freetype: optimize []byte to uint16/uint32 conversions.

Thanks to Jeff R. Allen <jra@nella.org> for the conversation that
led to this change.

benchmark              old ns/op    new ns/op    delta
BenchmarkDrawString     21168440     20143860   -4.84%

The number of mallocs per iteration is unchanged.

R=rsc, r
CC=golang-dev, jra
http://codereview.appspot.com/6304077
This commit is contained in:
Nigel Tao 2012-06-16 12:19:07 +10:00
parent e5aa5b6a82
commit 6baa5f0a46
4 changed files with 234 additions and 125 deletions

59
freetype/freetype_test.go Normal file
View File

@ -0,0 +1,59 @@
// Copyright 2012 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
package freetype
import (
"image"
"image/draw"
"io/ioutil"
"runtime"
"strings"
"testing"
)
func BenchmarkDrawString(b *testing.B) {
data, err := ioutil.ReadFile("../licenses/gpl.txt")
if err != nil {
b.Fatal(err)
}
lines := strings.Split(string(data), "\n")
data, err = ioutil.ReadFile("../luxi-fonts/luxisr.ttf")
if err != nil {
b.Fatal(err)
}
font, err := ParseFont(data)
if err != nil {
b.Fatal(err)
}
dst := image.NewRGBA(image.Rect(0, 0, 800, 600))
draw.Draw(dst, dst.Bounds(), image.White, image.ZP, draw.Src)
c := NewContext()
c.SetDst(dst)
c.SetClip(dst.Bounds())
c.SetSrc(image.Black)
c.SetFont(font)
var ms runtime.MemStats
runtime.ReadMemStats(&ms)
mallocs := ms.Mallocs
b.ResetTimer()
for i := 0; i < b.N; i++ {
for j, line := range lines {
_, err := c.DrawString(line, Pt(0, (j*16)%600))
if err != nil {
b.Fatal(err)
}
}
}
b.StopTimer()
runtime.ReadMemStats(&ms)
mallocs = ms.Mallocs - mallocs
b.Logf("%d iterations, %d mallocs per iteration\n", b.N, int(mallocs)/b.N)
}

