valentina_old/src/libs/vlayout/vabstractpiece.cpp

1806 lines
61 KiB
C++
Raw Normal View History

/************************************************************************
**
** @file
** @author Roman Telezhynskyi <dismine(at)gmail.com>
** @date 3 11, 2016
**
** @brief
** @copyright
** This source code is part of the Valentina project, a pattern making
** program, whose allow create and modeling patterns of clothing.
** Copyright (C) 2016 Valentina project
** <https://bitbucket.org/dismine/valentina> All Rights Reserved.
**
** Valentina is free software: you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** Valentina is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with Valentina. If not, see <http://www.gnu.org/licenses/>.
**
*************************************************************************/
#include "vabstractpiece.h"
#include "vabstractpiece_p.h"
#include "../vmisc/vabstractapplication.h"
#include "../vgeometry/vpointf.h"
#include "../ifc/exception/vexception.h"
#include "../vmisc/vmath.h"
#include "../vpatterndb/floatItemData/vgrainlinedata.h"
#include "../vpatterndb/vcontainer.h"
#include "../vpatterndb/calculator.h"
#include <QLineF>
#include <QSet>
#include <QVector>
#include <QPainterPath>
#include <QTemporaryFile>
const qreal maxL = 2.5;
const qreal VSAPoint::passmarkFactor = 0.5;
const qreal VSAPoint::maxPassmarkLength = (10/*mm*/ / 25.4) * PrintDPI;
namespace
{
// Do we create a point outside of a path?
inline bool IsOutsidePoint(QPointF p1, QPointF p2, QPointF px)
{
return qAbs(QLineF(p1, p2).angle() - QLineF(p1, px).angle()) < 0.001;
}
//---------------------------------------------------------------------------------------------------------------------
QVector<QPointF> SubPath(const QVector<QPointF> &path, int startIndex, int endIndex)
{
if (path.isEmpty()
|| startIndex < 0 || startIndex >= path.size()
|| endIndex < 0 || endIndex >= path.size()
|| startIndex == endIndex)
{
return path;
}
QVector<QPointF> subPath;
int i = startIndex - 1;
do
{
++i;
if (i >= path.size())
{
i = 0;
}
subPath.append(path.at(i));
} while (i != endIndex);
return subPath;
}
//---------------------------------------------------------------------------------------------------------------------
bool Crossing(const QVector<QPointF> &sub1, const QVector<QPointF> &sub2)
{
if (sub1.isEmpty() || sub2.isEmpty())
{
return false;
}
const QRectF sub1Rect = QPolygonF(sub1).boundingRect();
const QRectF sub2Rect = QPolygonF(sub2).boundingRect();
if (not sub1Rect.intersects(sub2Rect))
{
return false;
}
QPainterPath sub1Path;
sub1Path.setFillRule(Qt::WindingFill);
sub1Path.moveTo(sub1.at(0));
for (qint32 i = 1; i < sub1.count(); ++i)
{
sub1Path.lineTo(sub1.at(i));
}
sub1Path.lineTo(sub1.at(0));
QPainterPath sub2Path;
sub2Path.setFillRule(Qt::WindingFill);
sub2Path.moveTo(sub2.at(0));
for (qint32 i = 1; i < sub2.count(); ++i)
{
sub2Path.lineTo(sub2.at(i));
}
sub2Path.lineTo(sub2.at(0));
if (not sub1Path.intersects(sub2Path))
{
return false;
}
else
{
return true;
}
}
//---------------------------------------------------------------------------------------------------------------------
bool CheckIntersection(const QVector<QPointF> &points, int i, int iNext, int j, int jNext, const QPointF &crossPoint)
{
QVector<QPointF> sub1 = SubPath(points, iNext, j);
sub1.append(crossPoint);
sub1 = VAbstractPiece::CorrectEquidistantPoints(sub1, false);
const qreal sub1Sum = VAbstractPiece::SumTrapezoids(sub1);
QVector<QPointF> sub2 = SubPath(points, jNext, i);
sub2.append(crossPoint);
sub2 = VAbstractPiece::CorrectEquidistantPoints(sub2, false);
const qreal sub2Sum = VAbstractPiece::SumTrapezoids(sub2);
if (sub1Sum < 0 && sub2Sum < 0)
{
if (Crossing(sub1, sub2))
{
return true;
}
}
else
{
if (not Crossing(sub1, sub2))
{
