valentina_old/geometry/vspline.cpp

795 lines
27 KiB
C++
Raw Normal View History

/************************************************************************
**
** @file vspline.cpp
** @author Roman Telezhinsky <dismine@gmail.com>
** @date November 15, 2013
**
** @brief
** @copyright
** This source code is part of the Valentine project, a pattern making
** program, whose allow create and modeling patterns of clothing.
** Copyright (C) 2013 Valentina project
** <https://bitbucket.org/dismine/valentina> All Rights Reserved.
**
** Valentina is free software: you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** Valentina is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with Valentina. If not, see <http://www.gnu.org/licenses/>.
**
*************************************************************************/
2013-08-05 10:37:56 +02:00
#include "vspline.h"
VSpline::VSpline()
:p1(0), p2(QPointF()), p3(QPointF()), p4(0), angle1(0), angle2(0), kAsm1(1), kAsm2(1), kCurve(1),
points(QHash<qint64, VPointF>()), mode(Draw::Calculation), idObject(0), _name(QString()){}
2013-08-05 10:37:56 +02:00
VSpline::VSpline ( const VSpline & spline )
:p1(spline.GetP1 ()), p2(spline.GetP2 ()), p3(spline.GetP3 ()), p4(spline.GetP4 ()), angle1(spline.GetAngle1 ()),
angle2(spline.GetAngle2 ()), kAsm1(spline.GetKasm1()), kAsm2(spline.GetKasm2()), kCurve(spline.GetKcurve()),
points(spline.GetDataPoints()), mode(spline.getMode()), idObject(spline.getIdObject()), _name(spline.name()){}
2013-08-05 10:37:56 +02:00
VSpline::VSpline (const QHash<qint64, VPointF> *points, qint64 p1, qint64 p4, qreal angle1, qreal angle2,
qreal kAsm1, qreal kAsm2, qreal kCurve, Draw::Draws mode, qint64 idObject)
:p1(p1), p2(QPointF()), p3(QPointF()), p4(p4), angle1(angle1), angle2(angle2), kAsm1(kAsm1), kAsm2(kAsm2),
kCurve(kCurve), points(*points), mode(mode), idObject(idObject), _name(QString())
{
_name = QString("Spl_%1_%2").arg(this->GetPointP1().name(), this->GetPointP4().name());
2013-08-05 10:37:56 +02:00
ModifiSpl ( p1, p4, angle1, angle2, kAsm1, kAsm2, kCurve );
}
VSpline::VSpline (const QHash<qint64, VPointF> *points, qint64 p1, QPointF p2, QPointF p3, qint64 p4,
qreal kCurve, Draw::Draws mode, qint64 idObject)
:p1(p1), p2(p2), p3(p3), p4(p4), angle1(0), angle2(0), kAsm1(1), kAsm2(1), kCurve(1), points(*points), mode(mode),
idObject(idObject), _name(QString())
{
_name = QString("Spl_%1_%2").arg(this->GetPointP1().name(), this->GetPointP4().name());
2013-08-05 10:37:56 +02:00
ModifiSpl ( p1, p2, p3, p4, kCurve);
}
void VSpline::ModifiSpl ( qint64 p1, qint64 p4, qreal angle1, qreal angle2,
qreal kAsm1, qreal kAsm2, qreal kCurve)
{
2013-08-05 10:37:56 +02:00
this->p1 = p1;
this->p4 = p4;
this->angle1 = angle1;
this->angle2 = angle2;
this->kAsm1 = kAsm1;
this->kAsm2 = kAsm2;
this->kCurve = kCurve;
QLineF p1pX(GetPointP1().x(), GetPointP1().y(), GetPointP1().x() + 100, GetPointP1().y());
p1pX.setAngle( angle1 );
qreal L = 0, radius = 0, angle = 90;
2013-08-28 10:55:11 +02:00