View File

@ -47,36 +47,40 @@ const (
// decodeFlags decodes a glyph's run-length encoded flags,
// and returns the remaining data.
func (g *GlyphBuf) decodeFlags(d data, np0 int) data {
func (g *GlyphBuf) decodeFlags(d []byte, offset int, np0 int) (offset1 int) {
for i := np0; i < len(g.Point); {
c := d.u8()
c := d[offset]
offset++
g.Point[i].Flags = c
i++
if c&flagRepeat != 0 {
count := d.u8()
count := d[offset]
offset++
for ; count > 0; count-- {
g.Point[i].Flags = c
i++
}
}
}
return d
return offset
}
// decodeCoords decodes a glyph's delta encoded co-ordinates.
func (g *GlyphBuf) decodeCoords(d data, np0 int) {
func (g *GlyphBuf) decodeCoords(d []byte, offset int, np0 int) int {
var x int16
for i := np0; i < len(g.Point); i++ {
f := g.Point[i].Flags
if f&flagXShortVector != 0 {
dx := int16(d.u8())
dx := int16(d[offset])
offset++
if f&flagPositiveXShortVector == 0 {
x -= dx
} else {
x += dx
}
} else if f&flagThisXIsSame == 0 {
x += int16(d.u16())
x += int16(u16(d, offset))
offset += 2
}
g.Point[i].X = x
}
@ -84,17 +88,20 @@ func (g *GlyphBuf) decodeCoords(d data, np0 int) {
for i := np0; i < len(g.Point); i++ {
f := g.Point[i].Flags
if f&flagYShortVector != 0 {
dy := int16(d.u8())
dy := int16(d[offset])
offset++
if f&flagPositiveYShortVector == 0 {
y -= dy
} else {
y += dy
}
} else if f&flagThisYIsSame == 0 {
y += int16(d.u16())
y += int16(u16(d, offset))
offset += 2
}
g.Point[i].Y = y
}
return offset
}
// Load loads a glyph's contours from a Font, overwriting any previously
@ -102,13 +109,13 @@ func (g *GlyphBuf) decodeCoords(d data, np0 int) {
func (g *GlyphBuf) Load(f *Font, i Index) error {
// Reset the GlyphBuf.
g.B = Bounds{}
g.Point = g.Point[0:0]
g.End = g.End[0:0]
g.Point = g.Point[:0]
g.End = g.End[:0]
return g.load(f, i, 0)
}
// loadCompound loads a glyph that is composed of other glyphs.
func (g *GlyphBuf) loadCompound(f *Font, d data, recursion int) error {
func (g *GlyphBuf) loadCompound(f *Font, glyf []byte, offset, recursion int) error {
// Flags for decoding a compound glyph. These flags are documented at
// http://developer.apple.com/fonts/TTRefMan/RM06/Chap6glyf.html.
const (
@ -125,15 +132,17 @@ func (g *GlyphBuf) loadCompound(f *Font, d data, recursion int) error {
flagOverlapCompound
)
for {
flags := d.u16()
component := d.u16()
flags := u16(glyf, offset)
component := u16(glyf, offset+2)
var dx, dy int16
if flags&flagArg1And2AreWords != 0 {
dx = int16(d.u16())
dy = int16(d.u16())
dx = int16(u16(glyf, offset+4))
dy = int16(u16(glyf, offset+6))
offset += 8
} else {
dx = int16(int8(d.u8()))
dy = int16(int8(d.u8()))
dx = int16(int8(glyf[offset+4]))
dy = int16(int8(glyf[offset+5]))
offset += 6
}
if flags&flagArgsAreXYValues == 0 {
return UnsupportedError("compound glyph transform vector")
@ -165,26 +174,25 @@ func (g *GlyphBuf) load(f *Font, i Index, recursion int) error {
// Find the relevant slice of f.glyf.
var g0, g1 uint32
if f.locaOffsetFormat == locaOffsetFormatShort {
d := data(f.loca[2*int(i):])
g0 = 2 * uint32(d.u16())
g1 = 2 * uint32(d.u16())
g0 = 2 * uint32(u16(f.loca, 2*int(i)))
g1 = 2 * uint32(u16(f.loca, 2*int(i)+2))
} else {
d := data(f.loca[4*int(i):])
g0 = d.u32()
g1 = d.u32()
g0 = u32(f.loca, 4*int(i))
g1 = u32(f.loca, 4*int(i)+4)
}
if g0 == g1 {
return nil
}
d := data(f.glyf[g0:g1])
glyf := f.glyf[g0:g1]
// Decode the contour end indices.
ne := int(int16(d.u16()))
g.B.XMin = int16(d.u16())
g.B.YMin = int16(d.u16())
g.B.XMax = int16(d.u16())
g.B.YMax = int16(d.u16())
ne := int(int16(u16(glyf, 0)))
g.B.XMin = int16(u16(glyf, 2))
g.B.YMin = int16(u16(glyf, 4))
g.B.XMax = int16(u16(glyf, 6))
g.B.YMax = int16(u16(glyf, 8))
offset := 10
if ne == -1 {
return g.loadCompound(f, d, recursion)
return g.loadCompound(f, glyf, offset, recursion)
} else if ne < 0 {
// http://developer.apple.com/fonts/TTRefMan/RM06/Chap6glyf.html says that
// "the values -2, -3, and so forth, are reserved for future use."
@ -193,25 +201,26 @@ func (g *GlyphBuf) load(f *Font, i Index, recursion int) error {
ne0, np0 := len(g.End), len(g.Point)
ne += ne0
if ne <= cap(g.End) {
g.End = g.End[0:ne]
g.End = g.End[:ne]
} else {
g.End = make([]int, ne, ne*2)
}
for i := ne0; i < ne; i++ {
g.End[i] = 1 + np0 + int(d.u16())
g.End[i] = 1 + np0 + int(u16(glyf, offset))
offset += 2
}
// Skip the TrueType hinting instructions.
instrLen := int(d.u16())
d.skip(instrLen)
instrLen := int(u16(glyf, offset))
offset += 2 + instrLen
// Decode the points.
np := int(g.End[ne-1])
if np <= cap(g.Point) {
g.Point = g.Point[0:np]
g.Point = g.Point[:np]
} else {
g.Point = make([]Point, np, np*2)
}
d = g.decodeFlags(d, np0)
g.decodeCoords(d, np0)
offset = g.decodeFlags(glyf, offset, np0)
g.decodeCoords(glyf, offset, np0)
return nil
}

