valentina/src/libs/vlayout/vabstractpiece.cpp

537 lines
18 KiB
C++
Raw Normal View History

/************************************************************************
**
** @file
** @author Roman Telezhynskyi <dismine(at)gmail.com>
** @date 3 11, 2016
**
** @brief
** @copyright
** This source code is part of the Valentine project, a pattern making
** program, whose allow create and modeling patterns of clothing.
** Copyright (C) 2016 Valentina project
** <https://bitbucket.org/dismine/valentina> All Rights Reserved.
**
** Valentina is free software: you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** Valentina is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with Valentina. If not, see <http://www.gnu.org/licenses/>.
**
*************************************************************************/
#include "vabstractpiece.h"
#include "vabstractpiece_p.h"
#include <QLineF>
#include <QSet>
#include <QVector>
#include <QDebug>
#include "../vgeometry/vgobject.h"
//---------------------------------------------------------------------------------------------------------------------
VAbstractPiece::VAbstractPiece()
: d(new VAbstractPieceData)
{}
//---------------------------------------------------------------------------------------------------------------------
VAbstractPiece::VAbstractPiece(const VAbstractPiece &piece)
:d (piece.d)
{}
//---------------------------------------------------------------------------------------------------------------------
VAbstractPiece &VAbstractPiece::operator=(const VAbstractPiece &piece)
{
if ( &piece == this )
{
return *this;
}
d = piece.d;
return *this;
}
//---------------------------------------------------------------------------------------------------------------------
VAbstractPiece::~VAbstractPiece()
{}
//---------------------------------------------------------------------------------------------------------------------
QString VAbstractPiece::GetName() const
{
return d->m_name;
}
//---------------------------------------------------------------------------------------------------------------------
void VAbstractPiece::SetName(const QString &value)
{
d->m_name = value;
}
//---------------------------------------------------------------------------------------------------------------------
bool VAbstractPiece::IsForbidFlipping() const
{
return d->m_forbidFlipping;
}
//---------------------------------------------------------------------------------------------------------------------
void VAbstractPiece::SetForbidFlipping(bool value)
{
d->m_forbidFlipping = value;
}
//---------------------------------------------------------------------------------------------------------------------
bool VAbstractPiece::IsSeamAllowance() const
{
return d->m_seamAllowance;
}
//---------------------------------------------------------------------------------------------------------------------
void VAbstractPiece::SetSeamAllowance(bool value)
{
d->m_seamAllowance = value;
}
//---------------------------------------------------------------------------------------------------------------------
qreal VAbstractPiece::GetSAWidth() const
{
return d->m_width;
}
//---------------------------------------------------------------------------------------------------------------------
void VAbstractPiece::SetSAWidth(qreal value)
{
value >= 0 ? d->m_width = value : d->m_width = 0;
}
//---------------------------------------------------------------------------------------------------------------------
QVector<QPointF> VAbstractPiece::Equidistant(const QVector<QPointF> &points, qreal width)
{
QVector<QPointF> ekvPoints;
if (width <= 0)
{
qDebug()<<"Width <= 0.";
return QVector<QPointF>();
}
QVector<QPointF> p = CorrectEquidistantPoints(points);
if ( p.size() < 3 )
{
qDebug()<<"Not enough points for building the equidistant.";
return QVector<QPointF>();
}
if (p.last().toPoint() != p.first().toPoint())
{
p.append(p.at(0));// Should be always closed
}
for (qint32 i = 0; i < p.size(); ++i )
{
if ( i == 0)
{//first point
ekvPoints << EkvPoint(QLineF(p.at(p.size()-2), p.at(p.size()-1)), QLineF(p.at(1), p.at(0)), width);
continue;
}
if (i == p.size()-1)
{//last point
if (not ekvPoints.isEmpty())
{
ekvPoints.append(ekvPoints.at(0));
}
continue;
}
//points in the middle of polyline
ekvPoints << EkvPoint(QLineF(p.at(i-1), p.at(i)), QLineF(p.at(i+1), p.at(i)), width);
}
const bool removeFirstAndLast = false;
ekvPoints = CheckLoops(CorrectEquidistantPoints(ekvPoints, removeFirstAndLast));//Result path can contain loops
return ekvPoints;
}
//---------------------------------------------------------------------------------------------------------------------
qreal VAbstractPiece::SumTrapezoids(const QVector<QPointF> &points)
{
// Calculation a polygon area through the sum of the areas of trapezoids
qreal s, res = 0;
const int n = points.size();
if(n > 2)
{
for (int i = 0; i < n; ++i)
{
if (i == 0)
{
//if i == 0, then y[i-1] replace on y[n-1]
s = points.at(i).x()*(points.at(n-1).y() - points.at(i+1).y());
res += s;
}
else
{
if (i == n-1)
{
// if i == n-1, then y[i+1] replace on y[0]
s = points.at(i).x()*(points.at(i-1).y() - points.at(0).y());
res += s;
}
else
{
s = points.at(i).x()*(points.at(i-1).y() - points.at(i+1).y());
res += s;
}
}
}
}
return res;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief CheckLoops seek and delete loops in equidistant.
