/************************************************************************ ** ** @file ** @author Roman Telezhynskyi ** @date 3 11, 2016 ** ** @brief ** @copyright ** This source code is part of the Valentine project, a pattern making ** program, whose allow create and modeling patterns of clothing. ** Copyright (C) 2016 Valentina project ** All Rights Reserved. ** ** Valentina is free software: you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation, either version 3 of the License, or ** (at your option) any later version. ** ** Valentina is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with Valentina. If not, see . ** *************************************************************************/ #include "vabstractpiece.h" #include "vabstractpiece_p.h" #include #include #include #include #include "../vgeometry/vgobject.h" //--------------------------------------------------------------------------------------------------------------------- VAbstractPiece::VAbstractPiece() : d(new VAbstractPieceData) {} //--------------------------------------------------------------------------------------------------------------------- VAbstractPiece::VAbstractPiece(const VAbstractPiece &piece) :d (piece.d) {} //--------------------------------------------------------------------------------------------------------------------- VAbstractPiece &VAbstractPiece::operator=(const VAbstractPiece &piece) { if ( &piece == this ) { return *this; } d = piece.d; return *this; } //--------------------------------------------------------------------------------------------------------------------- VAbstractPiece::~VAbstractPiece() {} //--------------------------------------------------------------------------------------------------------------------- QString VAbstractPiece::GetName() const { return d->m_name; } //--------------------------------------------------------------------------------------------------------------------- void VAbstractPiece::SetName(const QString &value) { d->m_name = value; } //--------------------------------------------------------------------------------------------------------------------- bool VAbstractPiece::IsForbidFlipping() const { return d->m_forbidFlipping; } //--------------------------------------------------------------------------------------------------------------------- void VAbstractPiece::SetForbidFlipping(bool value) { d->m_forbidFlipping = value; } //--------------------------------------------------------------------------------------------------------------------- bool VAbstractPiece::IsSeamAllowance() const { return d->m_seamAllowance; } //--------------------------------------------------------------------------------------------------------------------- void VAbstractPiece::SetSeamAllowance(bool value) { d->m_seamAllowance = value; } //--------------------------------------------------------------------------------------------------------------------- qreal VAbstractPiece::GetSAWidth() const { return d->m_width; } //--------------------------------------------------------------------------------------------------------------------- void VAbstractPiece::SetSAWidth(qreal value) { value >= 0 ? d->m_width = value : d->m_width = 0; } //--------------------------------------------------------------------------------------------------------------------- QVector VAbstractPiece::Equidistant(const QVector &points, qreal width) { QVector ekvPoints; if (width <= 0) { qDebug()<<"Width <= 0."; return QVector(); } QVector p = CorrectEquidistantPoints(points); if ( p.size() < 3 ) { qDebug()<<"Not enough points for building the equidistant."; return QVector(); } if (p.last().toPoint() != p.first().toPoint()) { p.append(p.at(0));// Should be always closed } for (qint32 i = 0; i < p.size(); ++i ) { if ( i == 0) {//first point ekvPoints << EkvPoint(QLineF(p.at(p.size()-2), p.at(p.size()-1)), QLineF(p.at(1), p.at(0)), width); continue; } if (i == p.size()-1) {//last point if (not ekvPoints.isEmpty()) { ekvPoints.append(ekvPoints.at(0)); } continue; } //points in the middle of polyline ekvPoints << EkvPoint(QLineF(p.at(i-1), p.at(i)), QLineF(p.at(i+1), p.at(i)), width); } const bool removeFirstAndLast = false; ekvPoints = CheckLoops(CorrectEquidistantPoints(ekvPoints, removeFirstAndLast));//Result path can contain loops return ekvPoints; } //--------------------------------------------------------------------------------------------------------------------- qreal