the same dst and src dimensions. The NearestNeighbor and ApproxBiLinear scalers don't get any pre-computation to re-use, so don't need a NewScaler method just to satisfy the previous Interpolator interface. As a small bonus, NN.Scale and ABL.Scale should no longer allocate on the fast paths. This change is consistent the upcoming Transformer method, so that the Interpolator interface will be type Interpolator interface { Scale(etc) Transform(etc) } instead of type Interpolator interface { NewScaler(etc) Scaler Transform(etc) } I don't have a good theory for why the "func (ablInterpolator) scale_RGBA_RGBA" benchmark is such a dramatic improvement, but at least it's in the right direction. I'm calling the other benchmark changes as noise. benchmark old ns/op new ns/op delta BenchmarkScaleLargeDownNN 3233406 3169060 -1.99% BenchmarkScaleLargeDownAB 12018178 12011348 -0.06% BenchmarkScaleLargeDownBL 1420827834 1409335695 -0.81% BenchmarkScaleLargeDownCR 2820669690 2795534035 -0.89% BenchmarkScaleDownNN 866628 869241 +0.30% BenchmarkScaleDownAB 3175963 3216041 +1.26% BenchmarkScaleDownBL 26639767 26677003 +0.14% BenchmarkScaleDownCR 51720996 51621628 -0.19% BenchmarkScaleUpNN 42758485 43258611 +1.17% BenchmarkScaleUpAB 156693813 156943367 +0.16% BenchmarkScaleUpBL 69511444 69621698 +0.16% BenchmarkScaleUpCR 124530191 124885601 +0.29% BenchmarkScaleSrcGray 8992205 9129321 +1.52% BenchmarkScaleSrcNRGBA 9807837 9894466 +0.88% BenchmarkScaleSrcRGBA 1333188 1104282 -17.17% BenchmarkScaleSrcUniform 1147788 1162488 +1.28% BenchmarkScaleSrcYCbCr 12164542 12305373 +1.16% Change-Id: I2aee6c392eb7437e843260775aed97ce145b4d47 Reviewed-on: https://go-review.googlesource.com/6556 Reviewed-by: Rob Pike <r@golang.org>
2015-03-03 06:54:53 +01:00
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
draw: make Scale an Interpolator method instead of a function. This means that only Kernel values have a NewScaler method, which re-uses computation when scaling multiple images of the same dst and src dimensions. The NearestNeighbor and ApproxBiLinear scalers don't get any pre-computation to re-use, so don't need a NewScaler method just to satisfy the previous Interpolator interface. As a small bonus, NN.Scale and ABL.Scale should no longer allocate on the fast paths. This change is consistent the upcoming Transformer method, so that the Interpolator interface will be type Interpolator interface { Scale(etc) Transform(etc) } instead of type Interpolator interface { NewScaler(etc) Scaler Transform(etc) } I don't have a good theory for why the "func (ablInterpolator) scale_RGBA_RGBA" benchmark is such a dramatic improvement, but at least it's in the right direction. I'm calling the other benchmark changes as noise. benchmark old ns/op new ns/op delta BenchmarkScaleLargeDownNN 3233406 3169060 -1.99% BenchmarkScaleLargeDownAB 12018178 12011348 -0.06% BenchmarkScaleLargeDownBL 1420827834 1409335695 -0.81% BenchmarkScaleLargeDownCR 2820669690 2795534035 -0.89% BenchmarkScaleDownNN 866628 869241 +0.30% BenchmarkScaleDownAB 3175963 3216041 +1.26% BenchmarkScaleDownBL 26639767 26677003 +0.14% BenchmarkScaleDownCR 51720996 51621628 -0.19% BenchmarkScaleUpNN 42758485 43258611 +1.17% BenchmarkScaleUpAB 156693813 156943367 +0.16% BenchmarkScaleUpBL 69511444 69621698 +0.16% BenchmarkScaleUpCR 124530191 124885601 +0.29% BenchmarkScaleSrcGray 8992205 9129321 +1.52% BenchmarkScaleSrcNRGBA 9807837 9894466 +0.88% BenchmarkScaleSrcRGBA 1333188 1104282 -17.17% BenchmarkScaleSrcUniform 1147788 1162488 +1.28% BenchmarkScaleSrcYCbCr 12164542 12305373 +1.16% Change-Id: I2aee6c392eb7437e843260775aed97ce145b4d47 Reviewed-on: https://go-review.googlesource.com/6556 Reviewed-by: Rob Pike <r@golang.org>
2015-03-03 06:54:53 +01:00
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
draw: make Scale an Interpolator method instead of a function. This means that only Kernel values have a NewScaler method, which re-uses computation when scaling multiple images of the same dst and src dimensions. The NearestNeighbor and ApproxBiLinear scalers don't get any pre-computation to re-use, so don't need a NewScaler method just to satisfy the previous Interpolator interface. As a small bonus, NN.Scale and ABL.Scale should no longer allocate on the fast paths. This change is consistent the upcoming Transformer method, so that the Interpolator interface will be type Interpolator interface { Scale(etc) Transform(etc) } instead of type Interpolator interface { NewScaler(etc) Scaler Transform(etc) } I don't have a good theory for why the "func (ablInterpolator) scale_RGBA_RGBA" benchmark is such a dramatic improvement, but at least it's in the right direction. I'm calling the other benchmark changes as noise. benchmark old ns/op new ns/op delta BenchmarkScaleLargeDownNN 3233406 3169060 -1.99% BenchmarkScaleLargeDownAB 12018178 12011348 -0.06% BenchmarkScaleLargeDownBL 1420827834 1409335695 -0.81% BenchmarkScaleLargeDownCR 2820669690 2795534035 -0.89% BenchmarkScaleDownNN 866628 869241 +0.30% BenchmarkScaleDownAB 3175963 3216041 +1.26% BenchmarkScaleDownBL 26639767 26677003 +0.14% BenchmarkScaleDownCR 51720996 51621628 -0.19% BenchmarkScaleUpNN 42758485 43258611 +1.17% BenchmarkScaleUpAB 156693813 156943367 +0.16% BenchmarkScaleUpBL 69511444 69621698 +0.16% BenchmarkScaleUpCR 124530191 124885601 +0.29% BenchmarkScaleSrcGray 8992205 9129321 +1.52% BenchmarkScaleSrcNRGBA 9807837 9894466 +0.88% BenchmarkScaleSrcRGBA 1333188 1104282 -17.17% BenchmarkScaleSrcUniform 1147788 1162488 +1.28% BenchmarkScaleSrcYCbCr 12164542 12305373 +1.16% Change-Id: I2aee6c392eb7437e843260775aed97ce145b4d47 Reviewed-on: https://go-review.googlesource.com/6556 Reviewed-by: Rob Pike <r@golang.org>
2015-03-03 06:54:53 +01:00
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx)-src.Rect.Min.X)*4
pa := uint32(src.Pix[pi+3]) * 0x101
pr := uint32(src.Pix[pi+0]) * pa / 0xff
pg := uint32(src.Pix[pi+1]) * pa / 0xff
pb := uint32(src.Pix[pi+2]) * pa / 0xff
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = uint8(pa >> 8)
}
}
}
func (nnInterpolator) scale_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.RGBA, sr image.Rectangle, opts *Options) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx)-src.Rect.Min.X)*4
pr := uint32(src.Pix[pi+0]) * 0x101
pg := uint32(src.Pix[pi+1]) * 0x101
pb := uint32(src.Pix[pi+2]) * 0x101
pa := uint32(src.Pix[pi+3]) * 0x101
pa1 := (0xffff - pa) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
}
}
}
func (nnInterpolator) scale_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.RGBA, sr image.Rectangle, opts *Options) {
draw: make Scale an Interpolator method instead of a function. This means that only Kernel values have a NewScaler method, which re-uses computation when scaling multiple images of the same dst and src dimensions. The NearestNeighbor and ApproxBiLinear scalers don't get any pre-computation to re-use, so don't need a NewScaler method just to satisfy the previous Interpolator interface. As a small bonus, NN.Scale and ABL.Scale should no longer allocate on the fast paths. This change is consistent the upcoming Transformer method, so that the Interpolator interface will be type Interpolator interface { Scale(etc) Transform(etc) } instead of type Interpolator interface { NewScaler(etc) Scaler Transform(etc) } I don't have a good theory for why the "func (ablInterpolator) scale_RGBA_RGBA" benchmark is such a dramatic improvement, but at least it's in the right direction. I'm calling the other benchmark changes as noise. benchmark old ns/op new ns/op delta BenchmarkScaleLargeDownNN 3233406 3169060 -1.99% BenchmarkScaleLargeDownAB 12018178 12011348 -0.06% BenchmarkScaleLargeDownBL 1420827834 1409335695 -0.81% BenchmarkScaleLargeDownCR 2820669690 2795534035 -0.89% BenchmarkScaleDownNN 866628 869241 +0.30% BenchmarkScaleDownAB 3175963 3216041 +1.26% BenchmarkScaleDownBL 26639767 26677003 +0.14% BenchmarkScaleDownCR 51720996 51621628 -0.19% BenchmarkScaleUpNN 42758485 43258611 +1.17% BenchmarkScaleUpAB 156693813 156943367 +0.16% BenchmarkScaleUpBL 69511444 69621698 +0.16% BenchmarkScaleUpCR 124530191 124885601 +0.29% BenchmarkScaleSrcGray 8992205 9129321 +1.52% BenchmarkScaleSrcNRGBA 9807837 9894466 +0.88% BenchmarkScaleSrcRGBA 1333188 1104282 -17.17% BenchmarkScaleSrcUniform 1147788 1162488 +1.28% BenchmarkScaleSrcYCbCr 12164542 12305373 +1.16% Change-Id: I2aee6c392eb7437e843260775aed97ce145b4d47 Reviewed-on: https://go-review.googlesource.com/6556 Reviewed-by: Rob Pike <r@golang.org>
2015-03-03 06:54:53 +01:00
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
draw: make Scale an Interpolator method instead of a function. This means that only Kernel values have a NewScaler method, which re-uses computation when scaling multiple images of the same dst and src dimensions. The NearestNeighbor and ApproxBiLinear scalers don't get any pre-computation to re-use, so don't need a NewScaler method just to satisfy the previous Interpolator interface. As a small bonus, NN.Scale and ABL.Scale should no longer allocate on the fast paths. This change is consistent the upcoming Transformer method, so that the Interpolator interface will be type Interpolator interface { Scale(etc) Transform(etc) } instead of type Interpolator interface { NewScaler(etc) Scaler Transform(etc) } I don't have a good theory for why the "func (ablInterpolator) scale_RGBA_RGBA" benchmark is such a dramatic improvement, but at least it's in the right direction. I'm calling the other benchmark changes as noise. benchmark old ns/op new ns/op delta BenchmarkScaleLargeDownNN 3233406 3169060 -1.99% BenchmarkScaleLargeDownAB 12018178 12011348 -0.06% BenchmarkScaleLargeDownBL 1420827834 1409335695 -0.81% BenchmarkScaleLargeDownCR 2820669690 2795534035 -0.89% BenchmarkScaleDownNN 866628 869241 +0.30% BenchmarkScaleDownAB 3175963 3216041 +1.26% BenchmarkScaleDownBL 26639767 26677003 +0.14% BenchmarkScaleDownCR 51720996 51621628 -0.19% BenchmarkScaleUpNN 42758485 43258611 +1.17% BenchmarkScaleUpAB 156693813 156943367 +0.16% BenchmarkScaleUpBL 69511444 69621698 +0.16% BenchmarkScaleUpCR 124530191 124885601 +0.29% BenchmarkScaleSrcGray 8992205 9129321 +1.52% BenchmarkScaleSrcNRGBA 9807837 9894466 +0.88% BenchmarkScaleSrcRGBA 1333188 1104282 -17.17% BenchmarkScaleSrcUniform 1147788 1162488 +1.28% BenchmarkScaleSrcYCbCr 12164542 12305373 +1.16% Change-Id: I2aee6c392eb7437e843260775aed97ce145b4d47 Reviewed-on: https://go-review.googlesource.com/6556 Reviewed-by: Rob Pike <r@golang.org>
2015-03-03 06:54:53 +01:00
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
draw: make Scale an Interpolator method instead of a function. This means that only Kernel values have a NewScaler method, which re-uses computation when scaling multiple images of the same dst and src dimensions. The NearestNeighbor and ApproxBiLinear scalers don't get any pre-computation to re-use, so don't need a NewScaler method just to satisfy the previous Interpolator interface. As a small bonus, NN.Scale and ABL.Scale should no longer allocate on the fast paths. This change is consistent the upcoming Transformer method, so that the Interpolator interface will be type Interpolator interface { Scale(etc) Transform(etc) } instead of type Interpolator interface { NewScaler(etc) Scaler Transform(etc) } I don't have a good theory for why the "func (ablInterpolator) scale_RGBA_RGBA" benchmark is such a dramatic improvement, but at least it's in the right direction. I'm calling the other benchmark changes as noise. benchmark old ns/op new ns/op delta BenchmarkScaleLargeDownNN 3233406 3169060 -1.99% BenchmarkScaleLargeDownAB 12018178 12011348 -0.06% BenchmarkScaleLargeDownBL 1420827834 1409335695 -0.81% BenchmarkScaleLargeDownCR 2820669690 2795534035 -0.89% BenchmarkScaleDownNN 866628 869241 +0.30% BenchmarkScaleDownAB 3175963 3216041 +1.26% BenchmarkScaleDownBL 26639767 26677003 +0.14% BenchmarkScaleDownCR 51720996 51621628 -0.19% BenchmarkScaleUpNN 42758485 43258611 +1.17% BenchmarkScaleUpAB 156693813 156943367 +0.16% BenchmarkScaleUpBL 69511444 69621698 +0.16% BenchmarkScaleUpCR 124530191 124885601 +0.29% BenchmarkScaleSrcGray 8992205 9129321 +1.52% BenchmarkScaleSrcNRGBA 9807837 9894466 +0.88% BenchmarkScaleSrcRGBA 1333188 1104282 -17.17% BenchmarkScaleSrcUniform 1147788 1162488 +1.28% BenchmarkScaleSrcYCbCr 12164542 12305373 +1.16% Change-Id: I2aee6c392eb7437e843260775aed97ce145b4d47 Reviewed-on: https://go-review.googlesource.com/6556 Reviewed-by: Rob Pike <r@golang.org>