return true;
}
}
return false;
}
//---------------------------------------------------------------------------------------------------------------------
bool ParallelCrossPoint(const QLineF &line1, const QLineF &line2, QPointF &point)
{
const bool l1p1el2p1 = (line1.p1() == line2.p1());
const bool l1p2el2p2 = (line1.p2() == line2.p2());
const bool l1p1el2p2 = (line1.p1() == line2.p2());
const bool l1p2el2p1 = (line1.p2() == line2.p1());
if (l1p2el2p2 || l1p2el2p1)
{
point = line1.p2();
return true;
}
else if (l1p1el2p1 || l1p1el2p2)
{
point = line1.p1();
return true;
}
else
{
point = QPointF();
return false;
}
}
//---------------------------------------------------------------------------------------------------------------------
Q_DECL_CONSTEXPR qreal PointPosition(const QPointF &p, const QLineF &line)
{
return (line.p2().x() - line.p1().x()) * (p.y() - line.p1().y()) -
(line.p2().y() - line.p1().y()) * (p.x() - line.p1().x());
}
//---------------------------------------------------------------------------------------------------------------------
QVector<QPointF> AngleByLength(QVector<QPointF> points, QPointF p2, const QLineF &bigLine1, QPointF sp2,
const QLineF &bigLine2, const VSAPoint &p, qreal width, bool *needRollback = nullptr)
{
if (needRollback != nullptr)
{
*needRollback = false;
}
const QPointF sp1 = bigLine1.p1();
const QPointF sp3 = bigLine2.p2();
const qreal localWidth = p.MaxLocalSA(width);
if (IsOutsidePoint(bigLine1.p1(), bigLine1.p2(), sp2) && IsOutsidePoint(bigLine2.p2(), bigLine2.p1(), sp2) )
{
QLineF line(p2, sp2);
const qreal length = line.length();
if (length > localWidth*maxL)
{ // Cutting too long acut angle
line.setLength(localWidth);
QLineF cutLine(line.p2(), sp2); // Cut line is a perpendicular
cutLine.setLength(length); // Decided to take this length
// We do not check intersection type because intersection must alwayse exist
QPointF px;
cutLine.setAngle(cutLine.angle()+90);
QLineF::IntersectType type = QLineF(sp1, sp2).intersect(cutLine, &px);
if (type == QLineF::NoIntersection)
{
qDebug()<<"Couldn't find intersection with cut line.";
}
points.append(px);
cutLine.setAngle(cutLine.angle()-180);
type = QLineF(sp2, sp3).intersect(cutLine, &px);
if (type == QLineF::NoIntersection)
{
qDebug()<<"Couldn't find intersection with cut line.";
}
points.append(px);
}
else
{// The point just fine
points.append(sp2);
}
}
else
{
if (not IsOutsidePoint(bigLine1.p1(), bigLine1.p2(), sp2))
{
if (p.GetAngleType() != PieceNodeAngle::ByLengthCurve)
{
bool success = false;
points = VAbstractPiece::RollbackSeamAllowance(points, bigLine2, &success);
if (needRollback != nullptr)
{
*needRollback = true;
}
}
else
{
points.append(sp2);
}
}
else
{
if (p.GetAngleType() != PieceNodeAngle::ByLengthCurve)
{
// Need to create artificial loop
QLineF loop1(sp2, sp1);
loop1.setLength(loop1.length()*0.1);
points.append(loop1.p2()); // Need for the main path rule
loop1.setAngle(loop1.angle() + 180);
loop1.setLength(localWidth);
points.append(loop1.p2());
points.append(bigLine2.p1());
}
else
{
points.append(sp2);
}
}
}
return points;
}
//---------------------------------------------------------------------------------------------------------------------
QVector<QPointF> AngleByIntersection(const QVector<QPointF> &points, QPointF p1, QPointF p2, QPointF p3,
const QLineF &bigLine1, QPointF sp2, const QLineF &bigLine2,
const VSAPoint &p, qreal width, bool *needRollback = nullptr)
{
if (needRollback != nullptr)
{
*needRollback = false;
}
const qreal localWidth = p.MaxLocalSA(width);
QVector<QPointF> pointsIntr = points;
// First point
QLineF edge2(p2, p3);
QPointF px;
QLineF::IntersectType type = edge2.intersect(bigLine1, &px);
if (type == QLineF::NoIntersection)
{
