valentina_old/geometry/vspline.cpp
dismine 2cbe79c803 Change in license.
--HG--
branch : develop
2013-11-15 14:50:05 +02:00

795 lines
27 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/************************************************************************
**
** @file vspline.cpp
** @author Roman Telezhinsky <dismine@gmail.com>
** @date November 15, 2013
**
** @brief
** @copyright
** This source code is part of the Valentine project, a pattern making
** program, whose allow create and modeling patterns of clothing.
** Copyright (C) 2013 Valentina project
** <https://bitbucket.org/dismine/valentina> All Rights Reserved.
**
** Valentina is free software: you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** Valentina is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with Valentina. If not, see <http://www.gnu.org/licenses/>.
**
*************************************************************************/
#include "vspline.h"
VSpline::VSpline()
:p1(0), p2(QPointF()), p3(QPointF()), p4(0), angle1(0), angle2(0), kAsm1(1), kAsm2(1), kCurve(1),
points(QHash<qint64, VPointF>()), mode(Draw::Calculation), idObject(0), _name(QString()){}
VSpline::VSpline ( const VSpline & spline )
:p1(spline.GetP1 ()), p2(spline.GetP2 ()), p3(spline.GetP3 ()), p4(spline.GetP4 ()), angle1(spline.GetAngle1 ()),
angle2(spline.GetAngle2 ()), kAsm1(spline.GetKasm1()), kAsm2(spline.GetKasm2()), kCurve(spline.GetKcurve()),
points(spline.GetDataPoints()), mode(spline.getMode()), idObject(spline.getIdObject()), _name(spline.name()){}
VSpline::VSpline (const QHash<qint64, VPointF> *points, qint64 p1, qint64 p4, qreal angle1, qreal angle2,
qreal kAsm1, qreal kAsm2, qreal kCurve, Draw::Draws mode, qint64 idObject)
:p1(p1), p2(QPointF()), p3(QPointF()), p4(p4), angle1(angle1), angle2(angle2), kAsm1(kAsm1), kAsm2(kAsm2),
kCurve(kCurve), points(*points), mode(mode), idObject(idObject), _name(QString())
{
_name = QString("Spl_%1_%2").arg(this->GetPointP1().name(), this->GetPointP4().name());
ModifiSpl ( p1, p4, angle1, angle2, kAsm1, kAsm2, kCurve );
}
VSpline::VSpline (const QHash<qint64, VPointF> *points, qint64 p1, QPointF p2, QPointF p3, qint64 p4,
qreal kCurve, Draw::Draws mode, qint64 idObject)
:p1(p1), p2(p2), p3(p3), p4(p4), angle1(0), angle2(0), kAsm1(1), kAsm2(1), kCurve(1), points(*points), mode(mode),
idObject(idObject), _name(QString())
{
_name = QString("Spl_%1_%2").arg(this->GetPointP1().name(), this->GetPointP4().name());
ModifiSpl ( p1, p2, p3, p4, kCurve);
}
void VSpline::ModifiSpl ( qint64 p1, qint64 p4, qreal angle1, qreal angle2,
qreal kAsm1, qreal kAsm2, qreal kCurve)
{
this->p1 = p1;
this->p4 = p4;
this->angle1 = angle1;
this->angle2 = angle2;
this->kAsm1 = kAsm1;
this->kAsm2 = kAsm2;
this->kCurve = kCurve;
QLineF p1pX(GetPointP1().x(), GetPointP1().y(), GetPointP1().x() + 100, GetPointP1().y());
p1pX.setAngle( angle1 );
qreal L = 0, radius = 0, angle = 90;
// angle = QLineF(GetPointP1(), p1pX.p2()).angleTo(QLineF(GetPointP1(), GetPointP4()));