2015-03-03 06:54:53 +01:00
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx)-src.Rect.Min.X)*4
pr := uint32(src.Pix[pi+0]) * 0x101
pg := uint32(src.Pix[pi+1]) * 0x101
pb := uint32(src.Pix[pi+2]) * 0x101
pa := uint32(src.Pix[pi+3]) * 0x101
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = uint8(pa >> 8)
}
}
}
func (nnInterpolator) scale_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) {
draw: make Scale an Interpolator method instead of a function. This means that only Kernel values have a NewScaler method, which re-uses computation when scaling multiple images of the same dst and src dimensions. The NearestNeighbor and ApproxBiLinear scalers don't get any pre-computation to re-use, so don't need a NewScaler method just to satisfy the previous Interpolator interface. As a small bonus, NN.Scale and ABL.Scale should no longer allocate on the fast paths. This change is consistent the upcoming Transformer method, so that the Interpolator interface will be type Interpolator interface { Scale(etc) Transform(etc) } instead of type Interpolator interface { NewScaler(etc) Scaler Transform(etc) } I don't have a good theory for why the "func (ablInterpolator) scale_RGBA_RGBA" benchmark is such a dramatic improvement, but at least it's in the right direction. I'm calling the other benchmark changes as noise. benchmark old ns/op new ns/op delta BenchmarkScaleLargeDownNN 3233406 3169060 -1.99% BenchmarkScaleLargeDownAB 12018178 12011348 -0.06% BenchmarkScaleLargeDownBL 1420827834 1409335695 -0.81% BenchmarkScaleLargeDownCR 2820669690 2795534035 -0.89% BenchmarkScaleDownNN 866628 869241 +0.30% BenchmarkScaleDownAB 3175963 3216041 +1.26% BenchmarkScaleDownBL 26639767 26677003 +0.14% BenchmarkScaleDownCR 51720996 51621628 -0.19% BenchmarkScaleUpNN 42758485 43258611 +1.17% BenchmarkScaleUpAB 156693813 156943367 +0.16% BenchmarkScaleUpBL 69511444 69621698 +0.16% BenchmarkScaleUpCR 124530191 124885601 +0.29% BenchmarkScaleSrcGray 8992205 9129321 +1.52% BenchmarkScaleSrcNRGBA 9807837 9894466 +0.88% BenchmarkScaleSrcRGBA 1333188 1104282 -17.17% BenchmarkScaleSrcUniform 1147788 1162488 +1.28% BenchmarkScaleSrcYCbCr 12164542 12305373 +1.16% Change-Id: I2aee6c392eb7437e843260775aed97ce145b4d47 Reviewed-on: https://go-review.googlesource.com/6556 Reviewed-by: Rob Pike <r@golang.org>
2015-03-03 06:54:53 +01:00
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
draw: make Scale an Interpolator method instead of a function. This means that only Kernel values have a NewScaler method, which re-uses computation when scaling multiple images of the same dst and src dimensions. The NearestNeighbor and ApproxBiLinear scalers don't get any pre-computation to re-use, so don't need a NewScaler method just to satisfy the previous Interpolator interface. As a small bonus, NN.Scale and ABL.Scale should no longer allocate on the fast paths. This change is consistent the upcoming Transformer method, so that the Interpolator interface will be type Interpolator interface { Scale(etc) Transform(etc) } instead of type Interpolator interface { NewScaler(etc) Scaler Transform(etc) } I don't have a good theory for why the "func (ablInterpolator) scale_RGBA_RGBA" benchmark is such a dramatic improvement, but at least it's in the right direction. I'm calling the other benchmark changes as noise. benchmark old ns/op new ns/op delta BenchmarkScaleLargeDownNN 3233406 3169060 -1.99% BenchmarkScaleLargeDownAB 12018178 12011348 -0.06% BenchmarkScaleLargeDownBL 1420827834 1409335695 -0.81% BenchmarkScaleLargeDownCR 2820669690 2795534035 -0.89% BenchmarkScaleDownNN 866628 869241 +0.30% BenchmarkScaleDownAB 3175963 3216041 +1.26% BenchmarkScaleDownBL 26639767 26677003 +0.14% BenchmarkScaleDownCR 51720996 51621628 -0.19% BenchmarkScaleUpNN 42758485 43258611 +1.17% BenchmarkScaleUpAB 156693813 156943367 +0.16% BenchmarkScaleUpBL 69511444 69621698 +0.16% BenchmarkScaleUpCR 124530191 124885601 +0.29% BenchmarkScaleSrcGray 8992205 9129321 +1.52% BenchmarkScaleSrcNRGBA 9807837 9894466 +0.88% BenchmarkScaleSrcRGBA 1333188 1104282 -17.17% BenchmarkScaleSrcUniform 1147788 1162488 +1.28% BenchmarkScaleSrcYCbCr 12164542 12305373 +1.16% Change-Id: I2aee6c392eb7437e843260775aed97ce145b4d47 Reviewed-on: https://go-review.googlesource.com/6556 Reviewed-by: Rob Pike <r@golang.org>
2015-03-03 06:54:53 +01:00
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
draw: make Scale an Interpolator method instead of a function. This means that only Kernel values have a NewScaler method, which re-uses computation when scaling multiple images of the same dst and src dimensions. The NearestNeighbor and ApproxBiLinear scalers don't get any pre-computation to re-use, so don't need a NewScaler method just to satisfy the previous Interpolator interface. As a small bonus, NN.Scale and ABL.Scale should no longer allocate on the fast paths. This change is consistent the upcoming Transformer method, so that the Interpolator interface will be type Interpolator interface { Scale(etc) Transform(etc) } instead of type Interpolator interface { NewScaler(etc) Scaler Transform(etc) } I don't have a good theory for why the "func (ablInterpolator) scale_RGBA_RGBA" benchmark is such a dramatic improvement, but at least it's in the right direction. I'm calling the other benchmark changes as noise. benchmark old ns/op new ns/op delta BenchmarkScaleLargeDownNN 3233406 3169060 -1.99% BenchmarkScaleLargeDownAB 12018178 12011348 -0.06% BenchmarkScaleLargeDownBL 1420827834 1409335695 -0.81% BenchmarkScaleLargeDownCR 2820669690 2795534035 -0.89% BenchmarkScaleDownNN 866628 869241 +0.30% BenchmarkScaleDownAB 3175963 3216041 +1.26% BenchmarkScaleDownBL 26639767 26677003 +0.14% BenchmarkScaleDownCR 51720996 51621628 -0.19% BenchmarkScaleUpNN 42758485 43258611 +1.17% BenchmarkScaleUpAB 156693813 156943367 +0.16% BenchmarkScaleUpBL 69511444 69621698 +0.16% BenchmarkScaleUpCR 124530191 124885601 +0.29% BenchmarkScaleSrcGray 8992205 9129321 +1.52% BenchmarkScaleSrcNRGBA 9807837 9894466 +0.88% BenchmarkScaleSrcRGBA 1333188 1104282 -17.17% BenchmarkScaleSrcUniform 1147788 1162488 +1.28% BenchmarkScaleSrcYCbCr 12164542 12305373 +1.16% Change-Id: I2aee6c392eb7437e843260775aed97ce145b4d47 Reviewed-on: https://go-review.googlesource.com/6556 Reviewed-by: Rob Pike <r@golang.org>
2015-03-03 06:54:53 +01:00
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X)
pj := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10101
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr := (pyy1 + 91881*pcr1) >> 8
pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pb := (pyy1 + 116130*pcb1) >> 8
if pr < 0 {
pr = 0
} else if pr > 0xffff {
pr = 0xffff
}
if pg < 0 {
pg = 0
} else if pg > 0xffff {
pg = 0xffff
}
if pb < 0 {
pb = 0
} else if pb > 0xffff {
pb = 0xffff
}
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) scale_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X)
pj := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10101
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr := (pyy1 + 91881*pcr1) >> 8
pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pb := (pyy1 + 116130*pcb1) >> 8
if pr < 0 {
pr = 0
} else if pr > 0xffff {
pr = 0xffff
}
if pg < 0 {
pg = 0
} else if pg > 0xffff {
pg = 0xffff
}
if pb < 0 {
pb = 0
} else if pb > 0xffff {
pb = 0xffff
}
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) scale_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X)
pj := ((sr.Min.Y+int(sy))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10101
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr := (pyy1 + 91881*pcr1) >> 8
pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pb := (pyy1 + 116130*pcb1) >> 8
if pr < 0 {
pr = 0
} else if pr > 0xffff {
pr = 0xffff
}
if pg < 0 {
pg = 0
} else if pg > 0xffff {
pg = 0xffff
}
if pb < 0 {
pb = 0
} else if pb > 0xffff {
pb = 0xffff
}
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) scale_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X)
pj := ((sr.Min.Y+int(sy))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10101
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr := (pyy1 + 91881*pcr1) >> 8
pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pb := (pyy1 + 116130*pcb1) >> 8
if pr < 0 {
pr = 0
} else if pr > 0xffff {
pr = 0xffff
}
if pg < 0 {
pg = 0
} else if pg > 0xffff {
pg = 0xffff
}
if pb < 0 {
pb = 0
} else if pb > 0xffff {
pb = 0xffff
}
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) scale_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pr, pg, pb, pa := src.At(sr.Min.X+int(sx), sr.Min.Y+int(sy)).RGBA()
pa1 := (0xffff - pa) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
}
}
}
func (nnInterpolator) scale_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pr, pg, pb, pa := src.At(sr.Min.X+int(sx), sr.Min.Y+int(sy)).RGBA()
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = uint8(pa >> 8)
}
}
}
func (nnInterpolator) scale_Image_Image_Over(dst Image, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
srcMask, smp := opts.SrcMask, opts.SrcMaskP
dstMask, dmp := opts.DstMask, opts.DstMaskP
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
sx := (2*uint64(dx) + 1) * sw / dw2
pr, pg, pb, pa := src.At(sr.Min.X+int(sx), sr.Min.Y+int(sy)).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx), smp.Y+sr.Min.Y+int(sy)).RGBA()
pr = pr * ma / 0xffff
pg = pg * ma / 0xffff
pb = pb * ma / 0xffff
pa = pa * ma / 0xffff
}
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
if dstMask != nil {
_, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
pr = pr * ma / 0xffff
pg = pg * ma / 0xffff
pb = pb * ma / 0xffff
pa = pa * ma / 0xffff
}
pa1 := 0xffff - pa
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}
func (nnInterpolator) scale_Image_Image_Src(dst Image, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
srcMask, smp := opts.SrcMask, opts.SrcMaskP
dstMask, dmp := opts.DstMask, opts.DstMaskP
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
sx := (2*uint64(dx) + 1) * sw / dw2
pr, pg, pb, pa := src.At(sr.Min.X+int(sx), sr.Min.Y+int(sy)).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx), smp.Y+sr.Min.Y+int(sy)).RGBA()
pr = pr * ma / 0xffff
pg = pg * ma / 0xffff
pb = pb * ma / 0xffff
pa = pa * ma / 0xffff
}
if dstMask != nil {
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
_, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
pr = pr * ma / 0xffff
pg = pg * ma / 0xffff
pb = pb * ma / 0xffff
pa = pa * ma / 0xffff
pa1 := 0xffff - ma
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
} else {
dstColorRGBA64.R = uint16(pr)
dstColorRGBA64.G = uint16(pg)
dstColorRGBA64.B = uint16(pb)
dstColorRGBA64.A = uint16(pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}
}
func (nnInterpolator) transform_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Gray, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0 - src.Rect.Min.X)
pr := uint32(src.Pix[pi]) * 0x101
out := uint8(pr >> 8)
dst.Pix[d+0] = out
dst.Pix[d+1] = out
dst.Pix[d+2] = out
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) transform_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
pa := uint32(src.Pix[pi+3]) * 0x101
pr := uint32(src.Pix[pi+0]) * pa / 0xff
pg := uint32(src.Pix[pi+1]) * pa / 0xff
pb := uint32(src.Pix[pi+2]) * pa / 0xff
pa1 := (0xffff - pa) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
}
}
}
func (nnInterpolator) transform_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
pa := uint32(src.Pix[pi+3]) * 0x101
pr := uint32(src.Pix[pi+0]) * pa / 0xff
pg := uint32(src.Pix[pi+1]) * pa / 0xff
pb := uint32(src.Pix[pi+2]) * pa / 0xff
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = uint8(pa >> 8)
}
}
}
func (nnInterpolator) transform_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
pr := uint32(src.Pix[pi+0]) * 0x101
pg := uint32(src.Pix[pi+1]) * 0x101
pb := uint32(src.Pix[pi+2]) * 0x101
pa := uint32(src.Pix[pi+3]) * 0x101
pa1 := (0xffff - pa) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
}
}
}
func (nnInterpolator) transform_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
pr := uint32(src.Pix[pi+0]) * 0x101
pg := uint32(src.Pix[pi+1]) * 0x101
pb := uint32(src.Pix[pi+2]) * 0x101
pa := uint32(src.Pix[pi+3]) * 0x101
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = uint8(pa >> 8)
}
}
}
func (nnInterpolator) transform_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
pj := (sy0-src.Rect.Min.Y)*src.CStride + (sx0 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10101