return AngleByLength(points, p2, bigLine1, sp2, bigLine2, p, width, needRollback);
}
if (IsOutsidePoint(bigLine1.p1(), bigLine1.p2(), px))
{
if (QLineF(p2, px).length() > localWidth*maxL)
{
return AngleByLength(points, p2, bigLine1, sp2, bigLine2, p, width, needRollback);
}
pointsIntr.append(px);
}
else
{// Because artificial loop can lead to wrong clipping we must rollback current seam allowance points
bool success = false;
pointsIntr = VAbstractPiece::RollbackSeamAllowance(pointsIntr, edge2, &success);
if (needRollback != nullptr)
{
*needRollback = true;
}
}
// Second point
QLineF edge1(p1, p2);
type = edge1.intersect(bigLine2, &px);
if (type == QLineF::NoIntersection)
{
return AngleByLength(points, p2, bigLine1, sp2, bigLine2, p, width, needRollback);
}
if (IsOutsidePoint(bigLine2.p2(), bigLine2.p1(), px))
{
pointsIntr.append(px);
}
else
{
QLineF allowance(p2, px);
pointsIntr.append(allowance.p2());
allowance.setLength(allowance.length() + localWidth * 3.);
pointsIntr.append(allowance.p2());
pointsIntr.append(bigLine2.p2());
}
return pointsIntr;
}
//---------------------------------------------------------------------------------------------------------------------
QVector<QPointF> AngleByFirstSymmetry(const QVector<QPointF> &points, QPointF p1, QPointF p2,
const QLineF &bigLine1, QPointF sp2, const QLineF &bigLine2,
const VSAPoint &p, qreal width, bool *needRollback = nullptr)
{
if (needRollback != nullptr)
{
*needRollback = false;
}
const QLineF axis = QLineF(p1, p2);
QLineF sEdge(VPointF::FlipPF(axis, bigLine2.p1()), VPointF::FlipPF(axis, bigLine2.p2()));
QPointF px1;
QLineF::IntersectType type = sEdge.intersect(bigLine1, &px1);
if (type == QLineF::NoIntersection)
{
return AngleByLength(points, p2, bigLine1, sp2, bigLine2, p, width, needRollback);
}
QPointF px2;
type = sEdge.intersect(bigLine2, &px2);
if (type == QLineF::NoIntersection)
{
return AngleByLength(points, p2, bigLine1, sp2, bigLine2, p, width, needRollback);
}
QVector<QPointF> pointsIntr = points;
if (IsOutsidePoint(bigLine1.p1(), bigLine1.p2(), px1))
{
pointsIntr.append(px1);
}
else
{// Because artificial loop can lead to wrong clipping we must rollback current seam allowance points
bool success = false;
pointsIntr = VAbstractPiece::RollbackSeamAllowance(pointsIntr, sEdge, &success);
if (needRollback != nullptr)
{
*needRollback = true;
}
}
if (IsOutsidePoint(bigLine2.p2(), bigLine2.p1(), px2))
{
pointsIntr.append(px2);
}
else
{
QLineF allowance(px2, p2);
allowance.setAngle(allowance.angle() + 90);
pointsIntr.append(allowance.p2());
pointsIntr.append(bigLine2.p1());
}
return pointsIntr;
}
//---------------------------------------------------------------------------------------------------------------------
QVector<QPointF> AngleBySecondSymmetry(const QVector<QPointF> &points, QPointF p2, QPointF p3,
const QLineF &bigLine1, QPointF sp2, const QLineF &bigLine2,
const VSAPoint &p, qreal width, bool *needRollback = nullptr)
{
if (needRollback != nullptr)
{
*needRollback = false;
}
const QLineF axis = QLineF(p3, p2);
QLineF sEdge(VPointF::FlipPF(axis, bigLine1.p1()), VPointF::FlipPF(axis, bigLine1.p2()));
QPointF px1;
QLineF::IntersectType type = sEdge.intersect(bigLine1, &px1);
if (type == QLineF::NoIntersection)
{
return AngleByLength(points, p2, bigLine1, sp2, bigLine2, p, width, needRollback);
}
QPointF px2;
type = sEdge.intersect(bigLine2, &px2);
if (type == QLineF::NoIntersection)
{
return AngleByLength(points, p2, bigLine1, sp2, bigLine2, p, width, needRollback);
}
const qreal localWidth = p.MaxLocalSA(width);
QVector<QPointF> pointsIntr = points;
bool rollbackFlag = false;
if (IsOutsidePoint(bigLine1.p1(), bigLine1.p2(), px1))
{
pointsIntr.append(px1);
}
else
{// Because artificial loop can lead to wrong clipping we must rollback current seam allowance points