* @param points vector of points of equidistant.
* @return vector of points of equidistant.
*/
QVector<QPointF> VAbstractPiece::CheckLoops(const QVector<QPointF> &points)
{
const int count = points.size();
/*If we got less than 4 points no need seek loops.*/
if (count < 4)
{
qDebug()<<"Less then 4 points. Doesn't need check for loops.";
return points;
}
const bool pathClosed = (points.first() == points.last());
QVector<QPointF> ekvPoints;
qint32 i, j, jNext = 0;
for (i = 0; i < count; ++i)
{
/*Last three points no need check.*/
/*Triangle has not contain loops*/
if (i > count-3)
{
ekvPoints.append(points.at(i));
continue;
}
enum LoopIntersectType { NoIntersection, BoundedIntersection, ParallelIntersection };
QPointF crosPoint;
LoopIntersectType status = NoIntersection;
const QLineF line1(points.at(i), points.at(i+1));
// Because a path can contains several loops we will seek the last and only then remove the loop(s)
// That's why we parse from the end
for (j = count-1; j >= i+2; --j)
{
j == count-1 ? jNext = 0 : jNext = j+1;
QLineF line2(points.at(j), points.at(jNext));
if(qFuzzyIsNull(line2.length()))
{//If a path is closed the edge (count-1;0) length will be 0
continue;
}
QSet<qint32> uniqueVertices;
uniqueVertices << i << i+1 << j;
// For closed path last point is equal to first. Using index of the first.
pathClosed && jNext == count-1 ? uniqueVertices << 0 : uniqueVertices << jNext;
const QLineF::IntersectType intersect = line1.intersect(line2, &crosPoint);
if (intersect == QLineF::NoIntersection)
{ // According to the documentation QLineF::NoIntersection indicates that the lines do not intersect;
// i.e. they are parallel. But parallel also mean they can be on the same line.
// Method IsPointOnLineviaPDP will check it.
if (VGObject::IsPointOnLineviaPDP(points.at(j), points.at(i), points.at(i+1))
// Lines are not neighbors
&& uniqueVertices.size() == 4
&& line1.p2() != line2.p2()
&& line1.p1() != line2.p1()
&& line1.p2() != line2.p1()
&& line1.p1() != line2.p2())
{
// Left to catch case where segments are on the same line, but do not have real intersections.
QLineF tmpLine1 = line1;
QLineF tmpLine2 = line2;
tmpLine1.setAngle(tmpLine1.angle()+90);
QPointF tmpCrosPoint;
const QLineF::IntersectType tmpIntrs1 = tmpLine1.intersect(tmpLine2, &tmpCrosPoint);
tmpLine1 = line1;
tmpLine2.setAngle(tmpLine2.angle()+90);
const QLineF::IntersectType tmpIntrs2 = tmpLine1.intersect(tmpLine2, &tmpCrosPoint);
if (tmpIntrs1 == QLineF::BoundedIntersection || tmpIntrs2 == QLineF::BoundedIntersection)
{ // Now we really sure that lines are on the same lines and have real intersections.
status = ParallelIntersection;
break;
}
}
}
else if (intersect == QLineF::BoundedIntersection)
{
if (uniqueVertices.size() == 4
&& line1.p1() != crosPoint
&& line1.p2() != crosPoint
&& line2.p1() != crosPoint
&& line2.p2() != crosPoint)
{ // Break, but not if lines are neighbors
status = BoundedIntersection;
break;
}
}
status = NoIntersection;
}
switch (status)
{
case ParallelIntersection:
/*We have found a loop.*/
// Theoretically there is no big difference which point j or jNext to select.
// In the end we will draw a line in any case.
ekvPoints.append(points.at(i));
ekvPoints.append(points.at(jNext));
i = j;
break;
case BoundedIntersection:
/*We have found a loop.*/
ekvPoints.append(points.at(i));
ekvPoints.append(crosPoint);
i = j;
break;
case NoIntersection:
/*We have not found loop.*/
ekvPoints.append(points.at(i));
break;
default:
break;
}
}
return ekvPoints;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief CorrectEquidistantPoints clear equivalent points and remove point on line from equdistant.
* @param points list of points equdistant.
* @return corrected list.
*/
QVector<QPointF> VAbstractPiece::CorrectEquidistantPoints(const QVector<QPointF> &points, bool removeFirstAndLast)
{
if (points.size()<4)//Better don't check if only three points. We can destroy equidistant.
{
qDebug()<<"Only three points.";
return points;
}
//Clear equivalent points
QVector<QPointF> correctPoints = RemoveDublicates(points, removeFirstAndLast);
if (correctPoints.size()<3)
{
return correctPoints;
}
//Remove point on line
for (qint32 i = 1; i <correctPoints.size()-1; ++i)
{// In this case we alwayse will have bounded intersection, so all is need is to check if point i is on line.