// if ( angle > 180 ){
// angle = 360 - angle;
// }
QPointF point1 = GetPointP1().toQPointF();
QPointF point4 = GetPointP4().toQPointF();
radius = QLineF(QPointF(point1.x(), point4.y()), point4).length();
// radius = QLineF(GetPointP1(), GetPointP4()).length() / 2 / sin( angle * M_PI / 180.0 );
L = kCurve * radius * 4 / 3 * tan( angle * M_PI / 180.0 / 4 );
QLineF p1p2(GetPointP1().x(), GetPointP1().y(), GetPointP1().x() + L * kAsm1, GetPointP1().y());
p1p2.setAngle(angle1);
QLineF p4p3(GetPointP4().x(), GetPointP4().y(), GetPointP4().x() + L * kAsm2, GetPointP4().y());
p4p3.setAngle(angle2);
this->p2 = p1p2.p2();
this->p3 = p4p3.p2();
}
void VSpline::ModifiSpl (const qint64 &p1, const QPointF &p2, const QPointF &p3, const qint64 &p4, const qreal &kCurve)
{
this->p1 = p1;
this->p2 = p2;
this->p3 = p3;
this->p4 = p4;
this->angle1 = QLineF ( GetPointP1().toQPointF(), p2 ).angle();
this->angle2 = QLineF ( GetPointP4().toQPointF(), p3 ).angle();
QLineF p1pX(GetPointP1().x(), GetPointP1().y(), GetPointP1().x() + 100, GetPointP1().y());
p1pX.setAngle( angle1 );
qreal L = 0, radius = 0, angle = 90;
// angle = QLineF(GetPointP1(), p1pX.p2()).angleTo(QLineF(GetPointP1(), GetPointP4()));
// if ( angle >= 180 ){
// angle = 360 - angle;
// }
QPointF point1 = GetPointP1().toQPointF();
QPointF point4 = GetPointP4().toQPointF();
radius = QLineF(QPointF(point1.x(), point4.y()), point4).length();
// radius = QLineF(GetPointP1(), GetPointP4()).length() / 2 / sin( angle * M_PI / 180.0 );
L = kCurve * radius * 4 / 3 * tan( angle * M_PI / 180.0 / 4 );
this->kCurve = kCurve;
this->kAsm1 = QLineF ( GetPointP1().toQPointF(), p2 ).length()/L;
this->kAsm2 = QLineF ( GetPointP4().toQPointF(), p3 ).length()/L;
}
//void VSpline::RotationSpl (QPointF pRotate, qreal angle ){
// QLineF pRotateP1 (pRotate, p1);
// pRotateP1.setAngle(angle);
// p1 = pRotateP1.p2();
// QLineF pRotateP2 (pRotate, p2);
// pRotateP2.setAngle(angle);
// p2 = pRotateP2.p2();
// QLineF pRotateP3 (pRotate, p3);
// pRotateP3.setAngle(angle);
// p3 = pRotateP3.p2();
// QLineF pRotateP4 (pRotate, p4);
// pRotateP4.setAngle(angle);
// p4 = pRotateP4.p2();
// angle1 = QLineF(p1, p2).angle();
// angle2 = QLineF(p4, p2).angle();
//}
//void VSpline::BiasSpl ( qreal mx, qreal my ){
// p1 = QPointF(p1.x()+mx, p1.y()+my);
// p2 = QPointF(p2.x()+mx, p2.y()+my);
// p3 = QPointF(p3.x()+mx, p3.y()+my);
// p4 = QPointF(p4.x()+mx, p4.y()+my);
//}
VPointF VSpline::GetPointP1() const
{
if (points.contains(p1))
{
return points.value(p1);
}
else
{
qCritical()<<"Не можу знайти id = "<<p1<<" в таблиці.";
throw "Не можу знайти точку за id.";
}
return VPointF();
}
VPointF VSpline::GetPointP4() const
{
if (points.contains(p4))
{
return points.value(p4);
}
else
{
qCritical()<<"Не можу знайти id = "<<p4<<" в таблиці.";
throw "Не можу знайти точку за id.";
}
return VPointF();
}
qreal VSpline::GetLength () const
{
return LengthBezier ( GetPointP1().toQPointF(), this->p2, this->p3, GetPointP4().toQPointF());