// angle = QLineF(GetPointP1(), p1pX.p2()).angleTo(QLineF(GetPointP1(), GetPointP4()));
// if ( angle > 180 ){
// angle = 360 - angle;
// }
QPointF point1 = GetPointP1().toQPointF();
QPointF point4 = GetPointP4().toQPointF();
radius = QLineF(QPointF(point1.x(), point4.y()), point4).length();
2013-08-28 10:55:11 +02:00
// radius = QLineF(GetPointP1(), GetPointP4()).length() / 2 / sin( angle * M_PI / 180.0 );
2013-08-05 10:37:56 +02:00
L = kCurve * radius * 4 / 3 * tan( angle * M_PI / 180.0 / 4 );
QLineF p1p2(GetPointP1().x(), GetPointP1().y(), GetPointP1().x() + L * kAsm1, GetPointP1().y());
p1p2.setAngle(angle1);
QLineF p4p3(GetPointP4().x(), GetPointP4().y(), GetPointP4().x() + L * kAsm2, GetPointP4().y());
p4p3.setAngle(angle2);
this->p2 = p1p2.p2();
this->p3 = p4p3.p2();
}
void VSpline::ModifiSpl (const qint64 &p1, const QPointF &p2, const QPointF &p3, const qint64 &p4, const qreal &kCurve)
{
2013-08-05 10:37:56 +02:00
this->p1 = p1;
this->p2 = p2;
this->p3 = p3;
this->p4 = p4;
this->angle1 = QLineF ( GetPointP1().toQPointF(), p2 ).angle();
this->angle2 = QLineF ( GetPointP4().toQPointF(), p3 ).angle();
2013-08-05 10:37:56 +02:00
QLineF p1pX(GetPointP1().x(), GetPointP1().y(), GetPointP1().x() + 100, GetPointP1().y());
p1pX.setAngle( angle1 );
qreal L = 0, radius = 0, angle = 90;
2013-08-28 10:55:11 +02:00
// angle = QLineF(GetPointP1(), p1pX.p2()).angleTo(QLineF(GetPointP1(), GetPointP4()));
// if ( angle >= 180 ){
// angle = 360 - angle;
// }
QPointF point1 = GetPointP1().toQPointF();
QPointF point4 = GetPointP4().toQPointF();
radius = QLineF(QPointF(point1.x(), point4.y()), point4).length();
2013-08-28 10:55:11 +02:00
// radius = QLineF(GetPointP1(), GetPointP4()).length() / 2 / sin( angle * M_PI / 180.0 );
2013-08-05 10:37:56 +02:00
L = kCurve * radius * 4 / 3 * tan( angle * M_PI / 180.0 / 4 );
this->kCurve = kCurve;
this->kAsm1 = QLineF ( GetPointP1().toQPointF(), p2 ).length()/L;
this->kAsm2 = QLineF ( GetPointP4().toQPointF(), p3 ).length()/L;
2013-08-05 10:37:56 +02:00
}
//void VSpline::RotationSpl (QPointF pRotate, qreal angle ){
// QLineF pRotateP1 (pRotate, p1);
// pRotateP1.setAngle(angle);
// p1 = pRotateP1.p2();
// QLineF pRotateP2 (pRotate, p2);
// pRotateP2.setAngle(angle);
// p2 = pRotateP2.p2();
// QLineF pRotateP3 (pRotate, p3);
// pRotateP3.setAngle(angle);
// p3 = pRotateP3.p2();
// QLineF pRotateP4 (pRotate, p4);
// pRotateP4.setAngle(angle);
// p4 = pRotateP4.p2();
// angle1 = QLineF(p1, p2).angle();
// angle2 = QLineF(p4, p2).angle();
//}
//void VSpline::BiasSpl ( qreal mx, qreal my ){
// p1 = QPointF(p1.x()+mx, p1.y()+my);
// p2 = QPointF(p2.x()+mx, p2.y()+my);
// p3 = QPointF(p3.x()+mx, p3.y()+my);
// p4 = QPointF(p4.x()+mx, p4.y()+my);
//}
VPointF VSpline::GetPointP1() const
{
if (points.contains(p1))
{
return points.value(p1);
}
else
{
2013-08-05 10:37:56 +02:00
qCritical()<<"Не можу знайти id = "<<p1<<" в таблиці.";
throw "Не можу знайти точку за id.";
2013-08-05 10:37:56 +02:00
}
return VPointF();
}
VPointF VSpline::GetPointP4() const
{