bool success = false;
pointsIntr = VAbstractPiece::RollbackSeamAllowance(pointsIntr, sEdge, &success);
rollbackFlag = true;
if (needRollback != nullptr)
{
*needRollback = true;
}
}
if (IsOutsidePoint(bigLine2.p2(), bigLine2.p1(), px2))
{
if (not rollbackFlag)
{
pointsIntr.append(px2);
}
}
else
{
QLineF allowance(p2, px2);
allowance.setLength(p.GetSAAfter(width)*0.98);
pointsIntr.append(allowance.p2());
allowance.setLength(allowance.length() + localWidth * 3.);
pointsIntr.append(allowance.p2());
pointsIntr.append(bigLine2.p2());
}
return pointsIntr;
}
//---------------------------------------------------------------------------------------------------------------------
QVector<QPointF> AngleByFirstRightAngle(const QVector<QPointF> &points, QPointF p1, QPointF p2,
const QLineF &bigLine1, QPointF sp2, const QLineF &bigLine2,
const VSAPoint &p, qreal width, bool *needRollback = nullptr)
{
const qreal localWidth = p.MaxLocalSA(width);
QVector<QPointF> pointsRA = points;
QLineF edge(p1, p2);
QPointF px;
QLineF::IntersectType type = edge.intersect(bigLine2, &px);
if (type == QLineF::NoIntersection)
{
return AngleByLength(points, p2, bigLine1, sp2, bigLine2, p, width, needRollback);
}
QLineF seam(px, p1);
seam.setAngle(seam.angle()-90);
seam.setLength(p.GetSABefore(width));
pointsRA.append(seam.p2());
if (IsOutsidePoint(bigLine2.p2(), bigLine2.p1(), seam.p1()))
{
if (QLineF(p2, px).length() > localWidth*maxL)
{
return AngleByLength(points, p2, bigLine1, sp2, bigLine2, p, width, needRollback);
}
pointsRA.append(seam.p1());
}
else
{
QLineF loopLine(px, sp2);
const qreal length = loopLine.length()*0.98;
loopLine.setLength(length);
QLineF tmp(seam.p2(), seam.p1());
tmp.setLength(tmp.length()+length);
pointsRA.append(tmp.p2());
pointsRA.append(loopLine.p2());
}
return pointsRA;
}
//---------------------------------------------------------------------------------------------------------------------
QVector<QPointF> AngleBySecondRightAngle(QVector<QPointF> points, QPointF p2, QPointF p3,
const QLineF &bigLine1, QPointF sp2, const QLineF &bigLine2,
const VSAPoint &p, qreal width, bool *needRollback = nullptr)
{
if (needRollback != nullptr)
{
*needRollback = false;
}
const qreal localWidth = p.MaxLocalSA(width);
QLineF edge(p2, p3);
QPointF px;
QLineF::IntersectType type = edge.intersect(bigLine1, &px);
if (type == QLineF::NoIntersection)
{
return AngleByLength(points, p2, bigLine1, sp2, bigLine2, p, width, needRollback);
}
if (IsOutsidePoint(bigLine1.p1(), bigLine1.p2(), px))
{
if (QLineF(p2, px).length() > localWidth*maxL)
{
return AngleByLength(points, p2, bigLine1, sp2, bigLine2, p, width, needRollback);
}
points.append(px);
QLineF seam(px, p3);
seam.setAngle(seam.angle()+90);
seam.setLength(p.GetSAAfter(width));
points.append(seam.p2());
if (needRollback != nullptr)
{
*needRollback = true;
}
}
else
{
// Because artificial loop can lead to wrong clipping we must rollback current seam allowance points
bool success = false;
const int countBefore = points.size();
points = VAbstractPiece::RollbackSeamAllowance(points, edge, &success);
if (success)
{
px = points.last();
}
if (countBefore > 0)
{
QLineF seam(px, p3);
seam.setAngle(seam.angle()+90);
seam.setLength(p.GetSAAfter(width));
points.append(seam.p2());
}
else
{
if (needRollback != nullptr)
{
*needRollback = true;
}
}
}
return points;
}
//---------------------------------------------------------------------------------------------------------------------
QPointF SingleParallelPoint(const QPointF &p1, const QPointF &p2, qreal angle, qreal width)
{
QLineF pLine(p1, p2);
pLine.setAngle( pLine.angle() + angle );
pLine.setLength( width );
return pLine.p2();
}
//---------------------------------------------------------------------------------------------------------------------