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr := (pyy1 + 91881*pcr1) >> 8
pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pb := (pyy1 + 116130*pcb1) >> 8
if pr < 0 {
pr = 0
} else if pr > 0xffff {
pr = 0xffff
}
if pg < 0 {
pg = 0
} else if pg > 0xffff {
pg = 0xffff
}
if pb < 0 {
pb = 0
} else if pb > 0xffff {
pb = 0xffff
}
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) transform_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
pj := (sy0-src.Rect.Min.Y)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10101
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr := (pyy1 + 91881*pcr1) >> 8
pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pb := (pyy1 + 116130*pcb1) >> 8
if pr < 0 {
pr = 0
} else if pr > 0xffff {
pr = 0xffff
}
if pg < 0 {
pg = 0
} else if pg > 0xffff {
pg = 0xffff
}
if pb < 0 {
pb = 0
} else if pb > 0xffff {
pb = 0xffff
}
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) transform_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
pj := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10101
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr := (pyy1 + 91881*pcr1) >> 8
pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pb := (pyy1 + 116130*pcb1) >> 8
if pr < 0 {
pr = 0
} else if pr > 0xffff {
pr = 0xffff
}
if pg < 0 {
pg = 0
} else if pg > 0xffff {
pg = 0xffff
}
if pb < 0 {
pb = 0
} else if pb > 0xffff {
pb = 0xffff
}
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) transform_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
pj := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + (sx0 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10101
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr := (pyy1 + 91881*pcr1) >> 8
pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pb := (pyy1 + 116130*pcb1) >> 8
if pr < 0 {
pr = 0
} else if pr > 0xffff {
pr = 0xffff
}
if pg < 0 {
pg = 0
} else if pg > 0xffff {
pg = 0xffff
}
if pb < 0 {
pb = 0
} else if pb > 0xffff {
pb = 0xffff
}
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) transform_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pr, pg, pb, pa := src.At(sx0, sy0).RGBA()
pa1 := (0xffff - pa) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
}
}
}
func (nnInterpolator) transform_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pr, pg, pb, pa := src.At(sx0, sy0).RGBA()
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = uint8(pa >> 8)
}
}
}
func (nnInterpolator) transform_Image_Image_Over(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) {
srcMask, smp := opts.SrcMask, opts.SrcMaskP
dstMask, dmp := opts.DstMask, opts.DstMaskP
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pr, pg, pb, pa := src.At(sx0, sy0).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sx0, smp.Y+sy0).RGBA()
pr = pr * ma / 0xffff
pg = pg * ma / 0xffff
pb = pb * ma / 0xffff
pa = pa * ma / 0xffff
}
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
if dstMask != nil {
_, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
pr = pr * ma / 0xffff
pg = pg * ma / 0xffff
pb = pb * ma / 0xffff
pa = pa * ma / 0xffff
}
pa1 := 0xffff - pa
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}
func (nnInterpolator) transform_Image_Image_Src(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) {
srcMask, smp := opts.SrcMask, opts.SrcMaskP
dstMask, dmp := opts.DstMask, opts.DstMaskP
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pr, pg, pb, pa := src.At(sx0, sy0).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sx0, smp.Y+sy0).RGBA()
pr = pr * ma / 0xffff
pg = pg * ma / 0xffff
pb = pb * ma / 0xffff
pa = pa * ma / 0xffff
}
if dstMask != nil {
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
_, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
pr = pr * ma / 0xffff
pg = pg * ma / 0xffff
pb = pb * ma / 0xffff
pa = pa * ma / 0xffff
pa1 := 0xffff - ma
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
} else {
dstColorRGBA64.R = uint16(pr)
dstColorRGBA64.G = uint16(pg)
dstColorRGBA64.B = uint16(pb)
dstColorRGBA64.A = uint16(pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}
}
func (z ablInterpolator) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, op Op, opts *Options) {
// Try to simplify a Scale to a Copy when DstMask is not specified.
// If DstMask is not nil, Copy will call Scale back with same dr and sr, and cause stack overflow.
if dr.Size() == sr.Size() && (opts == nil || opts.DstMask == nil) {
Copy(dst, dr.Min, src, sr, op, opts)
return
}
var o Options
if opts != nil {
o = *opts
}
// adr is the affected destination pixels.
adr := dst.Bounds().Intersect(dr)
adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP)
if adr.Empty() || sr.Empty() {
return
}
// Make adr relative to dr.Min.
adr = adr.Sub(dr.Min)
if op == Over && o.SrcMask == nil && opaque(src) {
op = Src
}
// sr is the source pixels. If it extends beyond the src bounds,
// we cannot use the type-specific fast paths, as they access
// the Pix fields directly without bounds checking.
//
// Similarly, the fast paths assume that the masks are nil.
if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) {
switch op {
case Over:
z.scale_Image_Image_Over(dst, dr, adr, src, sr, &o)
case Src:
z.scale_Image_Image_Src(dst, dr, adr, src, sr, &o)
}
} else if _, ok := src.(*image.Uniform); ok {
Draw(dst, dr, src, src.Bounds().Min, op)
} else {
switch op {
case Over:
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.NRGBA:
z.scale_RGBA_NRGBA_Over(dst, dr, adr, src, sr, &o)
case *image.RGBA:
z.scale_RGBA_RGBA_Over(dst, dr, adr, src, sr, &o)
default:
z.scale_RGBA_Image_Over(dst, dr, adr, src, sr, &o)
}
default:
switch src := src.(type) {
default:
z.scale_Image_Image_Over(dst, dr, adr, src, sr, &o)
}
}
case Src:
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.Gray:
z.scale_RGBA_Gray_Src(dst, dr, adr, src, sr, &o)
case *image.NRGBA:
z.scale_RGBA_NRGBA_Src(dst, dr, adr, src, sr, &o)
case *image.RGBA:
z.scale_RGBA_RGBA_Src(dst, dr, adr, src, sr, &o)
case *image.YCbCr:
switch src.SubsampleRatio {
default:
z.scale_RGBA_Image_Src(dst, dr, adr, src, sr, &o)
case image.YCbCrSubsampleRatio444:
z.scale_RGBA_YCbCr444_Src(dst, dr, adr, src, sr, &o)
case image.YCbCrSubsampleRatio422:
z.scale_RGBA_YCbCr422_Src(dst, dr, adr, src, sr, &o)
case image.YCbCrSubsampleRatio420:
z.scale_RGBA_YCbCr420_Src(dst, dr, adr, src, sr, &o)
case image.YCbCrSubsampleRatio440:
z.scale_RGBA_YCbCr440_Src(dst, dr, adr, src, sr, &o)
}
default:
z.scale_RGBA_Image_Src(dst, dr, adr, src, sr, &o)
}
default:
switch src := src.(type) {
default:
z.scale_Image_Image_Src(dst, dr, adr, src, sr, &o)
}
}
}
}
}
func (z ablInterpolator) Transform(dst Image, s2d f64.Aff3, src image.Image, sr image.Rectangle, op Op, opts *Options) {
// Try to simplify a Transform to a Copy.
if s2d[0] == 1 && s2d[1] == 0 && s2d[3] == 0 && s2d[4] == 1 {
dx := int(s2d[2])
dy := int(s2d[5])
if float64(dx) == s2d[2] && float64(dy) == s2d[5] {
Copy(dst, image.Point{X: sr.Min.X + dx, Y: sr.Min.X + dy}, src, sr, op, opts)
return
}
}
var o Options
if opts != nil {
o = *opts
}
dr := transformRect(&s2d, &sr)
// adr is the affected destination pixels.
adr := dst.Bounds().Intersect(dr)
adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP)
if adr.Empty() || sr.Empty() {
return
}
if op == Over && o.SrcMask == nil && opaque(src) {
op = Src
}
d2s := invert(&s2d)
// bias is a translation of the mapping from dst coordinates to src
// coordinates such that the latter temporarily have non-negative X
// and Y coordinates. This allows us to write int(f) instead of
// int(math.Floor(f)), since "round to zero" and "round down" are
// equivalent when f >= 0, but the former is much cheaper. The X--
// and Y-- are because the TransformLeaf methods have a "sx -= 0.5"
// adjustment.
bias := transformRect(&d2s, &adr).Min
bias.X--
bias.Y--
d2s[2] -= float64(bias.X)
d2s[5] -= float64(bias.Y)
// Make adr relative to dr.Min.
adr = adr.Sub(dr.Min)
// sr is the source pixels. If it extends beyond the src bounds,
// we cannot use the type-specific fast paths, as they access
// the Pix fields directly without bounds checking.
//
// Similarly, the fast paths assume that the masks are nil.
if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) {
switch op {
case Over:
z.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
case Src:
z.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
}
} else if u, ok := src.(*image.Uniform); ok {
transform_Uniform(dst, dr, adr, &d2s, u, sr, bias, op)
} else {
switch op {
case Over:
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.NRGBA:
z.transform_RGBA_NRGBA_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
case *image.RGBA:
z.transform_RGBA_RGBA_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
default:
z.transform_RGBA_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
}
default:
switch src := src.(type) {
default:
z.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
}
}
case Src:
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.Gray:
z.transform_RGBA_Gray_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case *image.NRGBA:
z.transform_RGBA_NRGBA_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case *image.RGBA:
z.transform_RGBA_RGBA_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case *image.YCbCr:
switch src.SubsampleRatio {
default:
z.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case image.YCbCrSubsampleRatio444:
z.transform_RGBA_YCbCr444_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case image.YCbCrSubsampleRatio422:
z.transform_RGBA_YCbCr422_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case image.YCbCrSubsampleRatio420:
z.transform_RGBA_YCbCr420_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case image.YCbCrSubsampleRatio440:
z.transform_RGBA_YCbCr440_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
}
default:
z.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
}
default:
switch src := src.(type) {
default:
z.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
}
}
}
}
}
func (ablInterpolator) scale_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.Gray, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s00ru := uint32(src.Pix[s00i]) * 0x101
s00r := float64(s00ru)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s10ru := uint32(src.Pix[s10i]) * 0x101
s10r := float64(s10ru)
s10r = xFrac1*s00r + xFrac0*s10r
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s01ru := uint32(src.Pix[s01i]) * 0x101
s01r := float64(s01ru)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s11ru := uint32(src.Pix[s11i]) * 0x101
s11r := float64(s11ru)
s11r = xFrac1*s01r + xFrac0*s11r
s11r = yFrac1*s10r + yFrac0*s11r
pr := uint32(s11r)
out := uint8(pr >> 8)
dst.Pix[d+0] = out
dst.Pix[d+1] = out
dst.Pix[d+2] = out
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) scale_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.NRGBA, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
s00au := uint32(src.Pix[s00i+3]) * 0x101
s00ru := uint32(src.Pix[s00i+0]) * s00au / 0xff
s00gu := uint32(src.Pix[s00i+1]) * s00au / 0xff
s00bu := uint32(src.Pix[s00i+2]) * s00au / 0xff
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
s10au := uint32(src.Pix[s10i+3]) * 0x101
s10ru := uint32(src.Pix[s10i+0]) * s10au / 0xff
s10gu := uint32(src.Pix[s10i+1]) * s10au / 0xff
s10bu := uint32(src.Pix[s10i+2]) * s10au / 0xff
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
s01au := uint32(src.Pix[s01i+3]) * 0x101
s01ru := uint32(src.Pix[s01i+0]) * s01au / 0xff
s01gu := uint32(src.Pix[s01i+1]) * s01au / 0xff
s01bu := uint32(src.Pix[s01i+2]) * s01au / 0xff
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
s11au := uint32(src.Pix[s11i+3]) * 0x101
s11ru := uint32(src.Pix[s11i+0]) * s11au / 0xff
s11gu := uint32(src.Pix[s11i+1]) * s11au / 0xff
s11bu := uint32(src.Pix[s11i+2]) * s11au / 0xff
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
pa1 := (0xffff - pa) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
}
}
}
func (ablInterpolator) scale_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.NRGBA, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
s00au := uint32(src.Pix[s00i+3]) * 0x101
s00ru := uint32(src.Pix[s00i+0]) * s00au / 0xff
s00gu := uint32(src.Pix[s00i+1]) * s00au / 0xff
s00bu := uint32(src.Pix[s00i+2]) * s00au / 0xff
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
s10au := uint32(src.Pix[s10i+3]) * 0x101
s10ru := uint32(src.Pix[s10i+0]) * s10au / 0xff
s10gu := uint32(src.Pix[s10i+1]) * s10au / 0xff
s10bu := uint32(src.Pix[s10i+2]) * s10au / 0xff