}
QString VSpline::GetName() const
{
VPointF first = GetPointP1();
VPointF second = GetPointP4();
return QString("Spl_%1_%2").arg(first.name(), second.name());
}
QLineF::IntersectType VSpline::CrossingSplLine ( const QLineF &line, QPointF *intersectionPoint ) const
{
QVector<qreal> px;
QVector<qreal> py;
px.append ( GetPointP1 ().x () );
py.append ( GetPointP1 ().y () );
QVector<qreal>& wpx = px;
QVector<qreal>& wpy = py;
PointBezier_r ( GetPointP1 ().x (), GetPointP1 ().y (), GetP2 ().x (), GetP2 ().y (),
GetP3 ().x (), GetP3 ().y (), GetPointP4 ().x (), GetPointP4 ().y (),
0, wpx, wpy);
px.append ( GetPointP4 ().x () );
py.append ( GetPointP4 ().y () );
qint32 i = 0;
QPointF crosPoint;
QLineF::IntersectType type = QLineF::NoIntersection;
for ( i = 0; i < px.count()-1; ++i )
{
type = line.intersect(QLineF ( QPointF ( px[i], py[i] ),
QPointF ( px[i+1], py[i+1] )), &crosPoint);
if ( type == QLineF::BoundedIntersection )
{
*intersectionPoint = crosPoint;
return type;
}
}
throw "Не можу знайти точку перетину сплайну з лінією.";
}
//void VSpline::CutSpline ( qreal length, VSpline* curFir, VSpline* curSec ) const{
// if ( length > GetLength()){
// throw"Не правильна довжина нового сплайну\n";
// }
// qreal parT = length / GetLength();
// QLineF seg1_2 ( GetPointP1 (), GetP2 () );
// seg1_2.setLength(seg1_2.length () * parT);
// QPointF p12 = seg1_2.p2();
// QLineF seg2_3 ( GetP2 (), GetP3 () );
// seg2_3.setLength(seg2_3.length () * parT);
// QPointF p23 = seg2_3.p2();
// QLineF seg12_23 ( p12, p23 );
// seg12_23.setLength(seg12_23.length () * parT);
// QPointF p123 = seg12_23.p2();
// QLineF seg3_4 ( GetP3 (), GetPointP4 () );
// seg3_4.setLength(seg3_4.length () * parT);
// QPointF p34 = seg3_4.p2();
// QLineF seg23_34 ( p23, p34 );
// seg23_34.setLength(seg23_34.length () * parT);
// QPointF p234 = seg23_34.p2();
// QLineF seg123_234 ( p123, p234 );
// seg123_234.setLength(seg123_234.length () * parT);
// QPointF p1234 = seg123_234.p2();
// curFir->ModifiSpl ( GetPointP1 (), p12, p123, p1234 );
// curSec->ModifiSpl ( p1234, p234, p34, GetPointP4 () );
//}
//void VSpline::CutSpline ( QPointF point, VSpline* curFir, VSpline* curSec ) const{
// qreal t = param_t (point);
// qreal length = t*this->GetLength();
// CutSpline ( length, curFir, curSec );
//}
//void VSpline::PutAlongSpl (QPointF &moveP, qreal move ) const{
// if ( GetLength () < move ){
// qDebug()<<"Довжина більше довжини сплайну.";
// qDebug()<<GetLength()<<"<"<<move;
// throw "Довжина більше довжини сплайну.";
// }
// if ( move <= 0 ){
// qDebug()<<"Довжина менше дорівнює нулю.";
// throw "Довжина менше дорівнює нулю.";
// }
// qreal t = 0;
// if ( move == 0 ){
// t = 0;
// } else {
// t = move / GetLength ();
// moveP.setX ( pow ( 1 - t, 3 ) * GetPointP1 ().x () + 3 * t * pow ( 1 - t, 2 ) *
// GetP2 ().x () + 3 * t * t * ( 1 - t ) * GetP3 ().x () +
// pow ( t, 3 ) * GetPointP4 ().x () );
// moveP.setY ( pow ( 1 - t, 3 ) * GetPointP1 ().y () + 3 * t * pow ( 1 - t, 2 ) *
