valentina/src/libs/vlayout/vabstractdetail.cpp
Roman Telezhynskyi fed0705cc5 MSVC warning.
--HG--
branch : develop
2016-09-14 16:52:18 +03:00

703 lines
24 KiB
C++

/************************************************************************
**
** @file vabstractdetail.cpp
** @author Roman Telezhynskyi <dismine(at)gmail.com>
** @date 2 1, 2015
**
** @brief
** @copyright
** This source code is part of the Valentine project, a pattern making
** program, whose allow create and modeling patterns of clothing.
** Copyright (C) 2013-2015 Valentina project
** <https://bitbucket.org/dismine/valentina> All Rights Reserved.
**
** Valentina is free software: you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** Valentina is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with Valentina. If not, see <http://www.gnu.org/licenses/>.
**
*************************************************************************/
#include "vabstractdetail.h"
#include <QLine>
#include <QLineF>
#include <QMessageLogger>
#include <QPoint>
#include <QPointF>
#include <QString>
#include <QVector>
#include <QtDebug>
#include "../vgeometry/vgobject.h"
#include "vabstractdetail_p.h"
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief VAbstractDetail default contructor. Create empty detail.
*/
VAbstractDetail::VAbstractDetail()
:d(new VAbstractDetailData)
{}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief VAbstractDetail constructor.
* @param name detail name.
*/
VAbstractDetail::VAbstractDetail(const QString &name)
:d(new VAbstractDetailData(name))
{}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief VAbstractDetail copy constructor.
* @param detail detail.
*/
VAbstractDetail::VAbstractDetail(const VAbstractDetail &detail)
:d (detail.d)
{}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief operator = assignment operator.
* @param detail detail.
* @return new detail.
*/
VAbstractDetail &VAbstractDetail::operator=(const VAbstractDetail &detail)
{
if ( &detail == this )
{
return *this;
}
d = detail.d;
return *this;
}
//---------------------------------------------------------------------------------------------------------------------
VAbstractDetail::~VAbstractDetail()
{}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief Clear detail full clear.
*/
void VAbstractDetail::Clear()
{
d->name.clear();
d->seamAllowance = false;
d->closed = true;
d->width = 0;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief getName return detail name.
* @return name.
*/
QString VAbstractDetail::getName() const
{
return d->name;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief setName set detail name.
* @param value new name.
*/
void VAbstractDetail::setName(const QString &value)
{
d->name = value;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief getSeamAllowance keep status for seam allowance detail.
* @return true - need seam allowance, false - no need seam allowance.
*/
bool VAbstractDetail::getSeamAllowance() const
{
return d->seamAllowance;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief setSeamAllowance set status for seam allowance detail.
* @param value true - need seam allowance, false - no need seam allowance.
*/
void VAbstractDetail::setSeamAllowance(bool value)
{
d->seamAllowance = value;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief getClosed keep close status for detail equdistant.
* @return true - close equdistant, false - don't close equdistant.
*/
bool VAbstractDetail::getClosed() const
{
return d->closed;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief setClosed set close status for detail equdistant.
* @param value true - close equdistant, false - don't close equdistant.
*/
void VAbstractDetail::setClosed(bool value)
{
d->closed = value;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief getWidth return value detail seam allowance.
* @return value in mm.
*/
qreal VAbstractDetail::getWidth() const
{
return d->width;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief setWidth set value detail seam allowance.
* @param value width in mm.
