/************************************************************************ ** ** @file vequidistant.cpp ** @author Roman Telezhinsky ** @date 28 1, 2014 ** ** @brief ** @copyright ** This source code is part of the Valentine project, a pattern making ** program, whose allow create and modeling patterns of clothing. ** Copyright (C) 2013 Valentina project ** All Rights Reserved. ** ** Valentina is free software: you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation, either version 3 of the License, or ** (at your option) any later version. ** ** Valentina is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with Valentina. If not, see . ** *************************************************************************/ #include "vequidistant.h" QPainterPath VEquidistant::ContourPath(const quint32 &idDetail, const VContainer *data) const { Q_CHECK_PTR(data); VDetail detail = data->GetDetail(idDetail); QVector points; QVector pointsEkv; for (ptrdiff_t i = 0; i< detail.CountNode(); ++i) { switch (detail.at(i).getTypeTool()) { case (Valentina::NodePoint): { const VPointF *point = data->GeometricObject(detail.at(i).getId()); points.append(point->toQPointF()); if (detail.getSeamAllowance() == true) { QPointF pEkv = point->toQPointF(); pEkv.setX(pEkv.x()+detail.at(i).getMx()); pEkv.setY(pEkv.y()+detail.at(i).getMy()); pointsEkv.append(pEkv); } } break; case (Valentina::NodeArc): { const VArc *arc = data->GeometricObject(detail.at(i).getId()); qreal len1 = GetLengthContour(points, arc->GetPoints()); qreal lenReverse = GetLengthContour(points, GetReversePoint(arc->GetPoints())); if (len1 <= lenReverse) { points << arc->GetPoints(); if (detail.getSeamAllowance() == true) { pointsEkv << biasPoints(arc->GetPoints(), detail.at(i).getMx(), detail.at(i).getMy()); } } else { points << GetReversePoint(arc->GetPoints()); if (detail.getSeamAllowance() == true) { pointsEkv << biasPoints(GetReversePoint(arc->GetPoints()), detail.at(i).getMx(), detail.at(i).getMy()); } } } break; case (Valentina::NodeSpline): { const VSpline *spline = data->GeometricObject(detail.at(i).getId()); qreal len1 = GetLengthContour(points, spline->GetPoints()); qreal lenReverse = GetLengthContour(points, GetReversePoint(spline->GetPoints())); if (len1 <= lenReverse) { points << spline->GetPoints(); if (detail.getSeamAllowance() == true) { pointsEkv << biasPoints(spline->GetPoints(), detail.at(i).getMx(), detail.at(i).getMy()); } } else { points << GetReversePoint(spline->GetPoints()); if (detail.getSeamAllowance() == true) { pointsEkv << biasPoints(GetReversePoint(spline->GetPoints()), detail.at(i).getMx(), detail.at(i).getMy()); } } } break; case (Valentina::NodeSplinePath): { const VSplinePath *splinePath = data->GeometricObject(detail.at(i).getId()); qreal len1 = GetLengthContour(points, splinePath->GetPathPoints()); qreal lenReverse = GetLengthContour(points, GetReversePoint(splinePath->GetPathPoints())); if (len1 <= lenReverse) { points << splinePath->GetPathPoints(); if (detail.getSeamAllowance() == true) { pointsEkv << biasPoints(splinePath->GetPathPoints(), detail.at(i).getMx(), detail.at(i).getMy()); } } else { points << GetReversePoint(splinePath->GetPathPoints()); if (detail.getSeamAllowance() == true) { pointsEkv << biasPoints(GetReversePoint(splinePath->GetPathPoints()), detail.at(i).getMx(), detail.at(i).getMy()); } } } break; default: qWarning()<<"Get wrong tool type. Ignore."