QLineF SimpleParallelLine(const QPointF &p1, const QPointF &p2, qreal width)
{
const QLineF paralel = QLineF(SingleParallelPoint(p1, p2, 90, width),
SingleParallelPoint(p2, p1, -90, width));
return paralel;
}
//---------------------------------------------------------------------------------------------------------------------
QLineF BisectorLine(const QPointF &p1, const QPointF &p2, const QPointF &p3)
{
QLineF line1(p2, p1);
QLineF line2(p2, p3);
QLineF bLine;
const qreal angle1 = line1.angleTo(line2);
const qreal angle2 = line2.angleTo(line1);
if (angle1 <= angle2)
{
bLine = line1;
bLine.setAngle(bLine.angle() + angle1/2.0);
}
else
{
bLine = line2;
bLine.setAngle(bLine.angle() + angle2/2.0);
}
return bLine;
}
//---------------------------------------------------------------------------------------------------------------------
qreal AngleBetweenBisectors(const QLineF &b1, const QLineF &b2)
{
const QLineF newB2 = b2.translated(-(b2.p1().x() - b1.p1().x()), -(b2.p1().y() - b1.p1().y()));
qreal angle1 = newB2.angleTo(b1);
if (VFuzzyComparePossibleNulls(angle1, 360))
{
angle1 = 0;
}
qreal angle2 = b1.angleTo(newB2);
if (VFuzzyComparePossibleNulls(angle2, 360))
{
angle2 = 0;
}
return qMin(angle1, angle2);
}
//---------------------------------------------------------------------------------------------------------------------
#if !defined(V_NO_ASSERT)
// Use for writing tests
void DumpVector(const QVector<QPointF> &points)
{
QTemporaryFile temp; // Go to tmp folder to find dump
temp.setAutoRemove(false); // Remove dump manually
if (temp.open())
{
QTextStream out(&temp);
out << "QVector<QPointF> points;" << endl << endl;
for(auto point : points)
{
out << QString("points += QPointF(%1, %2);").arg(point.x(), 0, 'f', 15).arg(point.y(), 0, 'f', 15) << endl;
}
out << endl << "return points;";
}
}
//---------------------------------------------------------------------------------------------------------------------
// Use for writing tests
void DumpVector(const QVector<VSAPoint> &points)
{
QTemporaryFile temp; // Go to tmp folder to find dump
temp.setAutoRemove(false); // Remove dump manually
if (temp.open())
{
QTextStream out(&temp);
out << "QVector<VSAPoint> points;" << endl;
bool firstPoint = true;
enum PointType {Unknown, Default, Custom};
PointType type = Unknown;
for(auto point : points)
{
if (VFuzzyComparePossibleNulls(point.GetSAAfter(), -1)
and VFuzzyComparePossibleNulls(point.GetSABefore(), -1)
and point.GetAngleType() == PieceNodeAngle::ByLength)
{
if (type != Default)
{
out << endl;
}
type = Default;
out << QString("points += VSAPoint(%1, %2);").arg(point.x(), 0, 'f', 15).arg(point.y(), 0, 'f', 15)
<< endl;
}
else
{
out << endl;
type = Custom;
if (firstPoint)
{
out << "VSAPoint ";
firstPoint = false;
}
out << QString("p = VSAPoint(%1, %2);").arg(point.x(), 0, 'f', 15).arg(point.y(), 0, 'f', 15) << endl;
if (not VFuzzyComparePossibleNulls(point.GetSABefore(), -1))
{
out << QString("p.SetSABefore(%1);").arg(point.GetSABefore()) << endl;
}
if (not VFuzzyComparePossibleNulls(point.GetSAAfter(), -1))
{
out << QString("p.SetSAAfter(%1);").arg(point.GetSAAfter()) << endl;
}
if (point.GetAngleType() != PieceNodeAngle::ByLength)
{
QT_WARNING_PUSH
QT_WARNING_DISABLE_GCC("-Wswitch-default")
// This check helps to find missed angle types in the switch
Q_STATIC_ASSERT_X(static_cast<int>(PieceNodeAngle::LAST_ONE_DO_NOT_USE) == 7,
"Not all types were handled.");
QString typeStr;
switch (point.GetAngleType())
{
case PieceNodeAngle::LAST_ONE_DO_NOT_USE:
case PieceNodeAngle::ByLength:
Q_UNREACHABLE(); //-V501
break;
case PieceNodeAngle::ByPointsIntersection:
typeStr = "ByPointsIntersection";
break;
case PieceNodeAngle::ByFirstEdgeSymmetry:
typeStr = "ByFirstEdgeSymmetry";
break;