if (points.contains(p4))
{
return points.value(p4);
}
else
{
2013-08-05 10:37:56 +02:00
qCritical()<<"Не можу знайти id = "<<p4<<" в таблиці.";
throw "Не можу знайти точку за id.";
2013-08-05 10:37:56 +02:00
}
return VPointF();
}
qreal VSpline::GetLength () const
{
return LengthBezier ( GetPointP1().toQPointF(), this->p2, this->p3, GetPointP4().toQPointF());
2013-08-05 10:37:56 +02:00
}
QString VSpline::GetName() const
{
2013-08-05 10:37:56 +02:00
VPointF first = GetPointP1();
VPointF second = GetPointP4();
return QString("Spl_%1_%2").arg(first.name(), second.name());
}
QLineF::IntersectType VSpline::CrossingSplLine ( const QLineF &line, QPointF *intersectionPoint ) const
{
2013-08-05 10:37:56 +02:00
QVector<qreal> px;
QVector<qreal> py;
px.append ( GetPointP1 ().x () );
py.append ( GetPointP1 ().y () );
QVector<qreal>& wpx = px;
QVector<qreal>& wpy = py;
PointBezier_r ( GetPointP1 ().x (), GetPointP1 ().y (), GetP2 ().x (), GetP2 ().y (),
GetP3 ().x (), GetP3 ().y (), GetPointP4 ().x (), GetPointP4 ().y (),
0, wpx, wpy);
px.append ( GetPointP4 ().x () );
py.append ( GetPointP4 ().y () );
qint32 i = 0;
QPointF crosPoint;
QLineF::IntersectType type = QLineF::NoIntersection;
for ( i = 0; i < px.count()-1; ++i )
{
2013-08-05 10:37:56 +02:00
type = line.intersect(QLineF ( QPointF ( px[i], py[i] ),
QPointF ( px[i+1], py[i+1] )), &crosPoint);
if ( type == QLineF::BoundedIntersection )
{
2013-08-05 10:37:56 +02:00
*intersectionPoint = crosPoint;
return type;
}
}
throw "Не можу знайти точку перетину сплайну з лінією.";
}
//void VSpline::CutSpline ( qreal length, VSpline* curFir, VSpline* curSec ) const{
// if ( length > GetLength()){
// throw"Не правильна довжина нового сплайну\n";
// }
// qreal parT = length / GetLength();
// QLineF seg1_2 ( GetPointP1 (), GetP2 () );
// seg1_2.setLength(seg1_2.length () * parT);
// QPointF p12 = seg1_2.p2();
// QLineF seg2_3 ( GetP2 (), GetP3 () );
// seg2_3.setLength(seg2_3.length () * parT);
// QPointF p23 = seg2_3.p2();
// QLineF seg12_23 ( p12, p23 );
// seg12_23.setLength(seg12_23.length () * parT);
// QPointF p123 = seg12_23.p2();
// QLineF seg3_4 ( GetP3 (), GetPointP4 () );
// seg3_4.setLength(seg3_4.length () * parT);
// QPointF p34 = seg3_4.p2();
// QLineF seg23_34 ( p23, p34 );
// seg23_34.setLength(seg23_34.length () * parT);
// QPointF p234 = seg23_34.p2();
// QLineF seg123_234 ( p123, p234 );
// seg123_234.setLength(seg123_234.length () * parT);
// QPointF p1234 = seg123_234.p2();
// curFir->ModifiSpl ( GetPointP1 (), p12, p123, p1234 );
// curSec->ModifiSpl ( p1234, p234, p34, GetPointP4 () );
//}
//void VSpline::CutSpline ( QPointF point, VSpline* curFir, VSpline* curSec ) const{
// qreal t = param_t (point);
// qreal length = t*this->GetLength();
// CutSpline ( length, curFir, curSec );
//}
//void VSpline::PutAlongSpl (QPointF &moveP, qreal move ) const{
// if ( GetLength () < move ){
// qDebug()<<"Довжина більше довжини сплайну.";
// qDebug()<<GetLength()<<"<"<<move;
// throw "Довжина більше довжини сплайну.";
// }