View File

@ -47,43 +47,23 @@ func (e UnsupportedError) Error() string {
return "freetype: unsupported TrueType feature: " + string(e)
}
// data interprets a byte slice as a stream of integer values.
type data []byte
// u32 returns the next big-endian uint32.
func (d *data) u32() uint32 {
x := uint32((*d)[0])<<24 | uint32((*d)[1])<<16 | uint32((*d)[2])<<8 | uint32((*d)[3])
*d = (*d)[4:]
return x
// u32 returns the big-endian uint32 at b[i:].
func u32(b []byte, i int) uint32 {
return uint32(b[i])<<24 | uint32(b[i+1])<<16 | uint32(b[i+2])<<8 | uint32(b[i+3])
}
// u16 returns the next big-endian uint16.
func (d *data) u16() uint16 {
x := uint16((*d)[0])<<8 | uint16((*d)[1])
*d = (*d)[2:]
return x
}
// u8 returns the next uint8.
func (d *data) u8() uint8 {
x := (*d)[0]
*d = (*d)[1:]
return x
}
// skip skips the next n bytes.
func (d *data) skip(n int) {
*d = (*d)[n:]
// u16 returns the big-endian uint16 at b[i:].
func u16(b []byte, i int) uint16 {
return uint16(b[i])<<8 | uint16(b[i+1])
}
// readTable returns a slice of the TTF data given by a table's directory entry.
func readTable(ttf []byte, offsetLength []byte) ([]byte, error) {
d := data(offsetLength)
offset := int(d.u32())
offset := int(u32(offsetLength, 0))
if offset < 0 {
return nil, FormatError(fmt.Sprintf("offset too large: %d", uint32(offset)))
}
length := int(d.u32())
length := int(u32(offsetLength, 4))
if length < 0 {
return nil, FormatError(fmt.Sprintf("length too large: %d", uint32(length)))
}
@ -134,16 +114,16 @@ func (f *Font) parseCmap() error {
if len(f.cmap) < 4 {
return FormatError("cmap too short")
}
d := data(f.cmap[2:])
nsubtab := int(d.u16())
nsubtab := int(u16(f.cmap, 2))
if len(f.cmap) < 8*nsubtab+4 {
return FormatError("cmap too short")
}
offset, found := 0, false
offset, found, x := 0, false, 4
for i := 0; i < nsubtab; i++ {
// We read the 16-bit Platform ID and 16-bit Platform Specific ID as a single uint32.
// All values are big-endian.
pidPsid, o := d.u32(), d.u32()
pidPsid, o := u32(f.cmap, x), u32(f.cmap, x+4)
x += 8
// We prefer the Unicode cmap encoding. Failing to find that, we fall
// back onto the Microsoft cmap encoding.
if pidPsid == unicodeEncoding {
@ -161,37 +141,39 @@ func (f *Font) parseCmap() error {
return FormatError("bad cmap offset")
}
d = data(f.cmap[offset:])
cmapFormat := d.u16()
cmapFormat := u16(f.cmap, offset)
if cmapFormat != cmapFormat4 {
return UnsupportedError(fmt.Sprintf("cmap format: %d", cmapFormat))
}
d.skip(2)
language := d.u16()
language := u16(f.cmap, offset+4)
if language != languageIndependent {
return UnsupportedError(fmt.Sprintf("language: %d", language))
}
segCountX2 := int(d.u16())
segCountX2 := int(u16(f.cmap, offset+6))
if segCountX2%2 == 1 {
return FormatError(fmt.Sprintf("bad segCountX2: %d", segCountX2))
}
segCount := segCountX2 / 2
d.skip(6)
offset += 14
f.cm = make([]cm, segCount)
for i := 0; i < segCount; i++ {
f.cm[i].end = d.u16()
f.cm[i].end = u16(f.cmap, offset)
offset += 2
}
d.skip(2)
offset += 2
for i := 0; i < segCount; i++ {
f.cm[i].start = d.u16()
f.cm[i].start = u16(f.cmap, offset)
offset += 2
}
for i := 0; i < segCount; i++ {
f.cm[i].delta = d.u16()
f.cm[i].delta = u16(f.cmap, offset)
offset += 2
}
for i := 0; i < segCount; i++ {
f.cm[i].offset = d.u16()
f.cm[i].offset = u16(f.cmap, offset)
offset += 2
}
f.cmapIndexes = []byte(d)
f.cmapIndexes = f.cmap[offset:]
return nil
}
@ -199,15 +181,12 @@ func (f *Font) parseHead() error {
if len(f.head) != 54 {
return FormatError(fmt.Sprintf("bad head length: %d", len(f.head)))
}
d := data(f.head[18:])
f.unitsPerEm = int(d.u16())
d.skip(16)
f.bounds.XMin = int16(d.u16())
f.bounds.YMin = int16(d.u16())
f.bounds.XMax = int16(d.u16())
f.bounds.YMax = int16(d.u16())
d.skip(6)
switch i := d.u16(); i {
f.unitsPerEm = int(u16(f.head, 18))
f.bounds.XMin = int16(u16(f.head, 36))
f.bounds.YMin = int16(u16(f.head, 38))
f.bounds.XMax = int16(u16(f.head, 40))
f.bounds.YMax = int16(u16(f.head, 42))
switch i := u16(f.head, 50); i {
case 0:
f.locaOffsetFormat = locaOffsetFormatShort
case 1:
@ -222,8 +201,7 @@ func (f *Font) parseHhea() error {
if len(f.hhea) != 36 {