VAbstractPiece::SumTrapezoids(const QVector &points) { // Calculation a polygon area through the sum of the areas of trapezoids qreal s, res = 0; const int n = points.size(); if(n > 2) { for (int i = 0; i < n; ++i) { if (i == 0) { //if i == 0, then y[i-1] replace on y[n-1] s = points.at(i).x()*(points.at(n-1).y() - points.at(i+1).y()); res += s; } else { if (i == n-1) { // if i == n-1, then y[i+1] replace on y[0] s = points.at(i).x()*(points.at(i-1).y() - points.at(0).y()); res += s; } else { s = points.at(i).x()*(points.at(i-1).y() - points.at(i+1).y()); res += s; } } } } return res; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief CheckLoops seek and delete loops in equidistant. * @param points vector of points of equidistant. * @return vector of points of equidistant. */ QVector VAbstractPiece::CheckLoops(const QVector &points) { const int count = points.size(); /*If we got less than 4 points no need seek loops.*/ if (count < 4) { qDebug()<<"Less then 4 points. Doesn't need check for loops."; return points; } const bool pathClosed = (points.first() == points.last()); QVector ekvPoints; qint32 i, j, jNext = 0; for (i = 0; i < count; ++i) { /*Last three points no need check.*/ /*Triangle has not contain loops*/ if (i > count-3) { ekvPoints.append(points.at(i)); continue; } enum LoopIntersectType { NoIntersection, BoundedIntersection, ParallelIntersection }; QPointF crosPoint; LoopIntersectType status = NoIntersection; const QLineF line1(points.at(i), points.at(i+1)); // Because a path can contains several loops we will seek the last and only then remove the loop(s) // That's why we parse from the end for (j = count-1; j >= i+2; --j) { j == count-1 ? jNext = 0 : jNext = j+1; QLineF line2(points.at(j), points.at(jNext)); if(qFuzzyIsNull(line2.length())) {//If a path is closed the edge (count-1;0) length will be 0 continue; } QSet uniqueVertices; uniqueVertices << i << i+1 << j; // For closed path last point is equal to first. Using index of the first. pathClosed && jNext == count-1 ? uniqueVertices << 0 : uniqueVertices << jNext; const QLineF::IntersectType intersect = line1.intersect(line2, &crosPoint); if (intersect == QLineF::NoIntersection) { // According to the documentation QLineF::NoIntersection indicates that the lines do not intersect; // i.e. they are parallel. But parallel also mean they can be on the same line. // Method IsPointOnLineviaPDP will check it. if (VGObject::IsPointOnLineviaPDP(points.at(j), points.at(i), points.at(i+1)) // Lines are not neighbors && uniqueVertices.size() == 4 && line1.p2() != line2.p2() && line1.p1() != line2.p1() && line1.p2() != line2.p1() && line1.p1() != line2.p2()) { // Left to catch case where segments are on the same line, but do not have real intersections. QLineF tmpLine1 = line1; QLineF tmpLine2 = line2; tmpLine1.setAngle(tmpLine1.angle()+90); QPointF tmpCrosPoint; const QLineF::IntersectType tmpIntrs1 = tmpLine1.intersect(tmpLine2, &tmpCrosPoint); tmpLine1 = line1; tmpLine2.setAngle(tmpLine2.angle()+90); const QLineF::IntersectType tmpIntrs2 = tmpLine1.intersect(tmpLine2, &tmpCrosPoint); if (tmpIntrs1 == QLineF::BoundedIntersection || tmpIntrs2 == QLineF::BoundedIntersection) { // Now we really sure that lines are on the same lines and have real intersections. status = ParallelIntersection; break; } } } else if (intersect == QLineF::BoundedIntersection) { if (uniqueVertices.size() == 4 && line1.p1() != crosPoint && line1.p2() != crosPoint && line2.p1() != crosPoint && line2.p2() != crosPoint) { // Break, but not if lines are neighbors status = BoundedIntersection; break; } } status = NoIntersection; } switch (status) { case ParallelIntersection: /*We have found a loop.*/ // Theoretically there is no big difference which point j or jNext to select. // In the end we will draw a line in any case. ekvPoints.append(points.at(i)); ekvPoints.append(points.at(jNext)); i = j; break; case BoundedIntersection: /*We have found a loop.*/ ekvPoints.append(points.at(i)); ekvPoints.append(crosPoint); i = j; break; case NoIntersection: /*We have not found loop.