// if ( move <= 0 ){
// qDebug()<<"Довжина менше дорівнює нулю.";
// throw "Довжина менше дорівнює нулю.";
// }
// qreal t = 0;
// if ( move == 0 ){
// t = 0;
// } else {
// t = move / GetLength ();
// moveP.setX ( pow ( 1 - t, 3 ) * GetPointP1 ().x () + 3 * t * pow ( 1 - t, 2 ) *
// GetP2 ().x () + 3 * t * t * ( 1 - t ) * GetP3 ().x () +
// pow ( t, 3 ) * GetPointP4 ().x () );
// moveP.setY ( pow ( 1 - t, 3 ) * GetPointP1 ().y () + 3 * t * pow ( 1 - t, 2 ) *
// GetP2 ().y () + 3 * t * t * ( 1 - t ) * GetP3 ().y () +
// pow ( t, 3 ) * GetPointP4 ().y () );
// }
//}
2013-08-05 10:37:56 +02:00
QVector<QPointF> VSpline::GetPoints () const
{
return GetPoints(GetPointP1().toQPointF(), p2, p3, GetPointP4().toQPointF());
// QLineF line1(points.at(0).toPoint(), points.at(1).toPoint());
// line1.setLength(500);
// QLineF line2 = line1;
// line2.setAngle(line2.angle()+90);
// qreal xk1 = line1.p2().x();
// qreal xk0 = line1.p1().x();
// qreal y = line2.p2().y();
// qreal yk0 = line1.p1().y();
// qreal yk1 = line1.p2().y();
// qreal x = line2.p2().x();
// qreal check = (xk1 - xk0) * (y - yk0) - (yk1 - yk0) * (x - xk0);
// if(check > 0){
// return points;
// } else {
// QVector<QPointF> reversePoints;
// for (qint32 i = points.size() - 1; i >= 0; --i) {
// reversePoints.append(points.at(i));
// }
// return reversePoints;
// }
2013-08-05 10:37:56 +02:00
}
QVector<QPointF> VSpline::GetPoints (const QPointF &p1, const QPointF &p2, const QPointF &p3, const QPointF &p4)
{
2013-08-05 10:37:56 +02:00
QVector<QPointF> pvector;
QVector<qreal> x;
QVector<qreal> y;
QVector<qreal>& wx = x;
QVector<qreal>& wy = y;
x.append ( p1.x () );
y.append ( p1.y () );
PointBezier_r ( p1.x (), p1.y (), p2.x (), p2.y (),
p3.x (), p3.y (), p4.x (), p4.y (), 0, wx, wy );
x.append ( p4.x () );
y.append ( p4.y () );
for ( qint32 i = 0; i < x.count(); ++i )
{
2013-08-05 10:37:56 +02:00
pvector.append( QPointF ( x[i], y[i] ) );
}
return pvector;
}
qreal VSpline::LengthBezier ( const QPointF &p1, const QPointF &p2, const QPointF &p3, const QPointF &p4 ) const
{
2013-08-05 10:37:56 +02:00
QPainterPath splinePath;
QVector<QPointF> points = GetPoints (p1, p2, p3, p4);
splinePath.moveTo(points[0]);
for (qint32 i = 1; i < points.count(); ++i)
{
2013-08-05 10:37:56 +02:00
splinePath.lineTo(points[i]);
}
return splinePath.length();
2013-08-05 10:37:56 +02:00
}
void VSpline::PointBezier_r ( qreal x1, qreal y1, qreal x2, qreal y2,
qreal x3, qreal y3, qreal x4, qreal y4,
qint16 level, QVector<qreal> &px, QVector<qreal> &py)
{
const double curve_collinearity_epsilon = 1e-30;
const double curve_angle_tolerance_epsilon = 0.01;
2013-08-05 10:37:56 +02:00
const double m_angle_tolerance = 0.0;
enum curve_recursion_limit_e { curve_recursion_limit = 32 };
const double m_cusp_limit = 0.0;
double m_approximation_scale = 1.0;
double m_distance_tolerance_square;
m_distance_tolerance_square = 0.5 / m_approximation_scale;
m_distance_tolerance_square *= m_distance_tolerance_square;
if (level > curve_recursion_limit)
2013-08-05 10:37:56 +02:00