*/
void VAbstractDetail::setWidth(const qreal &value)
{
d->width = value;
}
//---------------------------------------------------------------------------------------------------------------------
bool VAbstractDetail::getForbidFlipping() const
{
return d->forbidFlipping;
}
//---------------------------------------------------------------------------------------------------------------------
void VAbstractDetail::setForbidFlipping(bool value)
{
d->forbidFlipping = value;
}
//---------------------------------------------------------------------------------------------------------------------
QVector<QPointF> VAbstractDetail::Equidistant(const QVector<QPointF> &points, const EquidistantType &eqv, qreal width)
{
QVector<QPointF> ekvPoints;
if (width <= 0)
{
qDebug()<<"Width <= 0.";
return QVector<QPointF>();
}
QVector<QPointF> p = CorrectEquidistantPoints(points);
if ( p.size() < 3 )
{
qDebug()<<"Not enough points for building the equidistant.";
return QVector<QPointF>();
}
if (eqv == EquidistantType::CloseEquidistant)
{
p.append(p.at(0));
}
for (qint32 i = 0; i < p.size(); ++i )
{
if ( i == 0 && eqv == EquidistantType::CloseEquidistant)
{//first point, polyline closed
ekvPoints<<EkvPoint(QLineF(p.at(p.size()-2), p.at(p.size()-1)), QLineF(p.at(1), p.at(0)), width);
continue;
}
else if (i == 0 && eqv == EquidistantType::OpenEquidistant)
{//first point, polyline doesn't closed
ekvPoints.append(UnclosedEkvPoint(QLineF(p.at(0), p.at(1)), QLineF(p.at(0), p.at(p.size()-1)), width));
continue;
}
if (i == p.size()-1 && eqv == EquidistantType::CloseEquidistant)
{//last point, polyline closed
if (not ekvPoints.isEmpty())
{
ekvPoints.append(ekvPoints.at(0));
}
continue;
}
else if (i == p.size()-1 && eqv == EquidistantType::OpenEquidistant)
{//last point, polyline doesn't closed
ekvPoints.append(UnclosedEkvPoint(QLineF(p.at(p.size()-2), p.at(p.size()-1)),
QLineF(p.at(0), p.at(p.size()-1)), width));
continue;
}
//points in the middle of polyline
ekvPoints<<EkvPoint(QLineF(p.at(i-1), p.at(i)), QLineF(p.at(i+1), p.at(i)), width);
}
bool removeFirstAndLast = true;
if (eqv == EquidistantType::CloseEquidistant)
{
removeFirstAndLast = false;
}
ekvPoints = CheckLoops(CorrectEquidistantPoints(ekvPoints, removeFirstAndLast));//Result path can contain loops
return ekvPoints;
}
//---------------------------------------------------------------------------------------------------------------------
QVector<QPointF> VAbstractDetail::RemoveDublicates(const QVector<QPointF> &points, bool removeFirstAndLast)
{
QVector<QPointF> p = points;
if (removeFirstAndLast)
{
if (not p.isEmpty() && p.size() > 1)
{
// Path can't be closed
if (p.first() == p.last())
{
#if QT_VERSION < QT_VERSION_CHECK(5, 1, 0)
p.remove(p.size() - 1);
#else
p.removeLast();
#endif
}
}
}
for (int i = 0; i < p.size()-1; ++i)
{
if (p.at(i) == p.at(i+1))
{
if (not removeFirstAndLast && (i == p.size()-1))
{
continue;
}
p.erase(p.begin() + i + 1);
--i;
continue;
}
}
return p;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief CorrectEquidistantPoints clear equivalent points and remove point on line from equdistant.
* @param points list of points equdistant.
* @return corrected list.
*/
QVector<QPointF> VAbstractDetail::CorrectEquidistantPoints(const QVector<QPointF> &points, bool removeFirstAndLast)
{
if (points.size()<4)//Better don't check if only three points. We can destroy equidistant.
{
qDebug()<<"Only three points.";
return points;
}
//Clear equivalent points
QVector<QPointF> correctPoints = RemoveDublicates(points, removeFirstAndLast);
if (correctPoints.size()<3)
{
return correctPoints;
}
//Remove point on line
for (qint32 i = 1; i <correctPoints.size()-1; ++i)
{// In this case we alwayse will have bounded intersection, so all is need is to check if point i is on line.
// Unfortunatelly QLineF::intersect can't be used in this case because of the floating-point accuraccy problem.
if (VGObject::IsPointOnLineviaPDP(correctPoints.at(i), correctPoints.at(i-1), correctPoints.at(i+1)))
{
correctPoints.remove(i);
}
}
return correctPoints;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief CheckLoops seek and delete loops in equidistant.
* @param points vector of points of equidistant.
* @return vector of points of equidistant.
*/
QVector<QPointF> VAbstractDetail::CheckLoops(const QVector<QPointF> &points)
{
const int count = points.size();
/*If we got less than 4 points no need seek loops.*/
if (count < 4)
{
qDebug()<<"Less then 4 points. Doesn't need check for loops.";
return points;
}
const bool pathClosed = (points.first() == points.last());
QVector<QPointF> ekvPoints;
qint32 i, j, jNext = 0;
for (i = 0; i < count; ++i)
{
/*Last three points no need check.*/
/*Triangle has not contain loops*/
if (i > count-3)
{
ekvPoints.append(points.at(i));
continue;
}
enum LoopIntersectType { NoIntersection, BoundedIntersection, ParallelIntersection };
QPointF crosPoint;
LoopIntersectType status = NoIntersection;
const QLineF line1(points.at(i), points.at(i+1));
// Because a path can contains several loops we will seek the last and only then remove the loop(s)
// That's why we parse from the end
for (j = count-1; j >= i+2; --j)
{
j == count-1 ? jNext = 0 : jNext = j+1;
QLineF line2(points.at(j), points.at(jNext));
if(qFuzzyIsNull(line2.length()))
{//If a path is closed the edge (count-1;0) length will be 0
continue;
}
QSet<qint32> uniqueVertices;
uniqueVertices << i << i+1 << j;
// For closed path last point is equal to first. Using index of the first.
pathClosed && jNext == count-1 ? uniqueVertices << 0 : uniqueVertices << jNext;
const QLineF::IntersectType intersect = line1.intersect(line2, &crosPoint);
if (intersect == QLineF::NoIntersection)
{ // According to the documentation QLineF::NoIntersection indicates that the lines do not intersect;
// i.e. they are parallel. But parallel also mean they can be on the same line.
