golang-freetype/freetype/truetype/glyph.go

360 lines
10 KiB
Go
Raw Normal View History

// Copyright 2010 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
package truetype
// A Point is a co-ordinate pair plus whether it is ``on'' a contour or an
// ``off'' control point.
type Point struct {
X, Y int32
// The Flags' LSB means whether or not this Point is ``on'' the contour.
// Other bits are reserved for internal use.
Flags uint32
}
// A GlyphBuf holds a glyph's contours. A GlyphBuf can be re-used to load a
// series of glyphs from a Font.
type GlyphBuf struct {
// B is the glyph's bounding box.
B Bounds
// Point contains all Points from all contours of the glyph. If a
// Hinter was used to load a glyph then Unhinted contains those
// Points before they were hinted, and InFontUnits contains those
// Points before they were hinted and scaled.
Point, Unhinted, InFontUnits []Point
// End is the point indexes of the end point of each countour. The
// length of End is the number of contours in the glyph. The i'th
// contour consists of points Point[End[i-1]:End[i]], where End[-1]
// is interpreted to mean zero.
End []int
}
// Flags for decoding a glyph's contours. These flags are documented at
// http://developer.apple.com/fonts/TTRefMan/RM06/Chap6glyf.html.
const (
flagOnCurve = 1 << iota
flagXShortVector
flagYShortVector
flagRepeat
flagPositiveXShortVector
flagPositiveYShortVector
// The remaining flags are for internal use.
flagTouchedX
flagTouchedY
)
// The same flag bits (0x10 and 0x20) are overloaded to have two meanings,
// dependent on the value of the flag{X,Y}ShortVector bits.
const (
flagThisXIsSame = flagPositiveXShortVector
flagThisYIsSame = flagPositiveYShortVector
)
// decodeFlags decodes a glyph's run-length encoded flags,
// and returns the remaining data.
func (g *GlyphBuf) decodeFlags(d []byte, offset int, np0, np int) (offset1 int) {
for i := np0; i < np; {
c := uint32(d[offset])
offset++
g.Point[i].Flags = c
i++
if c&flagRepeat != 0 {
count := d[offset]
offset++
for ; count > 0; count-- {
g.Point[i].Flags = c
i++
}
}
}
return offset
}
// decodeCoords decodes a glyph's delta encoded co-ordinates.
func (g *GlyphBuf) decodeCoords(d []byte, offset int, np0, np int) int {
var x int16
for i := np0; i < np; i++ {
f := g.Point[i].Flags
if f&flagXShortVector != 0 {
dx := int16(d[offset])
offset++
if f&flagPositiveXShortVector == 0 {
x -= dx
} else {
x += dx
}
} else if f&flagThisXIsSame == 0 {
x += int16(u16(d, offset))
offset += 2
}
g.Point[i].X = int32(x)
}
var y int16
for i := np0; i < np; i++ {
f := g.Point[i].Flags
if f&flagYShortVector != 0 {
dy := int16(d[offset])
offset++
if f&flagPositiveYShortVector == 0 {
y -= dy
} else {
y += dy
}
} else if f&flagThisYIsSame == 0 {
y += int16(u16(d, offset))
offset += 2
}
g.Point[i].Y = int32(y)
}
return offset
}
// Load loads a glyph's contours from a Font, overwriting any previously
// loaded contours for this GlyphBuf. scale is the number of 26.6 fixed point
// units in 1 em. The Hinter is optional; if non-nil, then the resulting glyph
// will be hinted by the Font's bytecode instructions.
func (g *GlyphBuf) Load(f *Font, scale int32, i Index, h *Hinter) error {
// Reset the GlyphBuf.
g.B = Bounds{}
g.Point = g.Point[:0]
g.Unhinted = g.Unhinted[:0]
g.InFontUnits = g.InFontUnits[:0]
g.End = g.End[:0]
if h != nil {
if err := h.init(f, scale); err != nil {
return err
}
}
if _, err := g.load(f, scale, i, h, 0, 0, false, 0); err != nil {
return err
}
g.B.XMin = f.scale(scale * g.B.XMin)
g.B.YMin = f.scale(scale * g.B.YMin)
g.B.XMax = f.scale(scale * g.B.XMax)
g.B.YMax = f.scale(scale * g.B.YMax)
return nil
}
// TODO: all these extra parameters and return values for loadCompound and load
// are awkward. We should clean this up once all the tests pass, when we can
// refactor with confidence that we don't break anything.