{
return;
}
// Calculate all the mid-points of the line segments
//----------------------
double x12 = (x1 + x2) / 2;
double y12 = (y1 + y2) / 2;
double x23 = (x2 + x3) / 2;
double y23 = (y2 + y3) / 2;
double x34 = (x3 + x4) / 2;
double y34 = (y3 + y4) / 2;
double x123 = (x12 + x23) / 2;
double y123 = (y12 + y23) / 2;
double x234 = (x23 + x34) / 2;
double y234 = (y23 + y34) / 2;
double x1234 = (x123 + x234) / 2;
double y1234 = (y123 + y234) / 2;
// Try to approximate the full cubic curve by a single straight line
//------------------
double dx = x4-x1;
double dy = y4-y1;
double d2 = fabs((x2 - x4) * dy - (y2 - y4) * dx);
double d3 = fabs((x3 - x4) * dy - (y3 - y4) * dx);
2013-08-05 10:37:56 +02:00
double da1, da2, k;
switch ((static_cast<int>(d2 > curve_collinearity_epsilon) << 1) +
static_cast<int>(d3 > curve_collinearity_epsilon))
2013-08-05 10:37:56 +02:00
{
case 0:
// All collinear OR p1==p4
//----------------------
k = dx*dx + dy*dy;
if (k < 0.000000001)
2013-08-05 10:37:56 +02:00
{
d2 = CalcSqDistance(x1, y1, x2, y2);
d3 = CalcSqDistance(x4, y4, x3, y3);
2013-08-05 10:37:56 +02:00
}
else
{
k = 1 / k;
da1 = x2 - x1;
da2 = y2 - y1;
d2 = k * (da1*dx + da2*dy);
da1 = x3 - x1;
da2 = y3 - y1;
d3 = k * (da1*dx + da2*dy);
if (d2 > 0 && d2 < 1 && d3 > 0 && d3 < 1)
{
// Simple collinear case, 1---2---3---4
// We can leave just two endpoints
return;
}
if (d2 <= 0)
{
d2 = CalcSqDistance(x2, y2, x1, y1);
}
else if (d2 >= 1)
{
d2 = CalcSqDistance(x2, y2, x4, y4);
}
else
{
d2 = CalcSqDistance(x2, y2, x1 + d2*dx, y1 + d2*dy);
}
if (d3 <= 0)
{
d3 = CalcSqDistance(x3, y3, x1, y1);
}
else if (d3 >= 1)
{
d3 = CalcSqDistance(x3, y3, x4, y4);
}
else
{
d3 = CalcSqDistance(x3, y3, x1 + d3*dx, y1 + d3*dy);
}
2013-08-05 10:37:56 +02:00
}
if (d2 > d3)
2013-08-05 10:37:56 +02:00
{
if (d2 < m_distance_tolerance_square)
{
px.append(x2);
py.append(y2);
//m_points.add(point_d(x2, y2));
return;
}
2013-08-05 10:37:56 +02:00
}
else
2013-08-05 10:37:56 +02:00
{
if (d3 < m_distance_tolerance_square)
2013-08-05 10:37:56 +02:00
{
2013-08-05 10:37:56 +02:00
px.append(x3);
py.append(y3);
//m_points.add(point_d(x3, y3));
return;
}
}
break;
case 1:
// p1,p2,p4 are collinear, p3 is significant
2013-08-05 10:37:56 +02:00
//----------------------
if (d3 * d3 <= m_distance_tolerance_square * (dx*dx + dy*dy))
2013-08-05 10:37:56 +02:00
{
if (m_angle_tolerance < curve_angle_tolerance_epsilon)
2013-08-05 10:37:56 +02:00
{
px.append(x23);
py.append(y23);
//m_points.add(point_d(x23, y23));
return;
}
// Angle Condition
//----------------------
da1 = fabs(atan2(y4 - y3, x4 - x3) - atan2(y3 - y2, x3 - x2));
if (da1 >= M_PI)
{
da1 = 2*M_PI - da1;
}
if (da1 < m_angle_tolerance)
{
2013-08-05 10:37:56 +02:00
px.append(x2);
py.append(y2);
px.append(x3);
py.append(y3);
2013-08-05 10:37:56 +02:00
//m_points.add(point_d(x2, y2));
//m_points.add(point_d(x3, y3));
2013-08-05 10:37:56 +02:00
return;
}
if (m_cusp_limit > 0.0 || m_cusp_limit < 0.0)
{
if (da1 > m_cusp_limit)
{
px.append(x3);
py.append(y3);