return FormatError(fmt.Sprintf("bad hhea length: %d", len(f.hhea)))
}
d := data(f.hhea[34:])
f.nHMetric = int(d.u16())
f.nHMetric = int(u16(f.hhea, 34))
if 4*f.nHMetric+2*(f.nGlyph-f.nHMetric) != len(f.hmtx) {
return FormatError(fmt.Sprintf("bad hmtx length: %d", len(f.hmtx)))
}
@ -249,23 +227,22 @@ func (f *Font) parseKern() error {
if len(f.kern) < 18 {
return FormatError("kern data too short")
}
d := data(f.kern[0:])
version := d.u16()
version, offset := u16(f.kern, 0), 2
if version != 0 {
return UnsupportedError(fmt.Sprintf("kern version: %d", version))
}
n := d.u16()
n, offset := u16(f.kern, offset), offset+2
if n != 1 {
return UnsupportedError(fmt.Sprintf("kern nTables: %d", n))
}
d.skip(2)
length := int(d.u16())
coverage := d.u16()
offset += 2
length, offset := int(u16(f.kern, offset)), offset+2
coverage, offset := u16(f.kern, offset), offset+2
if coverage != 0x0001 {
// We only support horizontal kerning.
return UnsupportedError(fmt.Sprintf("kern coverage: 0x%04x", coverage))
}
f.nKern = int(d.u16())
f.nKern, offset = int(u16(f.kern, offset)), offset+2
if 6*f.nKern != length-14 {
return FormatError("bad kern table length")
}
@ -276,8 +253,7 @@ func (f *Font) parseMaxp() error {
if len(f.maxp) != 32 {
return FormatError(fmt.Sprintf("bad maxp length: %d", len(f.maxp)))
}
d := data(f.maxp[4:])
f.nGlyph = int(d.u16())
f.nGlyph = int(u16(f.maxp, 4))
return nil
}
@ -301,11 +277,10 @@ func (f *Font) Index(x rune) Index {
return Index(c + f.cm[i].delta)
}
offset := int(f.cm[i].offset) + 2*(i-n+int(c-f.cm[i].start))
d := data(f.cmapIndexes[offset:])
return Index(d.u16())
return Index(u16(f.cmapIndexes, offset))
}
}
return Index(0)
return 0
}
// HMetric returns the horizontal metrics for the glyph with the given index.
@ -315,17 +290,13 @@ func (f *Font) HMetric(i Index) HMetric {
return HMetric{}
}
if j >= f.nHMetric {
var hm HMetric
p := 4 * (f.nHMetric - 1)
d := data(f.hmtx[p:])
hm.AdvanceWidth = d.u16()
p += 2*(j-f.nHMetric) + 4
d = data(f.hmtx[p:])
hm.LeftSideBearing = int16(d.u16())
return hm
return HMetric{
u16(f.hmtx, p),
int16(u16(f.hmtx, p+2*(j-f.nHMetric)+4)),
}
}
d := data(f.hmtx[4*j:])
return HMetric{d.u16(), int16(d.u16())}
return HMetric{u16(f.hmtx, 4*j), int16(u16(f.hmtx, 4*j+2))}
}
// Kerning returns the kerning for the given glyph pair.
@ -337,14 +308,13 @@ func (f *Font) Kerning(i0, i1 Index) int16 {
lo, hi := 0, f.nKern
for lo < hi {
i := (lo + hi) / 2
d := data(f.kern[18+6*i:])
ig := d.u32()
ig := u32(f.kern, 18+6*i)
if ig < g {
lo = i + 1
} else if ig > g {
hi = i
} else {
return int16(d.u16())
return int16(u16(f.kern, 22+6*i))
}
}
return 0
@ -362,33 +332,35 @@ func parse(ttf []byte, offset int) (font *Font, err error) {
err = FormatError("TTF data is too short")
return
}
d := data(ttf[offset:])
switch d.u32() {
originalOffset := offset
magic, offset := u32(ttf, offset), offset+4
switch magic {
case 0x00010000:
// No-op.
case 0x74746366: // "ttcf" as a big-endian uint32.
if offset != 0 {
if originalOffset != 0 {
err = FormatError("recursive TTC")
return
}
if d.u32() != 0x00010000 {
ttcVersion, offset := u32(ttf, offset), offset+4
if ttcVersion != 0x00010000 {
// TODO: support TTC version 2.0, once I have such a .ttc file to test with.
err = FormatError("bad TTC version")
return
}
numFonts := int(d.u32())
numFonts, offset := int(u32(ttf, offset)), offset+4
if numFonts <= 0 {
err = FormatError("bad number of TTC fonts")
return
}
if len(d)/4 < numFonts {
if len(ttf[offset:])/4 < numFonts {
err = FormatError("TTC offset table is too short")
return
}
// TODO: provide an API to select which font in a TrueType collection to return,
// not just the first one. This may require an API to parse a TTC's name tables,
// so users of this package can select the font in a TTC by name.
offset := int(d.u32())
offset = int(u32(ttf, offset))
if offset <= 0 || offset > len(ttf) {
err = FormatError("bad TTC offset")
return
@ -398,7 +370,7 @@ func parse(ttf []byte, offset int) (font *Font, err error) {
err = FormatError("bad TTF version")
return
}
n := int(d.u16())
n, offset := int(u16(ttf, offset)), offset+2
if len(ttf) < 16*n+12 {
err = FormatError("TTF data is too short")
return