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
s01au := uint32(src.Pix[s01i+3]) * 0x101
s01ru := uint32(src.Pix[s01i+0]) * s01au / 0xff
s01gu := uint32(src.Pix[s01i+1]) * s01au / 0xff
s01bu := uint32(src.Pix[s01i+2]) * s01au / 0xff
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
s11au := uint32(src.Pix[s11i+3]) * 0x101
s11ru := uint32(src.Pix[s11i+0]) * s11au / 0xff
s11gu := uint32(src.Pix[s11i+1]) * s11au / 0xff
s11bu := uint32(src.Pix[s11i+2]) * s11au / 0xff
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = uint8(pa >> 8)
}
}
}
func (ablInterpolator) scale_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.RGBA, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
s00ru := uint32(src.Pix[s00i+0]) * 0x101
s00gu := uint32(src.Pix[s00i+1]) * 0x101
s00bu := uint32(src.Pix[s00i+2]) * 0x101
s00au := uint32(src.Pix[s00i+3]) * 0x101
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
s10ru := uint32(src.Pix[s10i+0]) * 0x101
s10gu := uint32(src.Pix[s10i+1]) * 0x101
s10bu := uint32(src.Pix[s10i+2]) * 0x101
s10au := uint32(src.Pix[s10i+3]) * 0x101
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
s01ru := uint32(src.Pix[s01i+0]) * 0x101
s01gu := uint32(src.Pix[s01i+1]) * 0x101
s01bu := uint32(src.Pix[s01i+2]) * 0x101
s01au := uint32(src.Pix[s01i+3]) * 0x101
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
s11ru := uint32(src.Pix[s11i+0]) * 0x101
s11gu := uint32(src.Pix[s11i+1]) * 0x101
s11bu := uint32(src.Pix[s11i+2]) * 0x101
s11au := uint32(src.Pix[s11i+3]) * 0x101
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
pa1 := (0xffff - pa) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
}
}
}
func (ablInterpolator) scale_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.RGBA, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
s00ru := uint32(src.Pix[s00i+0]) * 0x101
s00gu := uint32(src.Pix[s00i+1]) * 0x101
s00bu := uint32(src.Pix[s00i+2]) * 0x101
s00au := uint32(src.Pix[s00i+3]) * 0x101
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
s10ru := uint32(src.Pix[s10i+0]) * 0x101
s10gu := uint32(src.Pix[s10i+1]) * 0x101
s10bu := uint32(src.Pix[s10i+2]) * 0x101
s10au := uint32(src.Pix[s10i+3]) * 0x101
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
s01ru := uint32(src.Pix[s01i+0]) * 0x101
s01gu := uint32(src.Pix[s01i+1]) * 0x101
s01bu := uint32(src.Pix[s01i+2]) * 0x101
s01au := uint32(src.Pix[s01i+3]) * 0x101
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
s11ru := uint32(src.Pix[s11i+0]) * 0x101
s11gu := uint32(src.Pix[s11i+1]) * 0x101
s11bu := uint32(src.Pix[s11i+2]) * 0x101
s11au := uint32(src.Pix[s11i+3]) * 0x101
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = uint8(pa >> 8)
}
}
}
func (ablInterpolator) scale_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s00j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s00yy1 := int(src.Y[s00i]) * 0x10101
s00cb1 := int(src.Cb[s00j]) - 128
s00cr1 := int(src.Cr[s00j]) - 128
s00ru := (s00yy1 + 91881*s00cr1) >> 8
s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8
s00bu := (s00yy1 + 116130*s00cb1) >> 8
if s00ru < 0 {
s00ru = 0
} else if s00ru > 0xffff {
s00ru = 0xffff
}
if s00gu < 0 {
s00gu = 0
} else if s00gu > 0xffff {
s00gu = 0xffff
}
if s00bu < 0 {
s00bu = 0
} else if s00bu > 0xffff {
s00bu = 0xffff
}
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s10j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s10yy1 := int(src.Y[s10i]) * 0x10101
s10cb1 := int(src.Cb[s10j]) - 128
s10cr1 := int(src.Cr[s10j]) - 128
s10ru := (s10yy1 + 91881*s10cr1) >> 8
s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8
s10bu := (s10yy1 + 116130*s10cb1) >> 8
if s10ru < 0 {
s10ru = 0
} else if s10ru > 0xffff {
s10ru = 0xffff
}
if s10gu < 0 {
s10gu = 0
} else if s10gu > 0xffff {
s10gu = 0xffff
}
if s10bu < 0 {
s10bu = 0
} else if s10bu > 0xffff {
s10bu = 0xffff
}
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s01j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s01yy1 := int(src.Y[s01i]) * 0x10101
s01cb1 := int(src.Cb[s01j]) - 128
s01cr1 := int(src.Cr[s01j]) - 128
s01ru := (s01yy1 + 91881*s01cr1) >> 8
s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8
s01bu := (s01yy1 + 116130*s01cb1) >> 8
if s01ru < 0 {
s01ru = 0
} else if s01ru > 0xffff {
s01ru = 0xffff
}
if s01gu < 0 {
s01gu = 0
} else if s01gu > 0xffff {
s01gu = 0xffff
}
if s01bu < 0 {
s01bu = 0
} else if s01bu > 0xffff {
s01bu = 0xffff
}
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s11j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s11yy1 := int(src.Y[s11i]) * 0x10101
s11cb1 := int(src.Cb[s11j]) - 128
s11cr1 := int(src.Cr[s11j]) - 128
s11ru := (s11yy1 + 91881*s11cr1) >> 8
s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8
s11bu := (s11yy1 + 116130*s11cb1) >> 8
if s11ru < 0 {
s11ru = 0
} else if s11ru > 0xffff {
s11ru = 0xffff
}
if s11gu < 0 {
s11gu = 0
} else if s11gu > 0xffff {
s11gu = 0xffff
}
if s11bu < 0 {
s11bu = 0
} else if s11bu > 0xffff {
s11bu = 0xffff
}
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) scale_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s00j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s00yy1 := int(src.Y[s00i]) * 0x10101
s00cb1 := int(src.Cb[s00j]) - 128
s00cr1 := int(src.Cr[s00j]) - 128
s00ru := (s00yy1 + 91881*s00cr1) >> 8
s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8
s00bu := (s00yy1 + 116130*s00cb1) >> 8
if s00ru < 0 {
s00ru = 0
} else if s00ru > 0xffff {
s00ru = 0xffff
}
if s00gu < 0 {
s00gu = 0
} else if s00gu > 0xffff {
s00gu = 0xffff
}
if s00bu < 0 {
s00bu = 0
} else if s00bu > 0xffff {
s00bu = 0xffff
}
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s10j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s10yy1 := int(src.Y[s10i]) * 0x10101
s10cb1 := int(src.Cb[s10j]) - 128
s10cr1 := int(src.Cr[s10j]) - 128
s10ru := (s10yy1 + 91881*s10cr1) >> 8
s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8
s10bu := (s10yy1 + 116130*s10cb1) >> 8
if s10ru < 0 {
s10ru = 0
} else if s10ru > 0xffff {
s10ru = 0xffff
}
if s10gu < 0 {
s10gu = 0
} else if s10gu > 0xffff {
s10gu = 0xffff
}
if s10bu < 0 {
s10bu = 0
} else if s10bu > 0xffff {
s10bu = 0xffff
}
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s01j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s01yy1 := int(src.Y[s01i]) * 0x10101
s01cb1 := int(src.Cb[s01j]) - 128
s01cr1 := int(src.Cr[s01j]) - 128
s01ru := (s01yy1 + 91881*s01cr1) >> 8
s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8
s01bu := (s01yy1 + 116130*s01cb1) >> 8
if s01ru < 0 {
s01ru = 0
} else if s01ru > 0xffff {
s01ru = 0xffff
}
if s01gu < 0 {
s01gu = 0
} else if s01gu > 0xffff {
s01gu = 0xffff
}
if s01bu < 0 {
s01bu = 0
} else if s01bu > 0xffff {
s01bu = 0xffff
}
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s11j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s11yy1 := int(src.Y[s11i]) * 0x10101
s11cb1 := int(src.Cb[s11j]) - 128
s11cr1 := int(src.Cr[s11j]) - 128
s11ru := (s11yy1 + 91881*s11cr1) >> 8
s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8
s11bu := (s11yy1 + 116130*s11cb1) >> 8
if s11ru < 0 {
s11ru = 0
} else if s11ru > 0xffff {
s11ru = 0xffff
}
if s11gu < 0 {
s11gu = 0
} else if s11gu > 0xffff {
s11gu = 0xffff
}
if s11bu < 0 {
s11bu = 0
} else if s11bu > 0xffff {
s11bu = 0xffff
}
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) scale_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s00j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s00yy1 := int(src.Y[s00i]) * 0x10101
s00cb1 := int(src.Cb[s00j]) - 128
s00cr1 := int(src.Cr[s00j]) - 128
s00ru := (s00yy1 + 91881*s00cr1) >> 8
s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8
s00bu := (s00yy1 + 116130*s00cb1) >> 8
if s00ru < 0 {
s00ru = 0
} else if s00ru > 0xffff {
s00ru = 0xffff
}
if s00gu < 0 {
s00gu = 0
} else if s00gu > 0xffff {
s00gu = 0xffff
}
if s00bu < 0 {
s00bu = 0
} else if s00bu > 0xffff {
s00bu = 0xffff
}
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s10j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s10yy1 := int(src.Y[s10i]) * 0x10101
s10cb1 := int(src.Cb[s10j]) - 128
s10cr1 := int(src.Cr[s10j]) - 128
s10ru := (s10yy1 + 91881*s10cr1) >> 8
s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8
s10bu := (s10yy1 + 116130*s10cb1) >> 8
if s10ru < 0 {
s10ru = 0
} else if s10ru > 0xffff {
s10ru = 0xffff
}
if s10gu < 0 {
s10gu = 0
} else if s10gu > 0xffff {
s10gu = 0xffff
}
if s10bu < 0 {
s10bu = 0
} else if s10bu > 0xffff {
s10bu = 0xffff
}
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s01j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s01yy1 := int(src.Y[s01i]) * 0x10101
s01cb1 := int(src.Cb[s01j]) - 128
s01cr1 := int(src.Cr[s01j]) - 128
s01ru := (s01yy1 + 91881*s01cr1) >> 8
s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8
s01bu := (s01yy1 + 116130*s01cb1) >> 8
if s01ru < 0 {
s01ru = 0
} else if s01ru > 0xffff {
s01ru = 0xffff
}
if s01gu < 0 {
s01gu = 0
} else if s01gu > 0xffff {
s01gu = 0xffff
}
if s01bu < 0 {
s01bu = 0
} else if s01bu > 0xffff {
s01bu = 0xffff
}
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s11j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s11yy1 := int(src.Y[s11i]) * 0x10101
s11cb1 := int(src.Cb[s11j]) - 128
s11cr1 := int(src.Cr[s11j]) - 128
s11ru := (s11yy1 + 91881*s11cr1) >> 8
s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8
s11bu := (s11yy1 + 116130*s11cb1) >> 8
if s11ru < 0 {
s11ru = 0
} else if s11ru > 0xffff {
s11ru = 0xffff
}
if s11gu < 0 {
s11gu = 0
} else if s11gu > 0xffff {
s11gu = 0xffff
}
if s11bu < 0 {
s11bu = 0
} else if s11bu > 0xffff {
s11bu = 0xffff
}
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) scale_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s00j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s00yy1 := int(src.Y[s00i]) * 0x10101
s00cb1 := int(src.Cb[s00j]) - 128
s00cr1 := int(src.Cr[s00j]) - 128
s00ru := (s00yy1 + 91881*s00cr1) >> 8
s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8
s00bu := (s00yy1 + 116130*s00cb1) >> 8
if s00ru < 0 {
s00ru = 0
} else if s00ru > 0xffff {
s00ru = 0xffff
}
if s00gu < 0 {
s00gu = 0
} else if s00gu > 0xffff {
s00gu = 0xffff
}
if s00bu < 0 {
s00bu = 0
} else if s00bu > 0xffff {
s00bu = 0xffff
}
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s10j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s10yy1 := int(src.Y[s10i]) * 0x10101
s10cb1 := int(src.Cb[s10j]) - 128
s10cr1 := int(src.Cr[s10j]) - 128
s10ru := (s10yy1 + 91881*s10cr1) >> 8
s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8
s10bu := (s10yy1 + 116130*s10cb1) >> 8
if s10ru < 0 {
s10ru = 0
} else if s10ru > 0xffff {
s10ru = 0xffff
}
if s10gu < 0 {
s10gu = 0
} else if s10gu > 0xffff {
s10gu = 0xffff
}
if s10bu < 0 {
s10bu = 0
} else if s10bu > 0xffff {
s10bu = 0xffff
}
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s01j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s01yy1 := int(src.Y[s01i]) * 0x10101
s01cb1 := int(src.Cb[s01j]) - 128
s01cr1 := int(src.Cr[s01j]) - 128
s01ru := (s01yy1 + 91881*s01cr1) >> 8
s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8
s01bu := (s01yy1 + 116130*s01cb1) >> 8
if s01ru < 0 {
s01ru = 0
} else if s01ru > 0xffff {
s01ru = 0xffff
}
if s01gu < 0 {
s01gu = 0
} else if s01gu > 0xffff {
s01gu = 0xffff
}
if s01bu < 0 {
s01bu = 0
} else if s01bu > 0xffff {
s01bu = 0xffff
}
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s11j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s11yy1 := int(src.Y[s11i]) * 0x10101
s11cb1 := int(src.Cb[s11j]) - 128
s11cr1 := int(src.Cr[s11j]) - 128
s11ru := (s11yy1 + 91881*s11cr1) >> 8
s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8
s11bu := (s11yy1 + 116130*s11cb1) >> 8
if s11ru < 0 {
s11ru = 0
} else if s11ru > 0xffff {
s11ru = 0xffff
}
if s11gu < 0 {
s11gu = 0
} else if s11gu > 0xffff {
s11gu = 0xffff
}
if s11bu < 0 {
s11bu = 0
} else if s11bu > 0xffff {
s11bu = 0xffff
}
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) scale_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00ru, s00gu, s00bu, s00au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy0)).RGBA()
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10ru, s10gu, s10bu, s10au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy0)).RGBA()
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01ru, s01gu, s01bu, s01au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy1)).RGBA()
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11ru, s11gu, s11bu, s11au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy1)).RGBA()
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