< &contour, const QVector &newPoints) { qreal length = 0; QVector points; points << contour << newPoints; for (qint32 i = 0; i < points.size()-1; ++i) { QLineF line(points.at(i), points.at(i+1)); length += line.length(); } return length; } QVector VEquidistant::biasPoints(const QVector &points, const qreal &mx, const qreal &my) { QVector p; for (qint32 i = 0; i < points.size(); ++i) { QPointF point = points.at(i); point.setX(point.x() + mx); point.setY(point.y() + my); p.append(point); } return p; } QVector VEquidistant::CorrectEquidistantPoints(const QVector &points) { QVector correctPoints; if (points.size()<4)//Better don't check if only three points. We can destroy equidistant. { qWarning()<<"Only three points."; return points; } //Clear equivalent points for (qint32 i = 0; i points, const Detail::Equidistant &eqv, const qreal &width) { QPainterPath ekv; QVector ekvPoints; if ( points.size() < 3 ) { qDebug()<<"Not enough points for building the equidistant.\n"; return ekv; } for (qint32 i = 0; i < points.size(); ++i ) { if (i != points.size()-1) { if (points[i] == points[i+1]) { points.remove(i+1); } } else { if (points[i] == points[0]) { points.remove(i); } } } if (eqv == Detail::CloseEquidistant) { points.append(points.at(0)); } for (qint32 i = 0; i < points.size(); ++i ) { if ( i == 0 && eqv == Detail::CloseEquidistant) {//first point, polyline closed ekvPoints< VEquidistant::CheckLoops(const QVector &points) { QVector ekvPoints; /*If we got less than 4 points no need seek loops.*/ if (points.size() < 4) { return ekvPoints; } bool closed = false; if (points.at(0) == points.at(points.size()-1)) { closed = true; } qint32 i, j; for (i = 0; i < points.size(); ++i) { /*Last three points no need check.*/ if (i >= points.size()-3) { ekvPoints.append(points.at(i)); continue; } QPointF crosPoint; QLineF::IntersectType intersect = QLineF::NoIntersection; QLineF line1(points.at(i), points.at(i+1)); for (j = i+2; j < points.size()-1; ++j) { QLineF line2(points.at(j), points.at(j+1)); intersect = line1.intersect(line2, &crosPoint); if (intersect == QLineF::BoundedIntersection) { break; } } if (intersect == QLineF::BoundedIntersection) { if (i == 0 && j+1 == points.size()-1 && closed) { /*We got closed contour.*/ ekvPoints.append(points.at(i)); } else { /*We found loop.*/ ekvPoints.append(points.at(i)); ekvPoints.append(crosPoint); i = j; } } else { /*We did not found loop.*/ ekvPoints.append(points.at(i)); } } return ekvPoints; } QVector VEquidistant::GetReversePoint(const QVector &points) { Q_ASSERT(points.size() > 0); QVector reversePoints; for (qint32 i = points.size() - 1; i >= 0; --i) { reversePoints.append(points.at(i)); } return reversePoints; } QVector VEquidistant::EkvPoint(const QLineF &line1, const QLineF &line2, const qreal &width) { Q_ASSERT(width > 0); QVector points; if (line1.p2() != line2.p2()) { qWarning()<<"Last point of two lines must be equal."; } QPointF CrosPoint; QLineF bigLine1 = ParallelLine(line1, width ); QLineF bigLine2 = ParallelLine(QLineF(line2.p2(), line2.p1()), width ); QLineF::IntersectType type = bigLine1.intersect( bigLine2, &CrosPoint ); switch (type) { case (QLineF::BoundedIntersection): points.append(CrosPoint); return points; break; case (QLineF::UnboundedIntersection): { QLineF line( line1.p2(), CrosPoint ); if (line.length() > width + toPixel(8)) { QLineF lineL = QLineF(bigLine1.p2(), CrosPoint); lineL.setLength(width); points.append(lineL.p2()); lineL = QLineF(bigLine2.p1(), CrosPoint); lineL.setLength(width); points.append(lineL.p2()); } else { points.append(CrosPoint); return points; } break; } case (QLineF::NoIntersection): /*If we have correct lines this means lines lie on a line.*/ points.append(bigLine1.p2()); return points; break; default: break; } return points; } QLineF VEquidistant::ParallelLine(const QLineF &line, qreal width) { Q_ASSERT(width > 0); QLineF paralel = QLineF (SingleParallelPoint(line, 90, width), SingleParallelPoint(QLineF(line.p2(), line.p1()), -90, width)); return paralel; } QPointF VEquidistant::SingleParallelPoint(const QLineF &line, const qreal &angle, const qreal &width) { Q_ASSERT(width > 0); QLineF pLine = line; pLine.setAngle( pLine.angle() + angle ); pLine.setLength( width ); return pLine.p2(); }