// GetP2 ().y () + 3 * t * t * ( 1 - t ) * GetP3 ().y () +
// pow ( t, 3 ) * GetPointP4 ().y () );
// }
//}
QVector<QPointF> VSpline::GetPoints () const
{
return GetPoints(GetPointP1().toQPointF(), p2, p3, GetPointP4().toQPointF());
// QLineF line1(points.at(0).toPoint(), points.at(1).toPoint());
// line1.setLength(500);
// QLineF line2 = line1;
// line2.setAngle(line2.angle()+90);
// qreal xk1 = line1.p2().x();
// qreal xk0 = line1.p1().x();
// qreal y = line2.p2().y();
// qreal yk0 = line1.p1().y();
// qreal yk1 = line1.p2().y();
// qreal x = line2.p2().x();
// qreal check = (xk1 - xk0) * (y - yk0) - (yk1 - yk0) * (x - xk0);
// if(check > 0){
// return points;
// } else {
// QVector<QPointF> reversePoints;
// for (qint32 i = points.size() - 1; i >= 0; --i) {
// reversePoints.append(points.at(i));
// }
// return reversePoints;
// }
}
QVector<QPointF> VSpline::GetPoints (const QPointF &p1, const QPointF &p2, const QPointF &p3, const QPointF &p4)
{
QVector<QPointF> pvector;
QVector<qreal> x;
QVector<qreal> y;
QVector<qreal>& wx = x;
QVector<qreal>& wy = y;
x.append ( p1.x () );
y.append ( p1.y () );
PointBezier_r ( p1.x (), p1.y (), p2.x (), p2.y (),
p3.x (), p3.y (), p4.x (), p4.y (), 0, wx, wy );
x.append ( p4.x () );
y.append ( p4.y () );
for ( qint32 i = 0; i < x.count(); ++i )
{
pvector.append( QPointF ( x[i], y[i] ) );
}
return pvector;
}
qreal VSpline::LengthBezier ( const QPointF &p1, const QPointF &p2, const QPointF &p3, const QPointF &p4 ) const
{
QPainterPath splinePath;
QVector<QPointF> points = GetPoints (p1, p2, p3, p4);
splinePath.moveTo(points[0]);
for (qint32 i = 1; i < points.count(); ++i)
{
splinePath.lineTo(points[i]);
}
return splinePath.length();
}
void VSpline::PointBezier_r ( qreal x1, qreal y1, qreal x2, qreal y2,
qreal x3, qreal y3, qreal x4, qreal y4,
qint16 level, QVector<qreal> &px, QVector<qreal> &py)
{
const double curve_collinearity_epsilon = 1e-30;
const double curve_angle_tolerance_epsilon = 0.01;
const double m_angle_tolerance = 0.0;
enum curve_recursion_limit_e { curve_recursion_limit = 32 };
const double m_cusp_limit = 0.0;
double m_approximation_scale = 1.0;
double m_distance_tolerance_square;
m_distance_tolerance_square = 0.5 / m_approximation_scale;
m_distance_tolerance_square *= m_distance_tolerance_square;
if (level > curve_recursion_limit)
{
return;
}
// Calculate all the mid-points of the line segments
//----------------------
double x12 = (x1 + x2) / 2;
double y12 = (y1 + y2) / 2;
double x23 = (x2 + x3) / 2;
double y23 = (y2 + y3) / 2;
double x34 = (x3 + x4) / 2;
double y34 = (y3 + y4) / 2;
double x123 = (x12 + x23) / 2;
double y123 = (y12 + y23) / 2;
double x234 = (x23 + x34) / 2;
double y234 = (y23 + y34) / 2;
double x1234 = (x123 + x234) / 2;
double y1234 = (y123 + y234) / 2;
// Try to approximate the full cubic curve by a single straight line
//------------------
double dx = x4-x1;
double dy = y4-y1;
double d2 = fabs((x2 - x4) * dy - (y2 - y4) * dx);