pa1 := (0xffff - pa) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
}
}
}
func (ablInterpolator) scale_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00ru, s00gu, s00bu, s00au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy0)).RGBA()
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10ru, s10gu, s10bu, s10au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy0)).RGBA()
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01ru, s01gu, s01bu, s01au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy1)).RGBA()
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11ru, s11gu, s11bu, s11au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy1)).RGBA()
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = uint8(pa >> 8)
}
}
}
func (ablInterpolator) scale_Image_Image_Over(dst Image, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
srcMask, smp := opts.SrcMask, opts.SrcMaskP
dstMask, dmp := opts.DstMask, opts.DstMaskP
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00ru, s00gu, s00bu, s00au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy0)).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx0), smp.Y+sr.Min.Y+int(sy0)).RGBA()
s00ru = s00ru * ma / 0xffff
s00gu = s00gu * ma / 0xffff
s00bu = s00bu * ma / 0xffff
s00au = s00au * ma / 0xffff
}
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10ru, s10gu, s10bu, s10au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy0)).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx1), smp.Y+sr.Min.Y+int(sy0)).RGBA()
s10ru = s10ru * ma / 0xffff
s10gu = s10gu * ma / 0xffff
s10bu = s10bu * ma / 0xffff
s10au = s10au * ma / 0xffff
}
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01ru, s01gu, s01bu, s01au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy1)).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx0), smp.Y+sr.Min.Y+int(sy1)).RGBA()
s01ru = s01ru * ma / 0xffff
s01gu = s01gu * ma / 0xffff
s01bu = s01bu * ma / 0xffff
s01au = s01au * ma / 0xffff
}
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11ru, s11gu, s11bu, s11au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy1)).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx1), smp.Y+sr.Min.Y+int(sy1)).RGBA()
s11ru = s11ru * ma / 0xffff
s11gu = s11gu * ma / 0xffff
s11bu = s11bu * ma / 0xffff
s11au = s11au * ma / 0xffff
}
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
if dstMask != nil {
_, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
pr = pr * ma / 0xffff
pg = pg * ma / 0xffff
pb = pb * ma / 0xffff
pa = pa * ma / 0xffff
}
pa1 := 0xffff - pa
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}
func (ablInterpolator) scale_Image_Image_Src(dst Image, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
srcMask, smp := opts.SrcMask, opts.SrcMaskP
dstMask, dmp := opts.DstMask, opts.DstMaskP
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00ru, s00gu, s00bu, s00au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy0)).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx0), smp.Y+sr.Min.Y+int(sy0)).RGBA()
s00ru = s00ru * ma / 0xffff
s00gu = s00gu * ma / 0xffff
s00bu = s00bu * ma / 0xffff
s00au = s00au * ma / 0xffff
}
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10ru, s10gu, s10bu, s10au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy0)).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx1), smp.Y+sr.Min.Y+int(sy0)).RGBA()
s10ru = s10ru * ma / 0xffff
s10gu = s10gu * ma / 0xffff
s10bu = s10bu * ma / 0xffff
s10au = s10au * ma / 0xffff
}
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01ru, s01gu, s01bu, s01au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy1)).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx0), smp.Y+sr.Min.Y+int(sy1)).RGBA()
s01ru = s01ru * ma / 0xffff
s01gu = s01gu * ma / 0xffff
s01bu = s01bu * ma / 0xffff
s01au = s01au * ma / 0xffff
}
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11ru, s11gu, s11bu, s11au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy1)).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx1), smp.Y+sr.Min.Y+int(sy1)).RGBA()
s11ru = s11ru * ma / 0xffff
s11gu = s11gu * ma / 0xffff
s11bu = s11bu * ma / 0xffff
s11au = s11au * ma / 0xffff
}
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
if dstMask != nil {
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
_, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
pr = pr * ma / 0xffff
pg = pg * ma / 0xffff
pb = pb * ma / 0xffff
pa = pa * ma / 0xffff
pa1 := 0xffff - ma
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
} else {
dstColorRGBA64.R = uint16(pr)
dstColorRGBA64.G = uint16(pg)
dstColorRGBA64.B = uint16(pb)
dstColorRGBA64.A = uint16(pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}
}
func (ablInterpolator) transform_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Gray, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0 - src.Rect.Min.X)
s00ru := uint32(src.Pix[s00i]) * 0x101
s00r := float64(s00ru)
s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1 - src.Rect.Min.X)
s10ru := uint32(src.Pix[s10i]) * 0x101
s10r := float64(s10ru)
s10r = xFrac1*s00r + xFrac0*s10r
s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0 - src.Rect.Min.X)
s01ru := uint32(src.Pix[s01i]) * 0x101
s01r := float64(s01ru)
s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1 - src.Rect.Min.X)
s11ru := uint32(src.Pix[s11i]) * 0x101
s11r := float64(s11ru)
s11r = xFrac1*s01r + xFrac0*s11r
s11r = yFrac1*s10r + yFrac0*s11r
pr := uint32(s11r)
out := uint8(pr >> 8)
dst.Pix[d+0] = out
dst.Pix[d+1] = out
dst.Pix[d+2] = out
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) transform_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
s00au := uint32(src.Pix[s00i+3]) * 0x101
s00ru := uint32(src.Pix[s00i+0]) * s00au / 0xff
s00gu := uint32(src.Pix[s00i+1]) * s00au / 0xff
s00bu := uint32(src.Pix[s00i+2]) * s00au / 0xff
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
s10au := uint32(src.Pix[s10i+3]) * 0x101
s10ru := uint32(src.Pix[s10i+0]) * s10au / 0xff
s10gu := uint32(src.Pix[s10i+1]) * s10au / 0xff
s10bu := uint32(src.Pix[s10i+2]) * s10au / 0xff
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
s01au := uint32(src.Pix[s01i+3]) * 0x101
s01ru := uint32(src.Pix[s01i+0]) * s01au / 0xff
s01gu := uint32(src.Pix[s01i+1]) * s01au / 0xff
s01bu := uint32(src.Pix[s01i+2]) * s01au / 0xff
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
s11au := uint32(src.Pix[s11i+3]) * 0x101
s11ru := uint32(src.Pix[s11i+0]) * s11au / 0xff
s11gu := uint32(src.Pix[s11i+1]) * s11au / 0xff
s11bu := uint32(src.Pix[s11i+2]) * s11au / 0xff
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
pa1 := (0xffff - pa) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
}
}
}
func (ablInterpolator) transform_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
s00au := uint32(src.Pix[s00i+3]) * 0x101
s00ru := uint32(src.Pix[s00i+0]) * s00au / 0xff
s00gu := uint32(src.Pix[s00i+1]) * s00au / 0xff
s00bu := uint32(src.Pix[s00i+2]) * s00au / 0xff
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
s10au := uint32(src.Pix[s10i+3]) * 0x101
s10ru := uint32(src.Pix[s10i+0]) * s10au / 0xff
s10gu := uint32(src.Pix[s10i+1]) * s10au / 0xff
s10bu := uint32(src.Pix[s10i+2]) * s10au / 0xff
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
s01au := uint32(src.Pix[s01i+3]) * 0x101
s01ru := uint32(src.Pix[s01i+0]) * s01au / 0xff
s01gu := uint32(src.Pix[s01i+1]) * s01au / 0xff
s01bu := uint32(src.Pix[s01i+2]) * s01au / 0xff
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
s11au := uint32(src.Pix[s11i+3]) * 0x101
s11ru := uint32(src.Pix[s11i+0]) * s11au / 0xff
s11gu := uint32(src.Pix[s11i+1]) * s11au / 0xff
s11bu := uint32(src.Pix[s11i+2]) * s11au / 0xff
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = uint8(pa >> 8)
}
}
}
func (ablInterpolator) transform_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
s00ru := uint32(src.Pix[s00i+0]) * 0x101
s00gu := uint32(src.Pix[s00i+1]) * 0x101
s00bu := uint32(src.Pix[s00i+2]) * 0x101
s00au := uint32(src.Pix[s00i+3]) * 0x101
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
s10ru := uint32(src.Pix[s10i+0]) * 0x101
s10gu := uint32(src.Pix[s10i+1]) * 0x101
s10bu := uint32(src.Pix[s10i+2]) * 0x101
s10au := uint32(src.Pix[s10i+3]) * 0x101
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
s01ru := uint32(src.Pix[s01i+0]) * 0x101
s01gu := uint32(src.Pix[s01i+1]) * 0x101
s01bu := uint32(src.Pix[s01i+2]) * 0x101
s01au := uint32(src.Pix[s01i+3]) * 0x101
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
s11ru := uint32(src.Pix[s11i+0]) * 0x101
s11gu := uint32(src.Pix[s11i+1]) * 0x101
s11bu := uint32(src.Pix[s11i+2]) * 0x101
s11au := uint32(src.Pix[s11i+3]) * 0x101
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
pa1 := (0xffff - pa) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
}
}
}
func (ablInterpolator) transform_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
s00ru := uint32(src.Pix[s00i+0]) * 0x101
s00gu := uint32(src.Pix[s00i+1]) * 0x101
s00bu := uint32(src.Pix[s00i+2]) * 0x101
s00au := uint32(src.Pix[s00i+3]) * 0x101
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
s10ru := uint32(src.Pix[s10i+0]) * 0x101
s10gu := uint32(src.Pix[s10i+1]) * 0x101
s10bu := uint32(src.Pix[s10i+2]) * 0x101
s10au := uint32(src.Pix[s10i+3]) * 0x101
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
s01ru := uint32(src.Pix[s01i+0]) * 0x101
s01gu := uint32(src.Pix[s01i+1]) * 0x101
s01bu := uint32(src.Pix[s01i+2]) * 0x101
s01au := uint32(src.Pix[s01i+3]) * 0x101
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
s11ru := uint32(src.Pix[s11i+0]) * 0x101
s11gu := uint32(src.Pix[s11i+1]) * 0x101
s11bu := uint32(src.Pix[s11i+2]) * 0x101
s11au := uint32(src.Pix[s11i+3]) * 0x101
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = uint8(pa >> 8)
}
}
}
func (ablInterpolator) transform_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
s00j := (sy0-src.Rect.Min.Y)*src.CStride + (sx0 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s00yy1 := int(src.Y[s00i]) * 0x10101
s00cb1 := int(src.Cb[s00j]) - 128
s00cr1 := int(src.Cr[s00j]) - 128
s00ru := (s00yy1 + 91881*s00cr1) >> 8
s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8
s00bu := (s00yy1 + 116130*s00cb1) >> 8
if s00ru < 0 {
s00ru = 0
} else if s00ru > 0xffff {
s00ru = 0xffff
}
if s00gu < 0 {
s00gu = 0
} else if s00gu > 0xffff {
s00gu = 0xffff
}
if s00bu < 0 {
s00bu = 0
} else if s00bu > 0xffff {
s00bu = 0xffff
}
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
s10j := (sy0-src.Rect.Min.Y)*src.CStride + (sx1 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s10yy1 := int(src.Y[s10i]) * 0x10101
s10cb1 := int(src.Cb[s10j]) - 128
s10cr1 := int(src.Cr[s10j]) - 128
s10ru := (s10yy1 + 91881*s10cr1) >> 8
s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8
s10bu := (s10yy1 + 116130*s10cb1) >> 8
if s10ru < 0 {
s10ru = 0
} else if s10ru > 0xffff {
s10ru = 0xffff
}
if s10gu < 0 {
s10gu = 0
} else if s10gu > 0xffff {
s10gu = 0xffff
}
if s10bu < 0 {
s10bu = 0
} else if s10bu > 0xffff {
s10bu = 0xffff
}
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
s01j := (sy1-src.Rect.Min.Y)*src.CStride + (sx0 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s01yy1 := int(src.Y[s01i]) * 0x10101
s01cb1 := int(src.Cb[s01j]) - 128
s01cr1 := int(src.Cr[s01j]) - 128
s01ru := (s01yy1 + 91881*s01cr1) >> 8
s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8
s01bu := (s01yy1 + 116130*s01cb1) >> 8
if s01ru < 0 {
s01ru = 0
} else if s01ru > 0xffff {
s01ru = 0xffff
}
if s01gu < 0 {
s01gu = 0
} else if s01gu > 0xffff {
s01gu = 0xffff
}
if s01bu < 0 {
s01bu = 0
} else if s01bu > 0xffff {
s01bu = 0xffff
}
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
s11j := (sy1-src.Rect.Min.Y)*src.CStride + (sx1 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s11yy1 := int(src.Y[s11i]) * 0x10101
s11cb1 := int(src.Cb[s11j]) - 128
s11cr1 := int(src.Cr[s11j]) - 128
s11ru := (s11yy1 + 91881*s11cr1) >> 8
s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8
s11bu := (s11yy1 + 116130*s11cb1) >> 8
if s11ru < 0 {
s11ru = 0
} else if s11ru > 0xffff {
s11ru = 0xffff
}
if s11gu < 0 {
s11gu = 0
} else if s11gu > 0xffff {
s11gu = 0xffff
}
if s11bu < 0 {
s11bu = 0
} else if s11bu > 0xffff {
s11bu = 0xffff
}
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) transform_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
s00j := (sy0-src.Rect.Min.Y)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s00yy1 := int(src.Y[s00i]) * 0x10101
s00cb1 := int(src.Cb[s00j]) - 128