case PieceNodeAngle::BySecondEdgeSymmetry:
typeStr = "BySecondEdgeSymmetry";
break;
case PieceNodeAngle::ByFirstEdgeRightAngle:
typeStr = "ByFirstEdgeRightAngle";
break;
case PieceNodeAngle::BySecondEdgeRightAngle:
typeStr = "BySecondEdgeRightAngle";
break;
case PieceNodeAngle::ByLengthCurve:
typeStr = "ByLengthCurve";
break;
}
QT_WARNING_POP
out << QString("p.SetAngleType(PieceNodeAngle::%1);").arg(typeStr) << endl;
}
out << "points += p;" << endl;
}
}
out << endl << "return points;";
}
}
#endif
}
//---------------------------------------------------------------------------------------------------------------------
VAbstractPiece::VAbstractPiece()
: d(new VAbstractPieceData)
{}
//---------------------------------------------------------------------------------------------------------------------
VAbstractPiece::VAbstractPiece(const VAbstractPiece &piece)
:d (piece.d)
{}
//---------------------------------------------------------------------------------------------------------------------
VAbstractPiece &VAbstractPiece::operator=(const VAbstractPiece &piece)
{
if ( &piece == this )
{
return *this;
}
d = piece.d;
return *this;
}
//---------------------------------------------------------------------------------------------------------------------
VAbstractPiece::~VAbstractPiece()
{}
//---------------------------------------------------------------------------------------------------------------------
QString VAbstractPiece::GetName() const
{
return d->m_name;
}
//---------------------------------------------------------------------------------------------------------------------
void VAbstractPiece::SetName(const QString &value)
{
d->m_name = value;
}
//---------------------------------------------------------------------------------------------------------------------
bool VAbstractPiece::IsForbidFlipping() const
{
return d->m_forbidFlipping;
}
//---------------------------------------------------------------------------------------------------------------------
void VAbstractPiece::SetForbidFlipping(bool value)
{
d->m_forbidFlipping = value;
if (value)
{
SetForceFlipping(not value);
}
}
//---------------------------------------------------------------------------------------------------------------------
bool VAbstractPiece::IsForceFlipping() const
{
return d->m_forceFlipping;
}
//---------------------------------------------------------------------------------------------------------------------
void VAbstractPiece::SetForceFlipping(bool value)
{
d->m_forceFlipping = value;
if (value)
{
SetForbidFlipping(not value);
}
}
//---------------------------------------------------------------------------------------------------------------------
bool VAbstractPiece::IsSeamAllowance() const
{
return d->m_seamAllowance;
}
//---------------------------------------------------------------------------------------------------------------------
void VAbstractPiece::SetSeamAllowance(bool value)
{
d->m_seamAllowance = value;
}
//---------------------------------------------------------------------------------------------------------------------
bool VAbstractPiece::IsSeamAllowanceBuiltIn() const
{
return d->m_seamAllowanceBuiltIn;
}
//---------------------------------------------------------------------------------------------------------------------
void VAbstractPiece::SetSeamAllowanceBuiltIn(bool value)
{
d->m_seamAllowanceBuiltIn = value;
}
//---------------------------------------------------------------------------------------------------------------------
bool VAbstractPiece::IsHideMainPath() const
{
return d->m_hideMainPath;
}
//---------------------------------------------------------------------------------------------------------------------
void VAbstractPiece::SetHideMainPath(bool value)
{
d->m_hideMainPath = value;