// Method IsPointOnLineviaPDP will check it.
if (VGObject::IsPointOnLineviaPDP(points.at(j), points.at(i), points.at(i+1))
// Lines are not neighbors
&& uniqueVertices.size() == 4
&& line1.p2() != line2.p2()
&& line1.p1() != line2.p1()
&& line1.p2() != line2.p1()
&& line1.p1() != line2.p2())
{
// Left to catch case where segments are on the same line, but do not have real intersections.
QLineF tmpLine1 = line1;
QLineF tmpLine2 = line2;
tmpLine1.setAngle(tmpLine1.angle()+90);
QPointF tmpCrosPoint;
const QLineF::IntersectType tmpIntrs1 = tmpLine1.intersect(tmpLine2, &tmpCrosPoint);
tmpLine1 = line1;
tmpLine2.setAngle(tmpLine2.angle()+90);
const QLineF::IntersectType tmpIntrs2 = tmpLine1.intersect(tmpLine2, &tmpCrosPoint);
if (tmpIntrs1 == QLineF::BoundedIntersection || tmpIntrs2 == QLineF::BoundedIntersection)
{ // Now we really sure that lines are on the same lines and have real intersections.
status = ParallelIntersection;
break;
}
}
}
else if (intersect == QLineF::BoundedIntersection)
{
if (uniqueVertices.size() == 4
&& line1.p1() != crosPoint
&& line1.p2() != crosPoint
&& line2.p1() != crosPoint
&& line2.p2() != crosPoint)
{ // Break, but not if lines are neighbors
status = BoundedIntersection;
break;
}
}
status = NoIntersection;
}
switch (status)
{
case ParallelIntersection:
/*We have found a loop.*/
// Theoretically there is no big difference which point j or jNext to select.
// In the end we will draw a line in any case.
ekvPoints.append(points.at(i));
ekvPoints.append(points.at(jNext));
i = j;
break;
case BoundedIntersection:
/*We have found a loop.*/
ekvPoints.append(points.at(i));
ekvPoints.append(crosPoint);
i = j;
break;
case NoIntersection:
/*We have not found loop.*/
ekvPoints.append(points.at(i));
break;
default:
break;
}
}
return ekvPoints;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief EkvPoint return vector of points of equidistant two lines. Last point of two lines must be equal.
* @param line1 first line.
* @param line2 second line.
* @param width width of equidistant.
* @return vector of points.
*/
QVector<QPointF> VAbstractDetail::EkvPoint(const QLineF &line1, const QLineF &line2, const qreal &width)
{
if (width <= 0)
{
return QVector<QPointF>();
}
QVector<QPointF> points;
if (line1.p2() != line2.p2())
{
qDebug()<<"Last points of two lines must be equal.";
return QVector<QPointF>();
}
QPointF CrosPoint;
const QLineF bigLine1 = ParallelLine(line1, width );
const QLineF bigLine2 = ParallelLine(QLineF(line2.p2(), line2.p1()), width );
QLineF::IntersectType type = bigLine1.intersect( bigLine2, &CrosPoint );
switch (type)
{
case (QLineF::BoundedIntersection):
points.append(CrosPoint);
return points;
break;
case (QLineF::UnboundedIntersection):
{
QLineF line( line1.p2(), CrosPoint );
const int angle1 = BisectorAngle(line1.p1(), line1.p2(), line2.p1());
const int angle2 = BisectorAngle(bigLine1.p1(), CrosPoint, bigLine2.p2());
if (angle1 == angle2)
{//Regular equdistant case
const qreal length = line.length();
if (length > width*2.4)
{ // Cutting too long a cut angle
line.setLength(width); // Not sure about width value here
QLineF cutLine(line.p2(), CrosPoint); // Cut line is a perpendicular
cutLine.setLength(length); // Decided take this length
// We do not check intersection type because intersection must alwayse exist
QPointF px;
cutLine.setAngle(cutLine.angle()+90);
QLineF::IntersectType type = bigLine1.intersect( cutLine, &px );
if (type == QLineF::NoIntersection)
{
qDebug()<<"Couldn't find intersection with cut line.";
}
points.append(px);
cutLine.setAngle(cutLine.angle()-180);
type = bigLine2.intersect( cutLine, &px );
if (type == QLineF::NoIntersection)
{
qDebug()<<"Couldn't find intersection with cut line.";
}
points.append(px);
}
else
{
points.append(CrosPoint);
return points;
}
}
else
{// Dart. Ignore if going outside of equdistant
const QLineF bigEdge = ParallelLine(QLineF(line1.p1(), line2.p1()), width );
QPointF px;
const QLineF::IntersectType type = bigEdge.intersect(line, &px);
if (type != QLineF::BoundedIntersection)
{
points.append(CrosPoint);
return points;
}
}
break;
}
case (QLineF::NoIntersection):
/*If we have correct lines this means lines lie on a line.*/
points.append(bigLine1.p2());
return points;
break;
default:
break;
}
return points;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief UnclosedEkvPoint helps find point of an unclosed seam allowance. One side of two lines should be equal.