// loadCompound loads a glyph that is composed of other glyphs.
//
// metricsOverride is whether the sub-glyph overrides the super-glyph's
// metrics. pp1x is the x co-ordinate of the 1st phantom point.
func (g *GlyphBuf) loadCompound(f *Font, scale int32, h *Hinter, glyf []byte, offset int,
dx, dy int32, recursion int) (metricsOverride bool, pp1x int32, offset1 int, err error) {
// Flags for decoding a compound glyph. These flags are documented at
// http://developer.apple.com/fonts/TTRefMan/RM06/Chap6glyf.html.
const (
flagArg1And2AreWords = 1 << iota
flagArgsAreXYValues
flagRoundXYToGrid
flagWeHaveAScale
flagUnused
flagMoreComponents
flagWeHaveAnXAndYScale
flagWeHaveATwoByTwo
flagWeHaveInstructions
flagUseMyMetrics
flagOverlapCompound
)
for {
flags := u16(glyf, offset)
component := Index(u16(glyf, offset+2))
dx1, dy1 := dx, dy
if flags&flagArg1And2AreWords != 0 {
dx1 += int32(int16(u16(glyf, offset+4)))
dy1 += int32(int16(u16(glyf, offset+6)))
offset += 8
} else {
dx1 += int32(int16(int8(glyf[offset+4])))
dy1 += int32(int16(int8(glyf[offset+5])))
offset += 6
}
if flags&flagArgsAreXYValues == 0 {
return false, 0, 0, UnsupportedError("compound glyph transform vector")
}
if flags&(flagWeHaveAScale|flagWeHaveAnXAndYScale|flagWeHaveATwoByTwo) != 0 {
return false, 0, 0, UnsupportedError("compound glyph scale/transform")
}
b := g.B
subPP1x, err := g.load(f, scale, component, h,
dx1, dy1, flags&flagRoundXYToGrid != 0, recursion+1)
if err != nil {
return false, 0, 0, err
}
if flags&flagUseMyMetrics != 0 {
metricsOverride, pp1x = true, subPP1x
} else {
g.B = b
}
if flags&flagMoreComponents == 0 {
break
}
}
return metricsOverride, pp1x, offset, nil
}
// load appends a glyph's contours to this GlyphBuf.
//
// pp1x is the x co-ordinate of the 1st phantom point.
func (g *GlyphBuf) load(f *Font, scale int32, i Index, h *Hinter,
dx, dy int32, roundDxDy bool, recursion int) (pp1x int32, err error) {
if recursion >= 4 {
return 0, UnsupportedError("excessive compound glyph recursion")
}
// Find the relevant slice of f.glyf.
var g0, g1 uint32
if f.locaOffsetFormat == locaOffsetFormatShort {
g0 = 2 * uint32(u16(f.loca, 2*int(i)))
g1 = 2 * uint32(u16(f.loca, 2*int(i)+2))
} else {
g0 = u32(f.loca, 4*int(i))
g1 = u32(f.loca, 4*int(i)+4)
}
if g0 == g1 {
return 0, nil
}
glyf := f.glyf[g0:g1]
// Decode the contour end indices.
ne := int(int16(u16(glyf, 0)))
b := Bounds{
XMin: int32(int16(u16(glyf, 2))),
YMin: int32(int16(u16(glyf, 4))),
XMax: int32(int16(u16(glyf, 6))),
YMax: int32(int16(u16(glyf, 8))),
}
offset := 10
ne0, np0, np, metricsOverride, program := len(g.End), 0, 0, false, []byte(nil)
if ne < 0 {
if ne != -1 {
// http://developer.apple.com/fonts/TTRefMan/RM06/Chap6glyf.html says that
// "the values -2, -3, and so forth, are reserved for future use."
return 0, UnsupportedError("negative number of contours")
}
var subPP1x int32
metricsOverride, subPP1x, offset, err =
g.loadCompound(f, scale, h, glyf, offset, dx, dy, recursion)
if err != nil {
return 0, err
}
if metricsOverride {
pp1x = subPP1x
}
ne = ne0
np0 = len(g.Point)
np = np0
// TODO: find the program, if present, for a compound glyph.