s00cr1 := int(src.Cr[s00j]) - 128
s00ru := (s00yy1 + 91881*s00cr1) >> 8
s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8
s00bu := (s00yy1 + 116130*s00cb1) >> 8
if s00ru < 0 {
s00ru = 0
} else if s00ru > 0xffff {
s00ru = 0xffff
}
if s00gu < 0 {
s00gu = 0
} else if s00gu > 0xffff {
s00gu = 0xffff
}
if s00bu < 0 {
s00bu = 0
} else if s00bu > 0xffff {
s00bu = 0xffff
}
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
s10j := (sy0-src.Rect.Min.Y)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s10yy1 := int(src.Y[s10i]) * 0x10101
s10cb1 := int(src.Cb[s10j]) - 128
s10cr1 := int(src.Cr[s10j]) - 128
s10ru := (s10yy1 + 91881*s10cr1) >> 8
s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8
s10bu := (s10yy1 + 116130*s10cb1) >> 8
if s10ru < 0 {
s10ru = 0
} else if s10ru > 0xffff {
s10ru = 0xffff
}
if s10gu < 0 {
s10gu = 0
} else if s10gu > 0xffff {
s10gu = 0xffff
}
if s10bu < 0 {
s10bu = 0
} else if s10bu > 0xffff {
s10bu = 0xffff
}
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
s01j := (sy1-src.Rect.Min.Y)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s01yy1 := int(src.Y[s01i]) * 0x10101
s01cb1 := int(src.Cb[s01j]) - 128
s01cr1 := int(src.Cr[s01j]) - 128
s01ru := (s01yy1 + 91881*s01cr1) >> 8
s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8
s01bu := (s01yy1 + 116130*s01cb1) >> 8
if s01ru < 0 {
s01ru = 0
} else if s01ru > 0xffff {
s01ru = 0xffff
}
if s01gu < 0 {
s01gu = 0
} else if s01gu > 0xffff {
s01gu = 0xffff
}
if s01bu < 0 {
s01bu = 0
} else if s01bu > 0xffff {
s01bu = 0xffff
}
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
s11j := (sy1-src.Rect.Min.Y)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s11yy1 := int(src.Y[s11i]) * 0x10101
s11cb1 := int(src.Cb[s11j]) - 128
s11cr1 := int(src.Cr[s11j]) - 128
s11ru := (s11yy1 + 91881*s11cr1) >> 8
s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8
s11bu := (s11yy1 + 116130*s11cb1) >> 8
if s11ru < 0 {
s11ru = 0
} else if s11ru > 0xffff {
s11ru = 0xffff
}
if s11gu < 0 {
s11gu = 0
} else if s11gu > 0xffff {
s11gu = 0xffff
}
if s11bu < 0 {
s11bu = 0
} else if s11bu > 0xffff {
s11bu = 0xffff
}
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) transform_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
s00j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s00yy1 := int(src.Y[s00i]) * 0x10101
s00cb1 := int(src.Cb[s00j]) - 128
s00cr1 := int(src.Cr[s00j]) - 128
s00ru := (s00yy1 + 91881*s00cr1) >> 8
s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8
s00bu := (s00yy1 + 116130*s00cb1) >> 8
if s00ru < 0 {
s00ru = 0
} else if s00ru > 0xffff {
s00ru = 0xffff
}
if s00gu < 0 {
s00gu = 0
} else if s00gu > 0xffff {
s00gu = 0xffff
}
if s00bu < 0 {
s00bu = 0
} else if s00bu > 0xffff {
s00bu = 0xffff
}
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
s10j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s10yy1 := int(src.Y[s10i]) * 0x10101
s10cb1 := int(src.Cb[s10j]) - 128
s10cr1 := int(src.Cr[s10j]) - 128
s10ru := (s10yy1 + 91881*s10cr1) >> 8
s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8
s10bu := (s10yy1 + 116130*s10cb1) >> 8
if s10ru < 0 {
s10ru = 0
} else if s10ru > 0xffff {
s10ru = 0xffff
}
if s10gu < 0 {
s10gu = 0
} else if s10gu > 0xffff {
s10gu = 0xffff
}
if s10bu < 0 {
s10bu = 0
} else if s10bu > 0xffff {
s10bu = 0xffff
}
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
s01j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s01yy1 := int(src.Y[s01i]) * 0x10101
s01cb1 := int(src.Cb[s01j]) - 128
s01cr1 := int(src.Cr[s01j]) - 128
s01ru := (s01yy1 + 91881*s01cr1) >> 8
s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8
s01bu := (s01yy1 + 116130*s01cb1) >> 8
if s01ru < 0 {
s01ru = 0
} else if s01ru > 0xffff {
s01ru = 0xffff
}
if s01gu < 0 {
s01gu = 0
} else if s01gu > 0xffff {
s01gu = 0xffff
}
if s01bu < 0 {
s01bu = 0
} else if s01bu > 0xffff {
s01bu = 0xffff
}
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
s11j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s11yy1 := int(src.Y[s11i]) * 0x10101
s11cb1 := int(src.Cb[s11j]) - 128
s11cr1 := int(src.Cr[s11j]) - 128
s11ru := (s11yy1 + 91881*s11cr1) >> 8
s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8
s11bu := (s11yy1 + 116130*s11cb1) >> 8
if s11ru < 0 {
s11ru = 0
} else if s11ru > 0xffff {
s11ru = 0xffff
}
if s11gu < 0 {
s11gu = 0
} else if s11gu > 0xffff {
s11gu = 0xffff
}
if s11bu < 0 {
s11bu = 0
} else if s11bu > 0xffff {
s11bu = 0xffff
}
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) transform_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
s00j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + (sx0 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s00yy1 := int(src.Y[s00i]) * 0x10101
s00cb1 := int(src.Cb[s00j]) - 128
s00cr1 := int(src.Cr[s00j]) - 128
s00ru := (s00yy1 + 91881*s00cr1) >> 8
s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8
s00bu := (s00yy1 + 116130*s00cb1) >> 8
if s00ru < 0 {
s00ru = 0
} else if s00ru > 0xffff {
s00ru = 0xffff
}
if s00gu < 0 {
s00gu = 0
} else if s00gu > 0xffff {
s00gu = 0xffff
}
if s00bu < 0 {
s00bu = 0
} else if s00bu > 0xffff {
s00bu = 0xffff
}
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
s10j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + (sx1 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s10yy1 := int(src.Y[s10i]) * 0x10101
s10cb1 := int(src.Cb[s10j]) - 128
s10cr1 := int(src.Cr[s10j]) - 128
s10ru := (s10yy1 + 91881*s10cr1) >> 8
s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8
s10bu := (s10yy1 + 116130*s10cb1) >> 8
if s10ru < 0 {
s10ru = 0
} else if s10ru > 0xffff {
s10ru = 0xffff
}
if s10gu < 0 {
s10gu = 0
} else if s10gu > 0xffff {
s10gu = 0xffff
}
if s10bu < 0 {
s10bu = 0
} else if s10bu > 0xffff {
s10bu = 0xffff
}
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
s01j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + (sx0 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s01yy1 := int(src.Y[s01i]) * 0x10101
s01cb1 := int(src.Cb[s01j]) - 128
s01cr1 := int(src.Cr[s01j]) - 128
s01ru := (s01yy1 + 91881*s01cr1) >> 8
s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8
s01bu := (s01yy1 + 116130*s01cb1) >> 8
if s01ru < 0 {
s01ru = 0
} else if s01ru > 0xffff {
s01ru = 0xffff
}
if s01gu < 0 {
s01gu = 0
} else if s01gu > 0xffff {
s01gu = 0xffff
}
if s01bu < 0 {
s01bu = 0
} else if s01bu > 0xffff {
s01bu = 0xffff
}
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
s11j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + (sx1 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s11yy1 := int(src.Y[s11i]) * 0x10101
s11cb1 := int(src.Cb[s11j]) - 128
s11cr1 := int(src.Cr[s11j]) - 128
s11ru := (s11yy1 + 91881*s11cr1) >> 8
s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8
s11bu := (s11yy1 + 116130*s11cb1) >> 8
if s11ru < 0 {
s11ru = 0
} else if s11ru > 0xffff {
s11ru = 0xffff
}
if s11gu < 0 {
s11gu = 0
} else if s11gu > 0xffff {
s11gu = 0xffff
}
if s11bu < 0 {
s11bu = 0
} else if s11bu > 0xffff {
s11bu = 0xffff
}
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) transform_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00ru, s00gu, s00bu, s00au := src.At(sx0, sy0).RGBA()
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10ru, s10gu, s10bu, s10au := src.At(sx1, sy0).RGBA()
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01ru, s01gu, s01bu, s01au := src.At(sx0, sy1).RGBA()
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11ru, s11gu, s11bu, s11au := src.At(sx1, sy1).RGBA()
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
pa1 := (0xffff - pa) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
}
}
}
func (ablInterpolator) transform_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00ru, s00gu, s00bu, s00au := src.At(sx0, sy0).RGBA()
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10ru, s10gu, s10bu, s10au := src.At(sx1, sy0).RGBA()
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01ru, s01gu, s01bu, s01au := src.At(sx0, sy1).RGBA()
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11ru, s11gu, s11bu, s11au := src.At(sx1, sy1).RGBA()
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = uint8(pa >> 8)
}
}
}
func (ablInterpolator) transform_Image_Image_Over(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) {
srcMask, smp := opts.SrcMask, opts.SrcMaskP
dstMask, dmp := opts.DstMask, opts.DstMaskP
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00ru, s00gu, s00bu, s00au := src.At(sx0, sy0).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sx0, smp.Y+sy0).RGBA()
s00ru = s00ru * ma / 0xffff
s00gu = s00gu * ma / 0xffff
s00bu = s00bu * ma / 0xffff
s00au = s00au * ma / 0xffff
}
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10ru, s10gu, s10bu, s10au := src.At(sx1, sy0).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sx1, smp.Y+sy0).RGBA()
s10ru = s10ru * ma / 0xffff
s10gu = s10gu * ma / 0xffff
s10bu = s10bu * ma / 0xffff
s10au = s10au * ma / 0xffff
}
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01ru, s01gu, s01bu, s01au := src.At(sx0, sy1).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sx0, smp.Y+sy1).RGBA()
s01ru = s01ru * ma / 0xffff
s01gu = s01gu * ma / 0xffff
s01bu = s01bu * ma / 0xffff
s01au = s01au * ma / 0xffff
}
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11ru, s11gu, s11bu, s11au := src.At(sx1, sy1).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sx1, smp.Y+sy1).RGBA()
s11ru = s11ru * ma / 0xffff
s11gu = s11gu * ma / 0xffff
s11bu = s11bu * ma / 0xffff
s11au = s11au * ma / 0xffff
}
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
if dstMask != nil {
_, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
pr = pr * ma / 0xffff
pg = pg * ma / 0xffff
pb = pb * ma / 0xffff
pa = pa * ma / 0xffff
}
pa1 := 0xffff - pa
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}
func (ablInterpolator) transform_Image_Image_Src(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) {
srcMask, smp := opts.SrcMask, opts.SrcMaskP
dstMask, dmp := opts.DstMask, opts.DstMaskP
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00ru, s00gu, s00bu, s00au := src.At(sx0, sy0).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sx0, smp.Y+sy0).RGBA()
s00ru = s00ru * ma / 0xffff
s00gu = s00gu * ma / 0xffff
s00bu = s00bu * ma / 0xffff
s00au = s00au * ma / 0xffff
}
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10ru, s10gu, s10bu, s10au := src.At(sx1, sy0).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sx1, smp.Y+sy0).RGBA()
s10ru = s10ru * ma / 0xffff
s10gu = s10gu * ma / 0xffff
s10bu = s10bu * ma / 0xffff
s10au = s10au * ma / 0xffff
}
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01ru, s01gu, s01bu, s01au := src.At(sx0, sy1).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sx0, smp.Y+sy1).RGBA()
s01ru = s01ru * ma / 0xffff
s01gu = s01gu * ma / 0xffff
s01bu = s01bu * ma / 0xffff
s01au = s01au * ma / 0xffff
}
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11ru, s11gu, s11bu, s11au := src.At(sx1, sy1).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sx1, smp.Y+sy1).RGBA()
s11ru = s11ru * ma / 0xffff
s11gu = s11gu * ma / 0xffff
s11bu = s11bu * ma / 0xffff
s11au = s11au * ma / 0xffff
}
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
if dstMask != nil {
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
_, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
pr = pr * ma / 0xffff
pg = pg * ma / 0xffff
pb = pb * ma / 0xffff
pa = pa * ma / 0xffff
pa1 := 0xffff - ma
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
} else {
dstColorRGBA64.R = uint16(pr)
dstColorRGBA64.G = uint16(pg)
dstColorRGBA64.B = uint16(pb)
dstColorRGBA64.A = uint16(pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}
}
func (z *kernelScaler) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, op Op, opts *Options) {
if z.dw != int32(dr.Dx()) || z.dh != int32(dr.Dy()) || z.sw != int32(sr.Dx()) || z.sh != int32(sr.Dy()) {
z.kernel.Scale(dst, dr, src, sr, op, opts)
return
}
var o Options
if opts != nil {
o = *opts
}
// adr is the affected destination pixels.
adr := dst.Bounds().Intersect(dr)
adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP)
if adr.Empty() || sr.Empty() {
return
}
// Make adr relative to dr.Min.
adr = adr.Sub(dr.Min)
if op == Over && o.SrcMask == nil && opaque(src) {
op = Src
}
if _, ok := src.(*image.Uniform); ok && o.DstMask == nil && o.SrcMask == nil && sr.In(src.Bounds()) {
Draw(dst, dr, src, src.Bounds().Min, op)
return
}
// Create a temporary buffer:
// scaleX distributes the source image's columns over the temporary image.
