/************************************************************************ ** ** @file vabstractdetail.cpp ** @author Roman Telezhynskyi ** @date 2 1, 2015 ** ** @brief ** @copyright ** This source code is part of the Valentine project, a pattern making ** program, whose allow create and modeling patterns of clothing. ** Copyright (C) 2013-2015 Valentina project ** All Rights Reserved. ** ** Valentina is free software: you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation, either version 3 of the License, or ** (at your option) any later version. ** ** Valentina is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with Valentina. If not, see . ** *************************************************************************/ #include "vabstractdetail.h" #include #include #include #include #include #include #include #include #include "../vgeometry/vgobject.h" #include "vabstractdetail_p.h" //--------------------------------------------------------------------------------------------------------------------- /** * @brief VAbstractDetail default contructor. Create empty detail. */ VAbstractDetail::VAbstractDetail() :d(new VAbstractDetailData) {} //--------------------------------------------------------------------------------------------------------------------- /** * @brief VAbstractDetail constructor. * @param name detail name. */ VAbstractDetail::VAbstractDetail(const QString &name) :d(new VAbstractDetailData(name)) {} //--------------------------------------------------------------------------------------------------------------------- /** * @brief VAbstractDetail copy constructor. * @param detail detail. */ VAbstractDetail::VAbstractDetail(const VAbstractDetail &detail) :d (detail.d) {} //--------------------------------------------------------------------------------------------------------------------- /** * @brief operator = assignment operator. * @param detail detail. * @return new detail. */ VAbstractDetail &VAbstractDetail::operator=(const VAbstractDetail &detail) { if ( &detail == this ) { return *this; } d = detail.d; return *this; } //--------------------------------------------------------------------------------------------------------------------- VAbstractDetail::~VAbstractDetail() {} //--------------------------------------------------------------------------------------------------------------------- /** * @brief Clear detail full clear. */ void VAbstractDetail::Clear() { d->name.clear(); d->seamAllowance = false; d->closed = true; d->width = 0; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief getName return detail name. * @return name. */ QString VAbstractDetail::getName() const { return d->name; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief setName set detail name. * @param value new name. */ void VAbstractDetail::setName(const QString &value) { d->name = value; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief getSeamAllowance keep status for seam allowance detail. * @return true - need seam allowance, false - no need seam allowance. */ bool VAbstractDetail::getSeamAllowance() const { return d->seamAllowance; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief setSeamAllowance set status for seam allowance detail. * @param value true - need seam allowance, false - no need seam allowance. */ void VAbstractDetail::setSeamAllowance(bool value) { d->seamAllowance = value; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief getClosed keep close status for detail equdistant. * @return true - close equdistant, false - don't close equdistant. */ bool VAbstractDetail::getClosed() const { return d->closed; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief setClosed set close status for detail equdistant. * @param value true - close equdistant, false - don't close equdistant. */ void VAbstractDetail::setClosed(bool value) { d->closed = value; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief getWidth return value detail seam allowance. * @return value in mm. */ qreal VAbstractDetail::getWidth() const { return d->width; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief setWidth set value detail seam allowance. * @param value width in mm. */ void VAbstractDetail::setWidth(const qreal &value) { d->width = value; } //--------------------------------------------------------------------------------------------------------------------- bool VAbstractDetail::getForbidFlipping() const { return d->forbidFlipping; } //--------------------------------------------------------------------------------------------------------------------- void VAbstractDetail::setForbidFlipping(bool value) { d->forbidFlipping = value; } //--------------------------------------------------------------------------------------------------------------------- QVector VAbstractDetail::Equidistant(const QVector &points, const EquidistantType &eqv, qreal width) { QVector ekvPoints; if (width <= 0) { qDebug()<<"Width <= 0."; return QVector(); } QVector p = CorrectEquidistantPoints(points); if ( p.size() < 3 ) { qDebug()<<"Not enough points for building the equidistant."; return QVector(); } if (eqv == EquidistantType::CloseEquidistant) { p.append(p.at(0)); } for (qint32 i = 0; i < p.size(); ++i ) { if ( i == 0 && eqv == EquidistantType::CloseEquidistant) {//first point, polyline closed ekvPoints< VAbstractDetail::RemoveDublicates(const QVector &points, bool