double d3 = fabs((x3 - x4) * dy - (y3 - y4) * dx);
double da1, da2, k;
switch ((static_cast<int>(d2 > curve_collinearity_epsilon) << 1) +
static_cast<int>(d3 > curve_collinearity_epsilon))
{
case 0:
// All collinear OR p1==p4
//----------------------
k = dx*dx + dy*dy;
if (k < 0.000000001)
{
d2 = CalcSqDistance(x1, y1, x2, y2);
d3 = CalcSqDistance(x4, y4, x3, y3);
}
else
{
k = 1 / k;
da1 = x2 - x1;
da2 = y2 - y1;
d2 = k * (da1*dx + da2*dy);
da1 = x3 - x1;
da2 = y3 - y1;
d3 = k * (da1*dx + da2*dy);
if (d2 > 0 && d2 < 1 && d3 > 0 && d3 < 1)
{
// Simple collinear case, 1---2---3---4
// We can leave just two endpoints
return;
}
if (d2 <= 0)
{
d2 = CalcSqDistance(x2, y2, x1, y1);
}
else if (d2 >= 1)
{
d2 = CalcSqDistance(x2, y2, x4, y4);
}
else
{
d2 = CalcSqDistance(x2, y2, x1 + d2*dx, y1 + d2*dy);
}
if (d3 <= 0)
{
d3 = CalcSqDistance(x3, y3, x1, y1);
}
else if (d3 >= 1)
{
d3 = CalcSqDistance(x3, y3, x4, y4);
}
else
{
d3 = CalcSqDistance(x3, y3, x1 + d3*dx, y1 + d3*dy);
}
}
if (d2 > d3)
{
if (d2 < m_distance_tolerance_square)
{
px.append(x2);
py.append(y2);
//m_points.add(point_d(x2, y2));
return;
}
}
else
{
if (d3 < m_distance_tolerance_square)
{
px.append(x3);
py.append(y3);
//m_points.add(point_d(x3, y3));
return;
}
}
break;
case 1:
// p1,p2,p4 are collinear, p3 is significant
//----------------------
if (d3 * d3 <= m_distance_tolerance_square * (dx*dx + dy*dy))
{
if (m_angle_tolerance < curve_angle_tolerance_epsilon)
{
px.append(x23);
py.append(y23);
//m_points.add(point_d(x23, y23));
return;
}
// Angle Condition
//----------------------
da1 = fabs(atan2(y4 - y3, x4 - x3) - atan2(y3 - y2, x3 - x2));
if (da1 >= M_PI)
{
da1 = 2*M_PI - da1;
}
if (da1 < m_angle_tolerance)
{
px.append(x2);
py.append(y2);
px.append(x3);
py.append(y3);
//m_points.add(point_d(x2, y2));
//m_points.add(point_d(x3, y3));
return;
}
if (m_cusp_limit > 0.0 || m_cusp_limit < 0.0)
{
if (da1 > m_cusp_limit)
{
px.append(x3);
py.append(y3);
//m_points.add(point_d(x3, y3));
return;
}
}
}
break;
case 2:
// p1,p3,p4 are collinear, p2 is significant
//----------------------
if (d2 * d2 <= m_distance_tolerance_square * (dx*dx + dy*dy))
{
if (m_angle_tolerance < curve_angle_tolerance_epsilon)
{
px.append(x23);
py.append(y23);
//m_points.add(point_d(x23, y23));
return;
}
// Angle Condition
//----------------------
da1 = fabs(atan2(y3 - y2, x3 - x2) - atan2(y2 - y1, x2 - x1));
if (da1 >= M_PI)
{
da1 = 2*M_PI - da1;
}
if (da1 < m_angle_tolerance)
{
px.append(x2);
py.append(y2);
px.append(x3);
py.append(y3);
//m_points.add(point_d(x2, y2));
//m_points.add(point_d(x3, y3));
return;
}
if (m_cusp_limit > 0.0 || m_cusp_limit < 0.0)
{
if (da1 > m_cusp_limit)
{
px.append(x2);
py.append(y2);
//m_points.add(point_d(x2, y2));
return;
}
}
}
break;
case 3:
// Regular case
//-----------------
if ((d2 + d3)*(d2 + d3) <= m_distance_tolerance_square * (dx*dx + dy*dy))
{
// If the curvature doesn't exceed the distance_tolerance value
// we tend to finish subdivisions.