} else {
ne += ne0
if ne <= cap(g.End) {
g.End = g.End[:ne]
} else {
g.End = make([]int, ne, ne*2)
}
for i := ne0; i < ne; i++ {
g.End[i] = 1 + int(u16(glyf, offset))
offset += 2
}
np0 = len(g.Point)
np = np0 + int(g.End[ne-1])
// Note the TrueType hinting instructions.
instrLen := int(u16(glyf, offset))
offset += 2
program = glyf[offset : offset+instrLen]
offset += instrLen
}
// Decode the points, including room for the phantom points.
const nPhantomPoints = 4
if np+nPhantomPoints <= cap(g.Point) {
g.Point = g.Point[:np+nPhantomPoints]
} else {
p := g.Point
g.Point = make([]Point, np+nPhantomPoints, (np+nPhantomPoints)*2)
copy(g.Point, p)
}
offset = g.decodeFlags(glyf, offset, np0, np)
g.decodeCoords(glyf, offset, np0, np)
// Set the four phantom points. Freetype-Go uses only the first two,
// but the hinting bytecode may expect four.
g.B = b
uhm := f.unscaledHMetric(i)
g.Point[np+0] = Point{X: b.XMin - uhm.LeftSideBearing}
g.Point[np+1] = Point{X: b.XMin - uhm.LeftSideBearing + uhm.AdvanceWidth}
g.Point[np+2] = Point{}
g.Point[np+3] = Point{}
// Delta-adjust, scale and hint.
if h != nil {
g.InFontUnits = append(g.InFontUnits, g.Point[np0:np+nPhantomPoints]...)
for i := np0; i < np+nPhantomPoints; i++ {
g.InFontUnits[i].X += dx
g.InFontUnits[i].Y += dy
}
}
scaledDx := int32(0)
if roundDxDy {
dx = (f.scale(scale*dx) + 32) &^ 63
dy = (f.scale(scale*dy) + 32) &^ 63
for i := np0; i < np+nPhantomPoints; i++ {
g.Point[i].X = dx + f.scale(scale*g.Point[i].X)
g.Point[i].Y = dy + f.scale(scale*g.Point[i].Y)
}
scaledDx = dx
} else {
for i := np0; i < np+nPhantomPoints; i++ {
g.Point[i].X = f.scale(scale * (g.Point[i].X + dx))
g.Point[i].Y = f.scale(scale * (g.Point[i].Y + dy))
}
scaledDx = f.scale(scale * dx)
}
if h != nil {
g.Unhinted = append(g.Unhinted, g.Point[np0:np+nPhantomPoints]...)
if program != nil {
err := h.run(program, g.Point[np0:], g.Unhinted[np0:], g.InFontUnits[np0:], g.End[ne0:])
if err != nil {
return 0, err
}
}
g.Unhinted = g.Unhinted[:np]
g.InFontUnits = g.InFontUnits[:np]
}
if !metricsOverride {
pp1x = g.Point[np].X - scaledDx
}
g.Point = g.Point[:np]
if recursion == 0 && pp1x != 0 {
for i := range g.Point {
g.Point[i].X -= pp1x
}
}
// The hinting program expects the []End values to be indexed relative
// to the inner glyph, not the outer glyph, so we delay adding np0 until
// after the hinting program (if any) has run.
for i := ne0; i < ne; i++ {
g.End[i] += np0
}
return pp1x, nil
}
// NewGlyphBuf returns a newly allocated GlyphBuf.
func NewGlyphBuf() *GlyphBuf {
g := new(GlyphBuf)
g.Point = make([]Point, 0, 256)
g.End = make([]int, 0, 32)
return g
}