removeFirstAndLast) { QVector p = points; if (removeFirstAndLast) { if (not p.isEmpty() && p.size() > 1) { // Path can't be closed if (p.first() == p.last()) { #if QT_VERSION < QT_VERSION_CHECK(5, 1, 0) p.remove(p.size() - 1); #else p.removeLast(); #endif } } } for (int i = 0; i < p.size()-1; ++i) { if (p.at(i) == p.at(i+1)) { if (not removeFirstAndLast && (i == p.size()-1)) { continue; } p.erase(p.begin() + i + 1); --i; continue; } } return p; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief CorrectEquidistantPoints clear equivalent points and remove point on line from equdistant. * @param points list of points equdistant. * @return corrected list. */ QVector VAbstractDetail::CorrectEquidistantPoints(const QVector &points, bool removeFirstAndLast) { if (points.size()<4)//Better don't check if only three points. We can destroy equidistant. { qDebug()<<"Only three points."; return points; } //Clear equivalent points QVector correctPoints = RemoveDublicates(points, removeFirstAndLast); if (correctPoints.size()<3) { return correctPoints; } //Remove point on line for (qint32 i = 1; i VAbstractDetail::CheckLoops(const QVector &points) { const int count = points.size(); /*If we got less than 4 points no need seek loops.*/ if (count < 4) { qDebug()<<"Less then 4 points. Doesn't need check for loops."; return points; } const bool pathClosed = (points.first() == points.last()); QVector ekvPoints; qint32 i, j, jNext = 0; for (i = 0; i < count; ++i) { /*Last three points no need check.*/ /*Triangle has not contain loops*/ if (i > count-3) { ekvPoints.append(points.at(i)); continue; } enum LoopIntersectType { NoIntersection, BoundedIntersection, ParallelIntersection }; QPointF crosPoint; LoopIntersectType status = NoIntersection; const QLineF line1(points.at(i), points.at(i+1)); // Because a path can contains several loops we will seek the last and only then remove the loop(s) // That's why we parse from the end for (j = count-1; j >= i+2; --j) { j == count-1 ? jNext = 0 : jNext = j+1; QLineF line2(points.at(j), points.at(jNext)); if(qFuzzyIsNull(line2.length())) {//If a path is closed the edge (count-1;0) length will be 0 continue; } QSet uniqueVertices; uniqueVertices << i << i+1 << j; // For closed path last point is equal to first. Using index of the first. pathClosed && jNext == count-1 ? uniqueVertices << 0 : uniqueVertices << jNext; const QLineF::IntersectType intersect = line1.intersect(line2, &crosPoint); if (intersect == QLineF::NoIntersection) { // According to the documentation QLineF::NoIntersection indicates that the lines do not intersect; // i.e. they are parallel. But parallel also mean they can be on the same line. // Method IsPointOnLineviaPDP will check it. if (VGObject::IsPointOnLineviaPDP(points.at(j), points.at(i), points.at(i+1)) // Lines are not neighbors && uniqueVertices.size() == 4 && line1.p2() != line2.p2() && line1.p1() != line2.p1() && line1.p2() != line2.p1() && line1.p1() != line2.p2()) { // Left to catch case where segments are on the same line, but do not have real intersections. QLineF tmpLine1 = line1; QLineF tmpLine2 = line2; tmpLine1.setAngle(tmpLine1.angle()+90); QPointF tmpCrosPoint; const QLineF::IntersectType tmpIntrs1 = tmpLine1.intersect(tmpLine2, &tmpCrosPoint); tmpLine1 = line1; tmpLine2.setAngle(tmpLine2.angle()+90); const QLineF::IntersectType tmpIntrs2 = tmpLine1.intersect(tmpLine2, &tmpCrosPoint); if (tmpIntrs1 == QLineF::BoundedIntersection || tmpIntrs2 == QLineF::BoundedIntersection) { // Now we really sure that lines are on the same lines and have real intersections. status = ParallelIntersection; break; } } } else if (intersect == QLineF::BoundedIntersection) { if (uniqueVertices.size() == 4 && line1.p1() != crosPoint && line1.p2() != crosPoint && line2.p1() != crosPoint && line2.p2() != crosPoint) { // Break, but not if lines are neighbors status = BoundedIntersection; break; } } status = NoIntersection; } switch (status) { case ParallelIntersection: /*We have found a loop.*/ // Theoretically there is no big difference which point j or jNext to select. // In the end we will draw a line in any case. ekvPoints.append(points.at(i)); ekvPoints.append(points.at(jNext)); i = j; break; case BoundedIntersection: /*We have found a loop.*/ ekvPoints.append(points.at(i)); ekvPoints.append(crosPoint); i = j; break; case NoIntersection: /*We have not found loop.*/ ekvPoints.append(points.at(i)); break; default: break; } } return ekvPoints; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief EkvPoint return vector of points of equidistant two lines. Last point of two lines must be equal. * @param line1 first line. * @param line2 second line. * @param width width of equidistant. * @return vector of points. */ QVector VAbstractDetail::EkvPoint(const QLineF &line1, const QLineF &line2, const qreal &width) { if (width <= 0) { return QVector(); } QVector points; if (line1.p2() != line2.p2()) { qDebug()<<"Last points of two lines must be equal."; return QVector(); } QPointF CrosPoint; const QLineF bigLine1 = ParallelLine(line1, width ); const QLineF bigLine2 = ParallelLine(QLineF(line2.p2(), line2.p1()), width ); QLineF::IntersectType type = bigLine1.intersect( bigLine2, &CrosPoint ); switch (type) { case (QLineF::BoundedIntersection): points.append(CrosPoint); return points; break; case (QLineF::UnboundedIntersection): { QLineF