//m_points.add(point_d(x3, y3));
return;
}
}
2013-08-05 10:37:56 +02:00
}
break;
case 2:
// p1,p3,p4 are collinear, p2 is significant
2013-08-05 10:37:56 +02:00
//----------------------
if (d2 * d2 <= m_distance_tolerance_square * (dx*dx + dy*dy))
2013-08-05 10:37:56 +02:00
{
if (m_angle_tolerance < curve_angle_tolerance_epsilon)
{
px.append(x23);
py.append(y23);
//m_points.add(point_d(x23, y23));
return;
}
// Angle Condition
2013-08-05 10:37:56 +02:00
//----------------------
da1 = fabs(atan2(y3 - y2, x3 - x2) - atan2(y2 - y1, x2 - x1));
if (da1 >= M_PI)
2013-08-05 10:37:56 +02:00
{
da1 = 2*M_PI - da1;
}
if (da1 < m_angle_tolerance)
{
2013-08-05 10:37:56 +02:00
px.append(x2);
py.append(y2);
px.append(x3);
py.append(y3);
//m_points.add(point_d(x2, y2));
//m_points.add(point_d(x3, y3));
2013-08-05 10:37:56 +02:00
return;
}
if (m_cusp_limit > 0.0 || m_cusp_limit < 0.0)
2013-08-05 10:37:56 +02:00
{
if (da1 > m_cusp_limit)
{
px.append(x2);
py.append(y2);
//m_points.add(point_d(x2, y2));
return;
}
}
}
break;
case 3:
// Regular case
//-----------------
if ((d2 + d3)*(d2 + d3) <= m_distance_tolerance_square * (dx*dx + dy*dy))
{
// If the curvature doesn't exceed the distance_tolerance value
// we tend to finish subdivisions.
//----------------------
if (m_angle_tolerance < curve_angle_tolerance_epsilon)
{
px.append(x23);
py.append(y23);
//m_points.add(point_d(x23, y23));
return;
}
// Angle & Cusp Condition
//----------------------
k = atan2(y3 - y2, x3 - x2);
da1 = fabs(k - atan2(y2 - y1, x2 - x1));
da2 = fabs(atan2(y4 - y3, x4 - x3) - k);
if (da1 >= M_PI)
{
da1 = 2*M_PI - da1;
}
if (da2 >= M_PI)
{
da2 = 2*M_PI - da2;
}
if (da1 + da2 < m_angle_tolerance)
{
// Finally we can stop the recursion
//----------------------
px.append(x23);
py.append(y23);
//m_points.add(point_d(x23, y23));
2013-08-05 10:37:56 +02:00
return;
}
if (m_cusp_limit > 0.0 || m_cusp_limit < 0.0)
{
if (da1 > m_cusp_limit)
{
px.append(x2);
py.append(y2);
return;
}
if (da2 > m_cusp_limit)
{
px.append(x3);
py.append(y3);
return;
}
}
2013-08-05 10:37:56 +02:00
}
break;
default:
break;
2013-08-05 10:37:56 +02:00
}
// Continue subdivision
//----------------------
2013-08-20 12:26:02 +02:00
PointBezier_r(x1, y1, x12, y12, x123, y123, x1234, y1234, static_cast<qint16>(level + 1), px, py);
PointBezier_r(x1234, y1234, x234, y234, x34, y34, x4, y4, static_cast<qint16>(level + 1), px, py);
2013-08-05 10:37:56 +02:00
}
qreal VSpline::CalcSqDistance (qreal x1, qreal y1, qreal x2, qreal y2)
{
2013-08-05 10:37:56 +02:00
qreal dx = x2 - x1;
qreal dy = y2 - y1;
return dx * dx + dy * dy;
}
QPainterPath VSpline::GetPath() const
{
2013-08-05 10:37:56 +02:00
QPainterPath splinePath;
QVector<QPointF> points = GetPoints ();
if (points.count() >= 2)
{
for (qint32 i = 0; i < points.count()-1; ++i)
{
splinePath.moveTo(points[i]);
splinePath.lineTo(points[i+1]);
}
}
else
{
qWarning()<<"points.count() < 2"<<Q_FUNC_INFO;
2013-08-05 10:37:56 +02:00
}
return splinePath;
}
/* Cubic equation solution. Real coefficients case.