// scaleY distributes the temporary image's rows over the destination image.
var tmp [][4]float64
if z.pool.New != nil {
tmpp := z.pool.Get().(*[][4]float64)
defer z.pool.Put(tmpp)
tmp = *tmpp
} else {
tmp = z.makeTmpBuf()
}
// sr is the source pixels. If it extends beyond the src bounds,
// we cannot use the type-specific fast paths, as they access
// the Pix fields directly without bounds checking.
//
// Similarly, the fast paths assume that the masks are nil.
if o.SrcMask != nil || !sr.In(src.Bounds()) {
z.scaleX_Image(tmp, src, sr, &o)
} else {
switch src := src.(type) {
case *image.Gray:
z.scaleX_Gray(tmp, src, sr, &o)
case *image.NRGBA:
z.scaleX_NRGBA(tmp, src, sr, &o)
case *image.RGBA:
z.scaleX_RGBA(tmp, src, sr, &o)
case *image.YCbCr:
switch src.SubsampleRatio {
default:
z.scaleX_Image(tmp, src, sr, &o)
case image.YCbCrSubsampleRatio444:
z.scaleX_YCbCr444(tmp, src, sr, &o)
case image.YCbCrSubsampleRatio422:
z.scaleX_YCbCr422(tmp, src, sr, &o)
case image.YCbCrSubsampleRatio420:
z.scaleX_YCbCr420(tmp, src, sr, &o)
case image.YCbCrSubsampleRatio440:
z.scaleX_YCbCr440(tmp, src, sr, &o)
}
default:
z.scaleX_Image(tmp, src, sr, &o)
}
}
if o.DstMask != nil {
switch op {
case Over:
z.scaleY_Image_Over(dst, dr, adr, tmp, &o)
case Src:
z.scaleY_Image_Src(dst, dr, adr, tmp, &o)
}
} else {
switch op {
case Over:
switch dst := dst.(type) {
case *image.RGBA:
z.scaleY_RGBA_Over(dst, dr, adr, tmp, &o)
default:
z.scaleY_Image_Over(dst, dr, adr, tmp, &o)
}
case Src:
switch dst := dst.(type) {
case *image.RGBA:
z.scaleY_RGBA_Src(dst, dr, adr, tmp, &o)
default:
z.scaleY_Image_Src(dst, dr, adr, tmp, &o)
}
}
}
}
func (q *Kernel) Transform(dst Image, s2d f64.Aff3, src image.Image, sr image.Rectangle, op Op, opts *Options) {
var o Options
if opts != nil {
o = *opts
}
dr := transformRect(&s2d, &sr)
// adr is the affected destination pixels.
adr := dst.Bounds().Intersect(dr)
adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP)
if adr.Empty() || sr.Empty() {
return
}
if op == Over && o.SrcMask == nil && opaque(src) {
op = Src
}
d2s := invert(&s2d)
// bias is a translation of the mapping from dst coordinates to src
// coordinates such that the latter temporarily have non-negative X
// and Y coordinates. This allows us to write int(f) instead of
// int(math.Floor(f)), since "round to zero" and "round down" are
// equivalent when f >= 0, but the former is much cheaper. The X--
// and Y-- are because the TransformLeaf methods have a "sx -= 0.5"
// adjustment.
bias := transformRect(&d2s, &adr).Min
bias.X--
bias.Y--
d2s[2] -= float64(bias.X)
d2s[5] -= float64(bias.Y)
// Make adr relative to dr.Min.
adr = adr.Sub(dr.Min)
if u, ok := src.(*image.Uniform); ok && o.DstMask != nil && o.SrcMask != nil && sr.In(src.Bounds()) {
transform_Uniform(dst, dr, adr, &d2s, u, sr, bias, op)
return
}
xscale := abs(d2s[0])
if s := abs(d2s[1]); xscale < s {
xscale = s
}
yscale := abs(d2s[3])
if s := abs(d2s[4]); yscale < s {
yscale = s
}
// sr is the source pixels. If it extends beyond the src bounds,
// we cannot use the type-specific fast paths, as they access
// the Pix fields directly without bounds checking.
//
// Similarly, the fast paths assume that the masks are nil.
if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) {
switch op {
case Over:
q.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
case Src:
q.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
}
} else {
switch op {
case Over:
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.NRGBA:
q.transform_RGBA_NRGBA_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
case *image.RGBA:
q.transform_RGBA_RGBA_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
default:
q.transform_RGBA_Image_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
}
default:
switch src := src.(type) {
default:
q.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
}
}
case Src:
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.Gray:
q.transform_RGBA_Gray_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
case *image.NRGBA:
q.transform_RGBA_NRGBA_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
case *image.RGBA:
q.transform_RGBA_RGBA_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
case *image.YCbCr:
switch src.SubsampleRatio {
default:
q.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
case image.YCbCrSubsampleRatio444:
q.transform_RGBA_YCbCr444_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
case image.YCbCrSubsampleRatio422:
q.transform_RGBA_YCbCr422_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
case image.YCbCrSubsampleRatio420:
q.transform_RGBA_YCbCr420_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
case image.YCbCrSubsampleRatio440:
q.transform_RGBA_YCbCr440_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
}
default:
q.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
}
default:
switch src := src.(type) {
default:
q.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
}
}
}
}
}
func (z *kernelScaler) scaleX_Gray(tmp [][4]float64, src *image.Gray, sr image.Rectangle, opts *Options) {
t := 0
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
pru := uint32(src.Pix[pi]) * 0x101
pr += float64(pru) * c.weight
}
pr *= s.invTotalWeightFFFF
tmp[t] = [4]float64{
pr,
pr,
pr,
1,
}
t++
}
}
}
func (z *kernelScaler) scaleX_NRGBA(tmp [][4]float64, src *image.NRGBA, sr image.Rectangle, opts *Options) {
t := 0
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr, pg, pb, pa float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(c.coord)-src.Rect.Min.X)*4
pau := uint32(src.Pix[pi+3]) * 0x101
pru := uint32(src.Pix[pi+0]) * pau / 0xff
pgu := uint32(src.Pix[pi+1]) * pau / 0xff
pbu := uint32(src.Pix[pi+2]) * pau / 0xff
pr += float64(pru) * c.weight
pg += float64(pgu) * c.weight
pb += float64(pbu) * c.weight
pa += float64(pau) * c.weight
}
tmp[t] = [4]float64{
pr * s.invTotalWeightFFFF,
pg * s.invTotalWeightFFFF,
pb * s.invTotalWeightFFFF,
pa * s.invTotalWeightFFFF,
}
t++
}
}
}
func (z *kernelScaler) scaleX_RGBA(tmp [][4]float64, src *image.RGBA, sr image.Rectangle, opts *Options) {
t := 0
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr, pg, pb, pa float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(c.coord)-src.Rect.Min.X)*4
pru := uint32(src.Pix[pi+0]) * 0x101
pgu := uint32(src.Pix[pi+1]) * 0x101
pbu := uint32(src.Pix[pi+2]) * 0x101
pau := uint32(src.Pix[pi+3]) * 0x101
pr += float64(pru) * c.weight
pg += float64(pgu) * c.weight
pb += float64(pbu) * c.weight
pa += float64(pau) * c.weight
}
tmp[t] = [4]float64{
pr * s.invTotalWeightFFFF,
pg * s.invTotalWeightFFFF,
pb * s.invTotalWeightFFFF,
pa * s.invTotalWeightFFFF,
}
t++
}
}
}
func (z *kernelScaler) scaleX_YCbCr444(tmp [][4]float64, src *image.YCbCr, sr image.Rectangle, opts *Options) {
t := 0
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr, pg, pb float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
pj := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10101
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pru := (pyy1 + 91881*pcr1) >> 8
pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pbu := (pyy1 + 116130*pcb1) >> 8
if pru < 0 {
pru = 0
} else if pru > 0xffff {
pru = 0xffff
}
if pgu < 0 {
pgu = 0
} else if pgu > 0xffff {
pgu = 0xffff
}
if pbu < 0 {
pbu = 0
} else if pbu > 0xffff {
pbu = 0xffff
}
pr += float64(pru) * c.weight
pg += float64(pgu) * c.weight
pb += float64(pbu) * c.weight
}
tmp[t] = [4]float64{
pr * s.invTotalWeightFFFF,
pg * s.invTotalWeightFFFF,
pb * s.invTotalWeightFFFF,
1,
}
t++
}
}
}
func (z *kernelScaler) scaleX_YCbCr422(tmp [][4]float64, src *image.YCbCr, sr image.Rectangle, opts *Options) {
t := 0
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr, pg, pb float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
pj := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(c.coord))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10101
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pru := (pyy1 + 91881*pcr1) >> 8
pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pbu := (pyy1 + 116130*pcb1) >> 8
if pru < 0 {
pru = 0
} else if pru > 0xffff {
pru = 0xffff
}
if pgu < 0 {
pgu = 0
} else if pgu > 0xffff {
pgu = 0xffff
}
if pbu < 0 {
pbu = 0
} else if pbu > 0xffff {
pbu = 0xffff
}
pr += float64(pru) * c.weight
pg += float64(pgu) * c.weight
pb += float64(pbu) * c.weight
}
tmp[t] = [4]float64{
pr * s.invTotalWeightFFFF,
pg * s.invTotalWeightFFFF,
pb * s.invTotalWeightFFFF,
1,
}
t++
}
}
}
func (z *kernelScaler) scaleX_YCbCr420(tmp [][4]float64, src *image.YCbCr, sr image.Rectangle, opts *Options) {
t := 0
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr, pg, pb float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
pj := ((sr.Min.Y+int(y))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(c.coord))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10101
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pru := (pyy1 + 91881*pcr1) >> 8
pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pbu := (pyy1 + 116130*pcb1) >> 8
if pru < 0 {
pru = 0
} else if pru > 0xffff {
pru = 0xffff
}
if pgu < 0 {
pgu = 0
} else if pgu > 0xffff {
pgu = 0xffff
}
if pbu < 0 {
pbu = 0
} else if pbu > 0xffff {
pbu = 0xffff
}
pr += float64(pru) * c.weight
pg += float64(pgu) * c.weight
pb += float64(pbu) * c.weight
}
tmp[t] = [4]float64{
pr * s.invTotalWeightFFFF,
pg * s.invTotalWeightFFFF,
pb * s.invTotalWeightFFFF,
1,
}
t++
}
}
}
func (z *kernelScaler) scaleX_YCbCr440(tmp [][4]float64, src *image.YCbCr, sr image.Rectangle, opts *Options) {
t := 0
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr, pg, pb float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
pj := ((sr.Min.Y+int(y))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10101
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pru := (pyy1 + 91881*pcr1) >> 8
pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pbu := (pyy1 + 116130*pcb1) >> 8
if pru < 0 {
pru = 0
} else if pru > 0xffff {
pru = 0xffff
}
if pgu < 0 {
pgu = 0
} else if pgu > 0xffff {
pgu = 0xffff
}
if pbu < 0 {
pbu = 0
} else if pbu > 0xffff {
pbu = 0xffff
}
pr += float64(pru) * c.weight
pg += float64(pgu) * c.weight
pb += float64(pbu) * c.weight
}
tmp[t] = [4]float64{
pr * s.invTotalWeightFFFF,
pg * s.invTotalWeightFFFF,
pb * s.invTotalWeightFFFF,
1,
}
t++
}
}
}
func (z *kernelScaler) scaleX_Image(tmp [][4]float64, src image.Image, sr image.Rectangle, opts *Options) {
t := 0
srcMask, smp := opts.SrcMask, opts.SrcMaskP
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr, pg, pb, pa float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
pru, pgu, pbu, pau := src.At(sr.Min.X+int(c.coord), sr.Min.Y+int(y)).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(c.coord), smp.Y+sr.Min.Y+int(y)).RGBA()
pru = pru * ma / 0xffff
pgu = pgu * ma / 0xffff
pbu = pbu * ma / 0xffff
pau = pau * ma / 0xffff
}
pr += float64(pru) * c.weight
pg += float64(pgu) * c.weight
pb += float64(pbu) * c.weight
pa += float64(pau) * c.weight
}
tmp[t] = [4]float64{
pr * s.invTotalWeightFFFF,
pg * s.invTotalWeightFFFF,
pb * s.invTotalWeightFFFF,
pa * s.invTotalWeightFFFF,
}
t++
}
}
}
func (z *kernelScaler) scaleY_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, tmp [][4]float64, opts *Options) {
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
d := (dr.Min.Y+adr.Min.Y-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+int(dx)-dst.Rect.Min.X)*4
for _, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] {
var pr, pg, pb, pa float64
for _, c := range z.vertical.contribs[s.i:s.j] {
p := &tmp[c.coord*z.dw+dx]
pr += p[0] * c.weight
pg += p[1] * c.weight
pb += p[2] * c.weight
pa += p[3] * c.weight
}
if pr > pa {
pr = pa
}
if pg > pa {
pg = pa
}
if pb > pa {
pb = pa
}
pr0 := uint32(ftou(pr * s.invTotalWeight))
pg0 := uint32(ftou(pg * s.invTotalWeight))
pb0 := uint32(ftou(pb * s.invTotalWeight))
pa0 := uint32(ftou(pa * s.invTotalWeight))
pa1 := (0xffff - uint32(pa0)) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr0) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg0) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb0) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa0) >> 8)
d += dst.Stride
}
}
}
func (z *kernelScaler) scaleY_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, tmp [][4]float64, opts *Options) {
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
d := (dr.Min.Y+adr.Min.Y-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+int(dx)-dst.Rect.Min.X)*4
for _, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] {
var pr, pg, pb, pa float64
for _, c := range z.vertical.contribs[s.i:s.j] {
p := &tmp[c.coord*z.dw+dx]