//----------------------
if (m_angle_tolerance < curve_angle_tolerance_epsilon)
{
px.append(x23);
py.append(y23);
//m_points.add(point_d(x23, y23));
return;
}
// Angle & Cusp Condition
//----------------------
k = atan2(y3 - y2, x3 - x2);
da1 = fabs(k - atan2(y2 - y1, x2 - x1));
da2 = fabs(atan2(y4 - y3, x4 - x3) - k);
if (da1 >= M_PI)
{
da1 = 2*M_PI - da1;
}
if (da2 >= M_PI)
{
da2 = 2*M_PI - da2;
}
if (da1 + da2 < m_angle_tolerance)
{
// Finally we can stop the recursion
//----------------------
px.append(x23);
py.append(y23);
//m_points.add(point_d(x23, y23));
return;
}
if (m_cusp_limit > 0.0 || m_cusp_limit < 0.0)
{
if (da1 > m_cusp_limit)
{
px.append(x2);
py.append(y2);
return;
}
if (da2 > m_cusp_limit)
{
px.append(x3);
py.append(y3);
return;
}
}
}
break;
default:
break;
}
// Continue subdivision
//----------------------
PointBezier_r(x1, y1, x12, y12, x123, y123, x1234, y1234, static_cast<qint16>(level + 1), px, py);
PointBezier_r(x1234, y1234, x234, y234, x34, y34, x4, y4, static_cast<qint16>(level + 1), px, py);
}
qreal VSpline::CalcSqDistance (qreal x1, qreal y1, qreal x2, qreal y2)
{
qreal dx = x2 - x1;
qreal dy = y2 - y1;
return dx * dx + dy * dy;
}
QPainterPath VSpline::GetPath() const
{
QPainterPath splinePath;
QVector<QPointF> points = GetPoints ();
if (points.count() >= 2)
{
for (qint32 i = 0; i < points.count()-1; ++i)
{
splinePath.moveTo(points[i]);
splinePath.lineTo(points[i+1]);
}
}
else
{
qWarning()<<"points.count() < 2"<<Q_FUNC_INFO;
}
return splinePath;
}
/* Cubic equation solution. Real coefficients case.
int Cubic(double *x,double a,double b,double c);
Parameters:
x - solution array (size 3). On output:
3 real roots -> then x is filled with them;
1 real + 2 complex -> x[0] is real, x[1] is real part of
complex roots, x[2] - non-negative
imaginary part.
a, b, c - coefficients, as described
Returns: 3 - 3 real roots;
1 - 1 real root + 2 complex;
2 - 1 real root + complex roots imaginary part is zero
(i.e. 2 real roots).
*/
//qint32 VSpline::Cubic(qreal *x, qreal a, qreal b, qreal c){
// qreal q,r,r2,q3;
//
// q = (a*a - 3.*b)/9.;
// r = (a*(2.*a*a - 9.*b) + 27.*c)/54.;
// r2 = r*r;
// q3 = pow(q,3);
// if(r2<q3) {
// qreal t = acos(r/sqrt(q3));
// a/=3.;
// q = -2.*sqrt(q);
// x[0] = q*cos(t/3.)-a;
// x[1] = q*cos((t + M_2PI)/3.) - a;
// x[2] = q*cos((t - M_2PI)/3.) - a;
// return(3);
// } else {
// qreal aa,bb;
// if(r<=0.){
// r=-r;
// }
// aa = -pow(r + sqrt(r2-q3),1./3.);
// if(aa!=0.){
// bb=q/aa;
// } else {
// bb=0.;
// }
// a/=3.;
// q = aa+bb;
// r = aa-bb;
// x[0] = q-a;
// x[1] = (-0.5)*q-a;
// x[2] = (sqrt(3.)*0.5)*fabs(r);
// if(x[2]==0.){
// return(2);
// }
// return(1);
// }
//}
//
//qreal VSpline::calc_t (qreal curve_coord1, qreal curve_coord2, qreal curve_coord3,
// qreal curve_coord4, qreal point_coord) const{
// qreal P1, P2, P3, P4, Bt;
// qreal a, b, c, d, ret_t;
//
// qreal *t = static_cast<qreal *>(malloc(3*sizeof(qreal)));
// P1 = curve_coord1;
// P2 = curve_coord2;
// P3 = curve_coord3;
// P4 = curve_coord4;
// Bt = point_coord;
//
// a = -P1 + 3*P2 - 3*P3 + P4;
// b = 3*P1 - 6*P2 + 3*P3;
// c = -3*P1 + 3*P2;
// d = -Bt + P1;
//
// if(Cubic(t, b/a, c/a, d/a) == 3){
// ret_t = t[2];
// } else {
// ret_t = t[0];
// }
// /*
// * Повертається три значення, але експереминтально знайдено що шукане
// * значення знаходиться в третьому.