}
//---------------------------------------------------------------------------------------------------------------------
qreal VAbstractPiece::GetSAWidth() const
{
return d->m_width;
}
//---------------------------------------------------------------------------------------------------------------------
void VAbstractPiece::SetSAWidth(qreal value)
{
value >= 0 ? d->m_width = value : d->m_width = 0;
}
//---------------------------------------------------------------------------------------------------------------------
QVector<QPointF> VAbstractPiece::Equidistant(QVector<VSAPoint> points, qreal width, const QString &name)
{
if (width < 0)
{
qDebug()<<"Width < 0.";
return QVector<QPointF>();
}
// DumpVector(points); // Uncomment for dumping test data
points = CorrectEquidistantPoints(points);
if ( points.size() < 3 )
{
const QString errorMsg = QObject::tr("Piece '%1'. Not enough points to build seam allowance.").arg(name);
qApp->IsPedantic() ? throw VException(errorMsg) : qWarning() << errorMsg;
return QVector<QPointF>();
}
// Fix distorsion
points = CorrectPathDistortion(points);
if (points.last().toPoint() != points.first().toPoint())
{
points.append(points.at(0));// Should be always closed
}
bool needRollback = false; // no need for rollback
QVector<QPointF> ekvPoints;
for (qint32 i = 0; i < points.size(); ++i )
{
if ( i == 0)
{//first point
ekvPoints = EkvPoint(ekvPoints, points.at(points.size()-2), points.at(points.size()-1), points.at(1),
points.at(0), width, &needRollback);
continue;
}
if (i == points.size()-1)
{//last point
if (not ekvPoints.isEmpty())
{
ekvPoints.append(ekvPoints.first());
}
continue;
}
//points in the middle of polyline
ekvPoints = EkvPoint(ekvPoints, points.at(i-1), points.at(i), points.at(i+1), points.at(i), width);
}
if (needRollback)
{
auto Rollback = [&ekvPoints](const QLineF &edge)
{
if (not ekvPoints.isEmpty())
{
ekvPoints.removeLast();
bool success = false;
ekvPoints = RollbackSeamAllowance(ekvPoints, edge, &success);
if (not ekvPoints.isEmpty())
{
if (ekvPoints.last().toPoint() != ekvPoints.first().toPoint())
{
ekvPoints.append(ekvPoints.first());// Should be always closed
}
}
}
};
QT_WARNING_PUSH
QT_WARNING_DISABLE_GCC("-Wswitch-default")
// This check helps to find missed angle types in the switch
Q_STATIC_ASSERT_X(static_cast<int>(PieceNodeAngle::LAST_ONE_DO_NOT_USE) == 7, "Not all types were handled.");
switch (points.last().GetAngleType())
{
case PieceNodeAngle::LAST_ONE_DO_NOT_USE:
case PieceNodeAngle::ByFirstEdgeRightAngle:
Q_UNREACHABLE(); //-V501
break;
case PieceNodeAngle::ByLength:
case PieceNodeAngle::ByLengthCurve:
case PieceNodeAngle::ByFirstEdgeSymmetry:
case PieceNodeAngle::BySecondEdgeSymmetry:
Rollback(ParallelLine(points.at(0), points.at(1), width));
break;
case PieceNodeAngle::ByPointsIntersection:
Rollback(QLineF(points.last(), points.at(1)));
break;
case PieceNodeAngle::BySecondEdgeRightAngle:
if (not ekvPoints.isEmpty())
{
const QLineF edge(points.last(), points.at(1));
const QLineF bigLine1 = ParallelLine(points.at(points.size()-2), points.at(0), width);
QPointF px;
edge.intersect(bigLine1, &px);
ekvPoints.removeLast();
if (IsOutsidePoint(bigLine1.p1(), bigLine1.p2(), px))
{
if (ekvPoints.size() > 3)
{
const QLineF edge1(ekvPoints.at(ekvPoints.size()-2), ekvPoints.last());
const QLineF edge2(ekvPoints.at(0), ekvPoints.at(1));
QPointF crosPoint;
const QLineF::IntersectType type = edge1.intersect(edge2, &crosPoint );
if (type == QLineF::BoundedIntersection)
{
ekvPoints.removeFirst();
ekvPoints.removeLast();
ekvPoints.append(crosPoint);
}
}
}
else
{
bool success = false;
ekvPoints = RollbackSeamAllowance(ekvPoints, edge, &success);
if (success)
{
px = ekvPoints.last();
}
QLineF seam(px, points.at(1));
seam.setAngle(seam.angle()+90);