int Cubic(double *x,double a,double b,double c);
Parameters:
x - solution array (size 3). On output:
3 real roots -> then x is filled with them;
1 real + 2 complex -> x[0] is real, x[1] is real part of
complex roots, x[2] - non-negative
imaginary part.
a, b, c - coefficients, as described
Returns: 3 - 3 real roots;
1 - 1 real root + 2 complex;
2 - 1 real root + complex roots imaginary part is zero
(i.e. 2 real roots).
*/
2013-10-28 16:45:27 +01:00
//qint32 VSpline::Cubic(qreal *x, qreal a, qreal b, qreal c){
// qreal q,r,r2,q3;
//
2013-10-28 16:45:27 +01:00
// q = (a*a - 3.*b)/9.;
// r = (a*(2.*a*a - 9.*b) + 27.*c)/54.;
// r2 = r*r;
// q3 = pow(q,3);
// if(r2<q3) {
// qreal t = acos(r/sqrt(q3));
// a/=3.;
// q = -2.*sqrt(q);
// x[0] = q*cos(t/3.)-a;
// x[1] = q*cos((t + M_2PI)/3.) - a;
// x[2] = q*cos((t - M_2PI)/3.) - a;
// return(3);
// } else {
// qreal aa,bb;
// if(r<=0.){
// r=-r;
// }
// aa = -pow(r + sqrt(r2-q3),1./3.);
// if(aa!=0.){
// bb=q/aa;
// } else {
// bb=0.;
// }
// a/=3.;
// q = aa+bb;
// r = aa-bb;
// x[0] = q-a;
// x[1] = (-0.5)*q-a;
// x[2] = (sqrt(3.)*0.5)*fabs(r);
// if(x[2]==0.){
// return(2);
// }
// return(1);
// }
//}
//
//qreal VSpline::calc_t (qreal curve_coord1, qreal curve_coord2, qreal curve_coord3,
// qreal curve_coord4, qreal point_coord) const{
// qreal P1, P2, P3, P4, Bt;
// qreal a, b, c, d, ret_t;
//
// qreal *t = static_cast<qreal *>(malloc(3*sizeof(qreal)));
// P1 = curve_coord1;
// P2 = curve_coord2;
// P3 = curve_coord3;
// P4 = curve_coord4;
// Bt = point_coord;
//
// a = -P1 + 3*P2 - 3*P3 + P4;
// b = 3*P1 - 6*P2 + 3*P3;
// c = -3*P1 + 3*P2;
// d = -Bt + P1;
//
// if(Cubic(t, b/a, c/a, d/a) == 3){
// ret_t = t[2];
// } else {
// ret_t = t[0];
// }
// /*
// * Повертається три значення, але експереминтально знайдено що шукане
// * значення знаходиться в третьому.