line( line1.p2(), CrosPoint ); const int angle1 = BisectorAngle(line1.p1(), line1.p2(), line2.p1()); const int angle2 = BisectorAngle(bigLine1.p1(), CrosPoint, bigLine2.p2()); if (angle1 == angle2) {//Regular equdistant case const qreal length = line.length(); if (length > width*2.4) { // Cutting too long a cut angle line.setLength(width); // Not sure about width value here QLineF cutLine(line.p2(), CrosPoint); // Cut line is a perpendicular cutLine.setLength(length); // Decided take this length // We do not check intersection type because intersection must alwayse exist QPointF px; cutLine.setAngle(cutLine.angle()+90); QLineF::IntersectType type = bigLine1.intersect( cutLine, &px ); if (type == QLineF::NoIntersection) { qDebug()<<"Couldn't find intersection with cut line."; } points.append(px); cutLine.setAngle(cutLine.angle()-180); type = bigLine2.intersect( cutLine, &px ); if (type == QLineF::NoIntersection) { qDebug()<<"Couldn't find intersection with cut line."; } points.append(px); } else { points.append(CrosPoint); return points; } } else {// Dart. Ignore if going outside of equdistant const QLineF bigEdge = ParallelLine(QLineF(line1.p1(), line2.p1()), width ); QPointF px; const QLineF::IntersectType type = bigEdge.intersect(line, &px); if (type != QLineF::BoundedIntersection) { points.append(CrosPoint); return points; } } break; } case (QLineF::NoIntersection): /*If we have correct lines this means lines lie on a line.*/ points.append(bigLine1.p2()); return points; break; default: break; } return points; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief UnclosedEkvPoint helps find point of an unclosed seam allowance. One side of two lines should be equal. * * In case of the first seam allowance point equal should be the first point of the two lines. In case the last point - * the last point of the two lines. * * @param line line of a seam allowance * @param helpLine help line of the main path that cut unclosed seam allowance * @param width seam allowance width * @return seam allowance point */ QPointF VAbstractDetail::UnclosedEkvPoint(const QLineF &line, const QLineF &helpLine, const qreal &width) { if (width <= 0) { return QPointF(); } if (not (line.p2() == helpLine.p2() || line.p1() == helpLine.p1())) { qDebug()<<"Two points of two lines must be equal."; return QPointF(); } QPointF CrosPoint; const QLineF bigLine = ParallelLine(line, width ); QLineF::IntersectType type = bigLine.intersect( helpLine, &CrosPoint ); switch (type) { case (QLineF::BoundedIntersection): return CrosPoint; break; case (QLineF::UnboundedIntersection): { // This case is very tricky. // User can create very wrong path that will create crospoint far from main path. // Such an annomaly we try to catch and fix. // If don't do this the program will crash. QLineF test( line.p2(), CrosPoint ); const qreal length = test.length(); if (length > width*50) // Why 50? Try to avoid cutting correct cases. { test.setLength(width); return test.p2(); } else { return CrosPoint; } break; } case (QLineF::NoIntersection): /*If we have correct lines this means lines lie on a line.*/ return bigLine.p2(); break; default: break; } return QPointF(); } //--------------------------------------------------------------------------------------------------------------------- /** * @brief ParallelLine create parallel line. * @param line starting line. * @param width width to parallel line. * @return parallel line. */ QLineF VAbstractDetail::ParallelLine(const QLineF &line, qreal width) { QLineF paralel = QLineF (SingleParallelPoint(line, 90, width), SingleParallelPoint(QLineF(line.p2(), line.p1()), -90, width)); return paralel; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief SingleParallelPoint return point of parallel line. * @param line starting line. * @param angle angle in degree. * @param width width to parallel line. * @return point of parallel line. */ QPointF VAbstractDetail::SingleParallelPoint(const QLineF &line, const qreal &angle, const qreal &width) { QLineF pLine = line; pLine.setAngle( pLine.angle() + angle ); pLine.setLength( width ); return pLine.p2(); } //--------------------------------------------------------------------------------------------------------------------- int VAbstractDetail::BisectorAngle(const QPointF &p1, const QPointF &p2, const QPointF &p3) { QLineF line1(p2, p1); QLineF line2(p2, p3); QLineF bLine; const qreal angle1 = line1.angleTo(line2); const qreal angle2 = line2.angleTo(line1); if (angle1 <= angle2) { bLine = line1; bLine.setAngle(bLine.angle() + angle1/2.0); } else { bLine = line2; bLine.setAngle(bLine.angle() + angle2/2.0); } return qRound(bLine.angle()); } //--------------------------------------------------------------------------------------------------------------------- qreal VAbstractDetail::SumTrapezoids(const QVector &points) { // Calculation a polygon area through the sum of the areas of trapezoids qreal s, res = 0; const int n = points.size(); if(n > 2) { for (int i = 0; i < n; ++i) { if (i == 0) { s = points.at(i).x()*(points.at(n-1).y() - points.at(i+1).y()); //if i == 0, then y[i-1] replace on y[n-1] res += s; } else { if (i == n-1) { s = points.at(i).x()*(points.at(i-1).y() - points.at(0).y()); // if i == n-1, then y[i+1] replace on y[0] res += s; } else { s = points.at(i).x()*(points.at(i-1).y() - points.at(i+1).y()); res += s; } } } } return res; }