pr += p[0] * c.weight
pg += p[1] * c.weight
pb += p[2] * c.weight
pa += p[3] * c.weight
}
if pr > pa {
pr = pa
}
if pg > pa {
pg = pa
}
if pb > pa {
pb = pa
}
dst.Pix[d+0] = uint8(ftou(pr*s.invTotalWeight) >> 8)
dst.Pix[d+1] = uint8(ftou(pg*s.invTotalWeight) >> 8)
dst.Pix[d+2] = uint8(ftou(pb*s.invTotalWeight) >> 8)
dst.Pix[d+3] = uint8(ftou(pa*s.invTotalWeight) >> 8)
d += dst.Stride
}
}
}
func (z *kernelScaler) scaleY_Image_Over(dst Image, dr, adr image.Rectangle, tmp [][4]float64, opts *Options) {
dstMask, dmp := opts.DstMask, opts.DstMaskP
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
for dy, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] {
var pr, pg, pb, pa float64
for _, c := range z.vertical.contribs[s.i:s.j] {
p := &tmp[c.coord*z.dw+dx]
pr += p[0] * c.weight
pg += p[1] * c.weight
pb += p[2] * c.weight
pa += p[3] * c.weight
}
if pr > pa {
pr = pa
}
if pg > pa {
pg = pa
}
if pb > pa {
pb = pa
}
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(adr.Min.Y+dy)).RGBA()
pr0 := uint32(ftou(pr * s.invTotalWeight))
pg0 := uint32(ftou(pg * s.invTotalWeight))
pb0 := uint32(ftou(pb * s.invTotalWeight))
pa0 := uint32(ftou(pa * s.invTotalWeight))
if dstMask != nil {
_, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(adr.Min.Y+dy)).RGBA()
pr0 = pr0 * ma / 0xffff
pg0 = pg0 * ma / 0xffff
pb0 = pb0 * ma / 0xffff
pa0 = pa0 * ma / 0xffff
}
pa1 := 0xffff - pa0
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr0)
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg0)
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb0)
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa0)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(adr.Min.Y+dy), dstColor)
}
}
}
func (z *kernelScaler) scaleY_Image_Src(dst Image, dr, adr image.Rectangle, tmp [][4]float64, opts *Options) {
dstMask, dmp := opts.DstMask, opts.DstMaskP
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
for dy, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] {
var pr, pg, pb, pa float64
for _, c := range z.vertical.contribs[s.i:s.j] {
p := &tmp[c.coord*z.dw+dx]
pr += p[0] * c.weight
pg += p[1] * c.weight
pb += p[2] * c.weight
pa += p[3] * c.weight
}
if pr > pa {
pr = pa
}
if pg > pa {
pg = pa
}
if pb > pa {
pb = pa
}
if dstMask != nil {
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(adr.Min.Y+dy)).RGBA()
_, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(adr.Min.Y+dy)).RGBA()
pr := uint32(ftou(pr*s.invTotalWeight)) * ma / 0xffff
pg := uint32(ftou(pg*s.invTotalWeight)) * ma / 0xffff
pb := uint32(ftou(pb*s.invTotalWeight)) * ma / 0xffff
pa := uint32(ftou(pa*s.invTotalWeight)) * ma / 0xffff
pa1 := 0xffff - ma
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(adr.Min.Y+dy), dstColor)
} else {
dstColorRGBA64.R = ftou(pr * s.invTotalWeight)
dstColorRGBA64.G = ftou(pg * s.invTotalWeight)
dstColorRGBA64.B = ftou(pb * s.invTotalWeight)
dstColorRGBA64.A = ftou(pa * s.invTotalWeight)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(adr.Min.Y+dy), dstColor)
}
}
}
}
func (q *Kernel) transform_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Gray, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.Stride + (kx - src.Rect.Min.X)
pru := uint32(src.Pix[pi]) * 0x101
pr += float64(pru) * w
}
}
}
}
out := uint8(fffftou(pr) >> 8)
dst.Pix[d+0] = out
dst.Pix[d+1] = out
dst.Pix[d+2] = out
dst.Pix[d+3] = 0xff
}
}
}
func (q *Kernel) transform_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb, pa float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.Stride + (kx-src.Rect.Min.X)*4
pau := uint32(src.Pix[pi+3]) * 0x101
pru := uint32(src.Pix[pi+0]) * pau / 0xff
pgu := uint32(src.Pix[pi+1]) * pau / 0xff
pbu := uint32(src.Pix[pi+2]) * pau / 0xff
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
pa += float64(pau) * w
}
}
}
}
if pr > pa {
pr = pa
}
if pg > pa {
pg = pa
}
if pb > pa {
pb = pa
}
pr0 := uint32(fffftou(pr))
pg0 := uint32(fffftou(pg))
pb0 := uint32(fffftou(pb))
pa0 := uint32(fffftou(pa))
pa1 := (0xffff - uint32(pa0)) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr0) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg0) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb0) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa0) >> 8)
}
}
}
func (q *Kernel) transform_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb, pa float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.Stride + (kx-src.Rect.Min.X)*4
pau := uint32(src.Pix[pi+3]) * 0x101
pru := uint32(src.Pix[pi+0]) * pau / 0xff
pgu := uint32(src.Pix[pi+1]) * pau / 0xff
pbu := uint32(src.Pix[pi+2]) * pau / 0xff
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
pa += float64(pau) * w
}
}
}
}
if pr > pa {
pr = pa
}
if pg > pa {
pg = pa
}
if pb > pa {
pb = pa
}
dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
dst.Pix[d+3] = uint8(fffftou(pa) >> 8)
}
}
}
func (q *Kernel) transform_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb, pa float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.Stride + (kx-src.Rect.Min.X)*4
pru := uint32(src.Pix[pi+0]) * 0x101
pgu := uint32(src.Pix[pi+1]) * 0x101
pbu := uint32(src.Pix[pi+2]) * 0x101
pau := uint32(src.Pix[pi+3]) * 0x101
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
pa += float64(pau) * w
}
}
}
}
if pr > pa {
pr = pa
}
if pg > pa {
pg = pa
}
if pb > pa {
pb = pa
}
pr0 := uint32(fffftou(pr))
pg0 := uint32(fffftou(pg))
pb0 := uint32(fffftou(pb))
pa0 := uint32(fffftou(pa))
pa1 := (0xffff - uint32(pa0)) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr0) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg0) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb0) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa0) >> 8)
}
}
}
func (q *Kernel) transform_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb, pa float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.Stride + (kx-src.Rect.Min.X)*4
pru := uint32(src.Pix[pi+0]) * 0x101
pgu := uint32(src.Pix[pi+1]) * 0x101
pbu := uint32(src.Pix[pi+2]) * 0x101
pau := uint32(src.Pix[pi+3]) * 0x101
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
pa += float64(pau) * w
}
}
}
}
if pr > pa {
pr = pa
}
if pg > pa {
pg = pa
}
if pb > pa {
pb = pa
}
dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
dst.Pix[d+3] = uint8(fffftou(pa) >> 8)
}
}
}
func (q *Kernel) transform_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X)
pj := (ky-src.Rect.Min.Y)*src.CStride + (kx - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10101
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pru := (pyy1 + 91881*pcr1) >> 8
pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pbu := (pyy1 + 116130*pcb1) >> 8
if pru < 0 {
pru = 0
} else if pru > 0xffff {
pru = 0xffff
}
if pgu < 0 {
pgu = 0
} else if pgu > 0xffff {
pgu = 0xffff
}
if pbu < 0 {
pbu = 0
} else if pbu > 0xffff {
pbu = 0xffff
}
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
}
}
}
}
dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (q *Kernel) transform_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X)
pj := (ky-src.Rect.Min.Y)*src.CStride + ((kx)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10101
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pru := (pyy1 + 91881*pcr1) >> 8
pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pbu := (pyy1 + 116130*pcb1) >> 8
if pru < 0 {
pru = 0
} else if pru > 0xffff {
pru = 0xffff
}
if pgu < 0 {
pgu = 0
} else if pgu > 0xffff {
pgu = 0xffff
}
if pbu < 0 {
pbu = 0
} else if pbu > 0xffff {
pbu = 0xffff
}
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
}
}
}
}
dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (q *Kernel) transform_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X)
pj := ((ky)/2-src.Rect.Min.Y/2)*src.CStride + ((kx)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10101
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pru := (pyy1 + 91881*pcr1) >> 8
pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pbu := (pyy1 + 116130*pcb1) >> 8
if pru < 0 {
pru = 0
} else if pru > 0xffff {
pru = 0xffff
}
if pgu < 0 {
pgu = 0
} else if pgu > 0xffff {
pgu = 0xffff
}
if pbu < 0 {
pbu = 0
} else if pbu > 0xffff {
pbu = 0xffff
}
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
}
}
}
}
dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (q *Kernel) transform_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X)
pj := ((ky)/2-src.Rect.Min.Y/2)*src.CStride + (kx - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10101
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pru := (pyy1 + 91881*pcr1) >> 8
pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pbu := (pyy1 + 116130*pcb1) >> 8
if pru < 0 {
pru = 0
} else if pru > 0xffff {
pru = 0xffff
}
if pgu < 0 {
pgu = 0
} else if pgu > 0xffff {
pgu = 0xffff
}
if pbu < 0 {
pbu = 0
} else if pbu > 0xffff {
pbu = 0xffff
}
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
}
}
}
}
dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (q *Kernel) transform_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb, pa float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pru, pgu, pbu, pau := src.At(kx, ky).RGBA()
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
pa += float64(pau) * w
}
}
}
}
if pr > pa {
pr = pa
}
if pg > pa {
pg = pa
}
if pb > pa {
pb = pa
}
pr0 := uint32(fffftou(pr))
pg0 := uint32(fffftou(pg))
pb0 := uint32(fffftou(pb))
pa0 := uint32(fffftou(pa))
pa1 := (0xffff - uint32(pa0)) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr0) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg0) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb0) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa0) >> 8)
}
}
}
func (q *Kernel) transform_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb, pa float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pru, pgu, pbu, pau := src.At(kx, ky).RGBA()
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
pa += float64(pau) * w
}
}
}
}
if pr > pa {
pr = pa
}
if pg > pa {
pg = pa
}
if pb > pa {
pb = pa
}
dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
dst.Pix[d+3] = uint8(fffftou(pa) >> 8)
}
}
}
func (q *Kernel) transform_Image_Image_Over(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
srcMask, smp := opts.SrcMask, opts.SrcMaskP
dstMask, dmp := opts.DstMask, opts.DstMaskP
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb, pa float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pru, pgu, pbu, pau := src.At(kx, ky).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+kx, smp.Y+ky).RGBA()
pru = pru * ma / 0xffff
pgu = pgu * ma / 0xffff
pbu = pbu * ma / 0xffff
pau = pau * ma / 0xffff
}
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
pa += float64(pau) * w
}
}
}
}
if pr > pa {
pr = pa
}
if pg > pa {
pg = pa
}
if pb > pa {
pb = pa
}
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
pr0 := uint32(fffftou(pr))
pg0 := uint32(fffftou(pg))
pb0 := uint32(fffftou(pb))
pa0 := uint32(fffftou(pa))
if dstMask != nil {
_, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
pr0 = pr0 * ma / 0xffff
pg0 = pg0 * ma / 0xffff
pb0 = pb0 * ma / 0xffff
pa0 = pa0 * ma / 0xffff
}
pa1 := 0xffff - pa0
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr0)
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg0)
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb0)
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa0)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}
func (q *Kernel) transform_Image_Image_Src(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
srcMask, smp := opts.SrcMask, opts.SrcMaskP
dstMask, dmp := opts.DstMask, opts.DstMaskP
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb, pa float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pru, pgu, pbu, pau := src.At(kx, ky).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+kx, smp.Y+ky).RGBA()
pru = pru * ma / 0xffff
pgu = pgu * ma / 0xffff
pbu = pbu * ma / 0xffff
pau = pau * ma / 0xffff
}
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
pa += float64(pau) * w
}
}
}
}
if pr > pa {
pr = pa
}
if pg > pa {
pg = pa
}
if pb > pa {
pb = pa
}
if dstMask != nil {
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
_, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
pr := uint32(fffftou(pr)) * ma / 0xffff
pg := uint32(fffftou(pg)) * ma / 0xffff
pb := uint32(fffftou(pb)) * ma / 0xffff
pa := uint32(fffftou(pa)) * ma / 0xffff
pa1 := 0xffff - ma
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
} else {
dstColorRGBA64.R = fffftou(pr)
dstColorRGBA64.G = fffftou(pg)
dstColorRGBA64.B = fffftou(pb)
dstColorRGBA64.A = fffftou(pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}
}