View File

@ -0,0 +1,69 @@
// Copyright 2012 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
package truetype
import (
"fmt"
"io/ioutil"
"testing"
)
// TestParse tests that the luxisr.ttf metrics and glyphs are parsed correctly.
// The numerical values can be manually verified by examining luxisr.ttx.
func TestParse(t *testing.T) {
b, err := ioutil.ReadFile("../../luxi-fonts/luxisr.ttf")
if err != nil {
t.Fatal(err)
}
font, err := Parse(b)
if err != nil {
t.Fatal(err)
}
if got, want := font.Bounds(), (Bounds{-441, -432, 2024, 2033}); got != want {
t.Errorf("Bounds: got %v, want %v", got, want)
}
if got, want := font.UnitsPerEm(), 2048; got != want {
t.Errorf("UnitsPerEm: got %v, want %v", got, want)
}
i0 := font.Index('A')
i1 := font.Index('V')
if i0 != 36 || i1 != 57 {
t.Fatalf("Index: i0, i1 = %d, %d, want 36, 57", i0, i1)
}
if got, want := font.HMetric(i0), (HMetric{1366, 19}); got != want {
t.Errorf("HMetric: got %v, want %v", got, want)
}
if got, want := font.Kerning(i0, i1), int16(-144); got != want {
t.Errorf("Kerning: got %v, want %v", got, want)
}
g0 := NewGlyphBuf()
err = g0.Load(font, i0)
if err != nil {
t.Fatalf("Load: %v", err)
}
g1 := &GlyphBuf{
B: Bounds{19, 0, 1342, 1480},
Point: []Point{
{19, 0, 51},
{581, 1480, 1},
{789, 1480, 51},
{1342, 0, 1},
{1116, 0, 35},
{962, 410, 3},
{368, 410, 33},
{214, 0, 3},
{428, 566, 19},
{904, 566, 33},
{667, 1200, 3},
},
End: []int{8, 11},
}
if got, want := fmt.Sprint(g0), fmt.Sprint(g1); got != want {
t.Errorf("GlyphBuf:\ngot %v\nwant %v", got, want)
}
}