// */
//
// free(t);
// if(ret_t<0 || ret_t>1){
// qDebug()<<"Неправильне значення параметра. фунція calc_t";
// throw"Неправильне значення параметра. фунція calc_t";
// }
// return ret_t;
//}
2013-08-05 10:37:56 +02:00
/*
* Функція знаходить підходяще значення параметна t якому відповідає точка на сплайні.
*/
//qreal VSpline::param_t (QPointF pBt)const{
// qreal t_x, t_y;
// t_x = calc_t (GetPointP1().x(), p2.x(), p3.x(), GetPointP4().x(), pBt.x());
// t_y = calc_t (GetPointP1().y(), p2.y(), p3.y(), GetPointP4().y(), pBt.y());
// /*
// * Порівнюємо значення по х і по у і визначаємо найбільше. Це значення і
// * буде шуканим.
// */
// if(t_x>t_y)
// return t_x;
// else
// return t_y;
//}
//
2013-08-05 10:37:56 +02:00
//void VSpline::Mirror(const QPointF Pmirror){
// QPointF P1 = p1;
// P1 = QPointF(P1.x() - Pmirror.x(), P1.y() - Pmirror.y());
// P1 = QPointF(P1.x() * -1.0, P1.y() * 1.0);
// P1 = QPointF(P1.x() + Pmirror.x(), P1.y() + Pmirror.y());
// QPointF P2 = p2;
// P2 = QPointF(P2.x() - Pmirror.x(), P2.y() - Pmirror.y());
// P2 = QPointF(P2.x() * -1.0, P2.y() * 1.0);
// P2 = QPointF(P2.x() + Pmirror.x(), P2.y() + Pmirror.y());
// QPointF P3 = p3;
// P3 = QPointF(P3.x() - Pmirror.x(), P3.y() - Pmirror.y());
// P3 = QPointF(P3.x() * -1.0, P3.y() * 1.0);
// P3 = QPointF(P3.x() + Pmirror.x(), P3.y() + Pmirror.y());
// QPointF P4 = p4;
// P4 = QPointF(P4.x() - Pmirror.x(), P4.y() - Pmirror.y());
// P4 = QPointF(P4.x() * -1.0, P4.y() * 1.0);
// P4 = QPointF(P4.x() + Pmirror.x(), P4.y() + Pmirror.y());
// this->ModifiSpl(P1, P2, P3, P4);
//}
2013-08-28 10:55:11 +02:00
QVector<QPointF> VSpline::SplinePoints(const QPointF &p1, const QPointF &p4, qreal angle1, qreal angle2, qreal kAsm1,
qreal kAsm2, qreal kCurve)
{
2013-08-28 10:55:11 +02:00
QLineF p1pX(p1.x(), p1.y(), p1.x() + 100, p1.y());
p1pX.setAngle( angle1 );
qreal L = 0, radius = 0, angle = 90;
radius = QLineF(QPointF(p1.x(), p4.y()), p4).length();
2013-08-28 10:55:11 +02:00
L = kCurve * radius * 4 / 3 * tan( angle * M_PI / 180.0 / 4 );
QLineF p1p2(p1.x(), p1.y(), p1.x() + L * kAsm1, p1.y());
p1p2.setAngle(angle1);
QLineF p4p3(p4.x(), p4.y(), p4.x() + L * kAsm2, p4.y());
p4p3.setAngle(angle2);
QPointF p2 = p1p2.p2();
QPointF p3 = p4p3.p2();
return GetPoints(p1, p2, p3, p4);
}
VSpline &VSpline::operator =(const VSpline &spline)
{
this->p1 = spline.GetP1 ();
this->p2 = spline.GetP2 ();
this->p3 = spline.GetP3 ();
this->p4 = spline.GetP4 ();
this->angle1 = spline.GetAngle1 ();
this->angle2 = spline.GetAngle2 ();
this->kAsm1 = spline.GetKasm1();
this->kAsm2 = spline.GetKasm2();
this->kCurve = spline.GetKcurve();
this->points = spline.GetDataPoints();
this->mode = spline.getMode();
this->idObject = spline.getIdObject();
this->_name = spline.name();
return *this;
}