// Unfortunatelly QLineF::intersect can't be used in this case because of the floating-point accuraccy problem.
if (VGObject::IsPointOnLineviaPDP(correctPoints.at(i), correctPoints.at(i-1), correctPoints.at(i+1)))
{
correctPoints.remove(i);
}
}
return correctPoints;
}
//---------------------------------------------------------------------------------------------------------------------
QVector<QPointF> VAbstractPiece::RemoveDublicates(const QVector<QPointF> &points, bool removeFirstAndLast)
{
QVector<QPointF> p = points;
if (removeFirstAndLast)
{
if (not p.isEmpty() && p.size() > 1)
{
// Path can't be closed
if (p.first() == p.last())
{
#if QT_VERSION < QT_VERSION_CHECK(5, 1, 0)
p.remove(p.size() - 1);
#else
p.removeLast();
#endif
}
}
}
for (int i = 0; i < p.size()-1; ++i)
{
if (p.at(i) == p.at(i+1))
{
if (not removeFirstAndLast && (i == p.size()-1))
{
continue;
}
p.erase(p.begin() + i + 1);
--i;
continue;
}
}
return p;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief EkvPoint return vector of points of equidistant two lines. Last point of two lines must be equal.
* @param line1 first line.
* @param line2 second line.
* @param width width of equidistant.
* @return vector of points.
*/
QVector<QPointF> VAbstractPiece::EkvPoint(const QLineF &line1, const QLineF &line2, qreal width)
{
if (width <= 0)
{
return QVector<QPointF>();
}
QVector<QPointF> points;
if (line1.p2() != line2.p2())
{
qDebug()<<"Last points of two lines must be equal.";
return QVector<QPointF>();
}
QPointF CrosPoint;
const QLineF bigLine1 = ParallelLine(line1, width );
const QLineF bigLine2 = ParallelLine(QLineF(line2.p2(), line2.p1()), width );
QLineF::IntersectType type = bigLine1.intersect( bigLine2, &CrosPoint );
switch (type)
{
case (QLineF::BoundedIntersection):
points.append(CrosPoint);
return points;
break;
case (QLineF::UnboundedIntersection):
{
QLineF line( line1.p2(), CrosPoint );
const int angle1 = BisectorAngle(line1.p1(), line1.p2(), line2.p1());
const int angle2 = BisectorAngle(bigLine1.p1(), CrosPoint, bigLine2.p2());
if (angle1 == angle2)
{//Regular equdistant case
const qreal length = line.length();
if (length > width*2.4)
{ // Cutting too long a cut angle
line.setLength(width); // Not sure about width value here
QLineF cutLine(line.p2(), CrosPoint); // Cut line is a perpendicular
cutLine.setLength(length); // Decided take this length
// We do not check intersection type because intersection must alwayse exist
QPointF px;
cutLine.setAngle(cutLine.angle()+90);
QLineF::IntersectType type = bigLine1.intersect( cutLine, &px );
if (type == QLineF::NoIntersection)
{
qDebug()<<"Couldn't find intersection with cut line.";
}
points.append(px);
cutLine.setAngle(cutLine.angle()-180);
type = bigLine2.intersect( cutLine, &px );
if (type == QLineF::NoIntersection)
{
qDebug()<<"Couldn't find intersection with cut line.";
}
points.append(px);
}
else
{
points.append(CrosPoint);
return points;
}
}
else
{// Dart. Ignore if going outside of equdistant
const QLineF bigEdge = ParallelLine(QLineF(line1.p1(), line2.p1()), width );
QPointF px;
const QLineF::IntersectType type = bigEdge.intersect(line, &px);
if (type != QLineF::BoundedIntersection)
{
points.append(CrosPoint);
return points;
}
}
break;
}
case (QLineF::NoIntersection):
/*If we have correct lines this means lines lie on a line.*/
points.append(bigLine1.p2());
return points;
break;
default:
break;
}
return points;
}
//---------------------------------------------------------------------------------------------------------------------
QLineF VAbstractPiece::ParallelLine(const QLineF &line, qreal width)
{
const QLineF paralel = QLineF(SingleParallelPoint(line, 90, width),
SingleParallelPoint(QLineF(line.p2(), line.p1()), -90, width));
return paralel;
}
//---------------------------------------------------------------------------------------------------------------------
QPointF VAbstractPiece::SingleParallelPoint(const QLineF &line, qreal angle, qreal width)
{
QLineF pLine = line;
pLine.setAngle( pLine.angle() + angle );
pLine.setLength( width );
return pLine.p2();
}
//---------------------------------------------------------------------------------------------------------------------
int VAbstractPiece::BisectorAngle(const QPointF &p1, const QPointF &p2, const QPointF &p3)
{
QLineF line1(p2, p1);
QLineF line2(p2, p3);
QLineF bLine;
const qreal angle1 = line1.angleTo(line2);
const qreal angle2 = line2.angleTo(line1);
if (angle1 <= angle2)
{
bLine = line1;
bLine.setAngle(bLine.angle() + angle1/2.0);
}
else
{
bLine = line2;
bLine.setAngle(bLine.angle() + angle2/2.0);
}
return qRound(bLine.angle());
}