// */
//
// free(t);
// if(ret_t<0 || ret_t>1){
// qDebug()<<"Неправильне значення параметра. фунція calc_t";
// throw"Неправильне значення параметра. фунція calc_t";
// }
// return ret_t;
//}
/*
* Функція знаходить підходяще значення параметна t якому відповідає точка на сплайні.
*/
//qreal VSpline::param_t (QPointF pBt)const{
// qreal t_x, t_y;
// t_x = calc_t (GetPointP1().x(), p2.x(), p3.x(), GetPointP4().x(), pBt.x());
// t_y = calc_t (GetPointP1().y(), p2.y(), p3.y(), GetPointP4().y(), pBt.y());
// /*
// * Порівнюємо значення по х і по у і визначаємо найбільше. Це значення і
// * буде шуканим.
// */
// if(t_x>t_y)
// return t_x;
// else
// return t_y;
//}
//
//void VSpline::Mirror(const QPointF Pmirror){
// QPointF P1 = p1;
// P1 = QPointF(P1.x() - Pmirror.x(), P1.y() - Pmirror.y());
// P1 = QPointF(P1.x() * -1.0, P1.y() * 1.0);
// P1 = QPointF(P1.x() + Pmirror.x(), P1.y() + Pmirror.y());
// QPointF P2 = p2;
// P2 = QPointF(P2.x() - Pmirror.x(), P2.y() - Pmirror.y());
// P2 = QPointF(P2.x() * -1.0, P2.y() * 1.0);
// P2 = QPointF(P2.x() + Pmirror.x(), P2.y() + Pmirror.y());
// QPointF P3 = p3;
// P3 = QPointF(P3.x() - Pmirror.x(), P3.y() - Pmirror.y());
// P3 = QPointF(P3.x() * -1.0, P3.y() * 1.0);
// P3 = QPointF(P3.x() + Pmirror.x(), P3.y() + Pmirror.y());
// QPointF P4 = p4;
// P4 = QPointF(P4.x() - Pmirror.x(), P4.y() - Pmirror.y());
// P4 = QPointF(P4.x() * -1.0, P4.y() * 1.0);
// P4 = QPointF(P4.x() + Pmirror.x(), P4.y() + Pmirror.y());
// this->ModifiSpl(P1, P2, P3, P4);
//}
QVector<QPointF> VSpline::SplinePoints(const QPointF &p1, const QPointF &p4, qreal angle1, qreal angle2, qreal kAsm1,
qreal kAsm2, qreal kCurve)
{
QLineF p1pX(p1.x(), p1.y(), p1.x() + 100, p1.y());
p1pX.setAngle( angle1 );
qreal L = 0, radius = 0, angle = 90;
radius = QLineF(QPointF(p1.x(), p4.y()), p4).length();
L = kCurve * radius * 4 / 3 * tan( angle * M_PI / 180.0 / 4 );
QLineF p1p2(p1.x(), p1.y(), p1.x() + L * kAsm1, p1.y());
p1p2.setAngle(angle1);
QLineF p4p3(p4.x(), p4.y(), p4.x() + L * kAsm2, p4.y());
p4p3.setAngle(angle2);
QPointF p2 = p1p2.p2();
QPointF p3 = p4p3.p2();
return GetPoints(p1, p2, p3, p4);
}
VSpline &VSpline::operator =(const VSpline &spline)
{
this->p1 = spline.GetP1 ();
this->p2 = spline.GetP2 ();
this->p3 = spline.GetP3 ();
this->p4 = spline.GetP4 ();
this->angle1 = spline.GetAngle1 ();
this->angle2 = spline.GetAngle2 ();
this->kAsm1 = spline.GetKasm1();
this->kAsm2 = spline.GetKasm2();
this->kCurve = spline.GetKcurve();
this->points = spline.GetDataPoints();
this->mode = spline.getMode();
this->idObject = spline.getIdObject();
this->_name = spline.name();
return *this;
}