*/ ekvPoints.append(points.at(i)); break; default: break; } } return ekvPoints; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief CorrectEquidistantPoints clear equivalent points and remove point on line from equdistant. * @param points list of points equdistant. * @return corrected list. */ QVector VAbstractPiece::CorrectEquidistantPoints(const QVector &points, bool removeFirstAndLast) { if (points.size()<4)//Better don't check if only three points. We can destroy equidistant. { qDebug()<<"Only three points."; return points; } //Clear equivalent points QVector correctPoints = RemoveDublicates(points, removeFirstAndLast); if (correctPoints.size()<3) { return correctPoints; } //Remove point on line for (qint32 i = 1; i VAbstractPiece::RemoveDublicates(const QVector &points, bool removeFirstAndLast) { QVector p = points; if (removeFirstAndLast) { if (not p.isEmpty() && p.size() > 1) { // Path can't be closed if (p.first() == p.last()) { #if QT_VERSION < QT_VERSION_CHECK(5, 1, 0) p.remove(p.size() - 1); #else p.removeLast(); #endif } } } for (int i = 0; i < p.size()-1; ++i) { if (p.at(i) == p.at(i+1)) { if (not removeFirstAndLast && (i == p.size()-1)) { continue; } p.erase(p.begin() + i + 1); --i; continue; } } return p; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief EkvPoint return vector of points of equidistant two lines. Last point of two lines must be equal. * @param line1 first line. * @param line2 second line. * @param width width of equidistant. * @return vector of points. */ QVector VAbstractPiece::EkvPoint(const QLineF &line1, const QLineF &line2, qreal width) { if (width <= 0) { return QVector(); } QVector points; if (line1.p2() != line2.p2()) { qDebug()<<"Last points of two lines must be equal."; return QVector(); } QPointF CrosPoint; const QLineF bigLine1 = ParallelLine(line1, width ); const QLineF bigLine2 = ParallelLine(QLineF(line2.p2(), line2.p1()), width ); QLineF::IntersectType type = bigLine1.intersect( bigLine2, &CrosPoint ); switch (type) { case (QLineF::BoundedIntersection): points.append(CrosPoint); return points; break; case (QLineF::UnboundedIntersection): { QLineF line( line1.p2(), CrosPoint ); const int angle1 = BisectorAngle(line1.p1(), line1.p2(), line2.p1()); const int angle2 = BisectorAngle(bigLine1.p1(), CrosPoint, bigLine2.p2()); if (angle1 == angle2) {//Regular equdistant case const qreal length = line.length(); if (length > width*2.4) { // Cutting too long a cut angle line.setLength(width); // Not sure about width value here QLineF cutLine(line.p2(), CrosPoint); // Cut line is a perpendicular cutLine.setLength(length); // Decided take this length // We do not check intersection type because intersection must alwayse exist QPointF px; cutLine.setAngle(cutLine.angle()+90); QLineF::IntersectType type = bigLine1.intersect( cutLine, &px ); if (type == QLineF::NoIntersection) { qDebug()<<"Couldn't find intersection with cut line."; } points.append(px); cutLine.setAngle(cutLine.angle()-180); type = bigLine2.intersect( cutLine, &px ); if (type == QLineF::NoIntersection) { qDebug()<<"Couldn't find intersection with cut line."; } points.append(px); } else { points.append(CrosPoint); return points; } } else {// Dart. Ignore if going outside of equdistant const QLineF bigEdge = ParallelLine(QLineF(line1.p1(), line2.p1()), width ); QPointF px; const QLineF::IntersectType type = bigEdge.intersect(line, &px); if (type != QLineF::BoundedIntersection) { points.append(CrosPoint); return points; } } break; } case (QLineF::NoIntersection): /*If we have correct lines this means lines lie on a line.*/ points.append(bigLine1.p2()); return points; break; default: break; } return points; } //--------------------------------------------------------------------------------------------------------------------- QLineF VAbstractPiece::ParallelLine(const QLineF &line, qreal width) { const QLineF paralel = QLineF(SingleParallelPoint(line, 90, width), SingleParallelPoint(QLineF(line.p2(), line.p1()), -90, width)); return paralel; } //--------------------------------------------------------------------------------------------------------------------- QPointF VAbstractPiece::SingleParallelPoint(const QLineF &line, qreal angle, qreal width) { QLineF pLine = line; pLine.setAngle( pLine.angle() + angle ); pLine.setLength( width ); return pLine.p2(); } //--------------------------------------------------------------------------------------------------------------------- int VAbstractPiece::BisectorAngle(const QPointF &p1, const QPointF &p2, const QPointF &p3) { QLineF line1(p2, p1); QLineF line2(p2, p3); QLineF bLine; const qreal angle1 = line1.angleTo(line2); const qreal angle2 = line2.angleTo(line1); if (angle1 <= angle2) { bLine = line1; bLine.setAngle(bLine.angle() + angle1/2.0); } else { bLine = line2; bLine.setAngle(bLine.angle() + angle2/2.0); } return qRound(bLine.angle()); }