*
* In case of the first seam allowance point equal should be the first point of the two lines. In case the last point -
* the last point of the two lines.
*
* @param line line of a seam allowance
* @param helpLine help line of the main path that cut unclosed seam allowance
* @param width seam allowance width
* @return seam allowance point
*/
QPointF VAbstractDetail::UnclosedEkvPoint(const QLineF &line, const QLineF &helpLine, const qreal &width)
{
if (width <= 0)
{
return QPointF();
}
if (not (line.p2() == helpLine.p2() || line.p1() == helpLine.p1()))
{
qDebug()<<"Two points of two lines must be equal.";
return QPointF();
}
QPointF CrosPoint;
const QLineF bigLine = ParallelLine(line, width );
QLineF::IntersectType type = bigLine.intersect( helpLine, &CrosPoint );
switch (type)
{
case (QLineF::BoundedIntersection):
return CrosPoint;
break;
case (QLineF::UnboundedIntersection):
{
// This case is very tricky.
// User can create very wrong path that will create crospoint far from main path.
// Such an annomaly we try to catch and fix.
// If don't do this the program will crash.
QLineF test( line.p2(), CrosPoint );
const qreal length = test.length();
if (length > width*50) // Why 50? Try to avoid cutting correct cases.
{
test.setLength(width);
return test.p2();
}
else
{
return CrosPoint;
}
break;
}
case (QLineF::NoIntersection):
/*If we have correct lines this means lines lie on a line.*/
return bigLine.p2();
break;
default:
break;
}
return QPointF();
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief ParallelLine create parallel line.
* @param line starting line.
* @param width width to parallel line.
* @return parallel line.
*/
QLineF VAbstractDetail::ParallelLine(const QLineF &line, qreal width)
{
QLineF paralel = QLineF (SingleParallelPoint(line, 90, width), SingleParallelPoint(QLineF(line.p2(), line.p1()),
-90, width));
return paralel;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief SingleParallelPoint return point of parallel line.
* @param line starting line.
* @param angle angle in degree.
* @param width width to parallel line.
* @return point of parallel line.
*/
QPointF VAbstractDetail::SingleParallelPoint(const QLineF &line, const qreal &angle, const qreal &width)
{
QLineF pLine = line;
pLine.setAngle( pLine.angle() + angle );
pLine.setLength( width );
return pLine.p2();
}
//---------------------------------------------------------------------------------------------------------------------
int VAbstractDetail::BisectorAngle(const QPointF &p1, const QPointF &p2, const QPointF &p3)
{
QLineF line1(p2, p1);
QLineF line2(p2, p3);
QLineF bLine;
const qreal angle1 = line1.angleTo(line2);
const qreal angle2 = line2.angleTo(line1);
if (angle1 <= angle2)
{
bLine = line1;
bLine.setAngle(bLine.angle() + angle1/2.0);
}
else
{
bLine = line2;
bLine.setAngle(bLine.angle() + angle2/2.0);
}
return qRound(bLine.angle());
}
//---------------------------------------------------------------------------------------------------------------------
qreal VAbstractDetail::SumTrapezoids(const QVector<QPointF> &points)
{
// Calculation a polygon area through the sum of the areas of trapezoids
qreal s, res = 0;
const int n = points.size();
if(n > 2)
{
for (int i = 0; i < n; ++i)
{
if (i == 0)
{
s = points.at(i).x()*(points.at(n-1).y() - points.at(i+1).y()); //if i == 0, then y[i-1] replace on y[n-1]
res += s;
}
else
{
if (i == n-1)
{
s = points.at(i).x()*(points.at(i-1).y() - points.at(0).y()); // if i == n-1, then y[i+1] replace on y[0]
res += s;
}
else
{
s = points.at(i).x()*(points.at(i-1).y() - points.at(i+1).y());
res += s;
}
}
}
}
return res;
}