seam.setLength(points.at(0).GetSAAfter(width));
ekvPoints.append(seam.p2());
if (not ekvPoints.isEmpty())
{
ekvPoints.append(ekvPoints.first());
}
}
if (not ekvPoints.isEmpty())
{
if (ekvPoints.last().toPoint() != ekvPoints.first().toPoint())
{
ekvPoints.append(ekvPoints.first());// Should be always closed
}
}
}
break;
}
QT_WARNING_POP
}
const bool removeFirstAndLast = false;
ekvPoints = CheckLoops(CorrectEquidistantPoints(ekvPoints, removeFirstAndLast));//Result path can contain loops
ekvPoints = CheckLoops(CorrectEquidistantPoints(ekvPoints, removeFirstAndLast));//Result path can contain loops
// DumpVector(ekvPoints); // Uncomment for dumping test data
return ekvPoints;
}
//---------------------------------------------------------------------------------------------------------------------
qreal VAbstractPiece::SumTrapezoids(const QVector<QPointF> &points)
{
// Calculation a polygon area through the sum of the areas of trapezoids
qreal s, res = 0;
const int n = points.size();
if(n > 2)
{
for (int i = 0; i < n; ++i)
{
if (i == 0)
{
//if i == 0, then y[i-1] replace on y[n-1]
s = points.at(i).x()*(points.at(n-1).y() - points.at(i+1).y());
res += s;
}
else
{
if (i == n-1)
{
// if i == n-1, then y[i+1] replace on y[0]
s = points.at(i).x()*(points.at(i-1).y() - points.at(0).y());
res += s;
}
else
{
s = points.at(i).x()*(points.at(i-1).y() - points.at(i+1).y());
res += s;
}
}
}
}
return res;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief CheckLoops seek and delete loops in equidistant.
* @param points vector of points of equidistant.
* @return vector of points of equidistant.
*/
QVector<QPointF> VAbstractPiece::CheckLoops(const QVector<QPointF> &points)
{
int count = points.size();
/*If we got less than 4 points no need seek loops.*/
if (count < 4)
{
return points;
}
const bool pathClosed = (points.first() == points.last());
QVector<QPointF> ekvPoints;
ekvPoints.reserve(points.size());
QVector<qint32> uniqueVertices;
uniqueVertices.reserve(4);
qint32 i, j, jNext = 0;
for (i = 0; i < count; ++i)
{
/*Last three points no need check.*/
/*Triangle has not contain loops*/
if (i > count-3)
{
ekvPoints.append(points.at(i));
continue;
}
enum LoopIntersectType { NoIntersection, BoundedIntersection, ParallelIntersection };
QPointF crosPoint;
LoopIntersectType status = NoIntersection;
const QLineF line1(points.at(i), points.at(i+1));
// Because a path can contains several loops we will seek the last and only then remove the loop(s)
// That's why we parse from the end
for (j = count-1; j >= i+2; --j)
{
j == count-1 ? jNext = 0 : jNext = j+1;
QLineF line2(points.at(j), points.at(jNext));
if(qFuzzyIsNull(line2.length()))
{//If a path is closed the edge (count-1;0) length will be 0
continue;
}
uniqueVertices.clear();
auto AddUniqueIndex = [&uniqueVertices](qint32 i)
{
if (not uniqueVertices.contains(i))
{
uniqueVertices.append(i);
}
};
AddUniqueIndex(i);
AddUniqueIndex(i+1);
AddUniqueIndex(j);
// For closed path last point is equal to first. Using index of the first.
pathClosed && jNext == count-1 ? AddUniqueIndex(0) : AddUniqueIndex(jNext);
const QLineF::IntersectType intersect = line1.intersect(line2, &crosPoint);
if (intersect == QLineF::NoIntersection)
{ // According to the documentation QLineF::NoIntersection indicates that the lines do not intersect;
// i.e. they are parallel. But parallel also mean they can be on the same line.
// Method IsPointOnLineviaPDP will check it.
if (VGObject::IsPointOnLineviaPDP(points.at(j), points.at(i), points.at(i+1))
// Lines are not neighbors
&& uniqueVertices.size() == 4)
{
// Left to catch case where segments are on the same line, but do not have real intersections.
QLineF tmpLine1 = line1;
QLineF tmpLine2 = line2;
tmpLine1.setAngle(tmpLine1.angle()+90);
QPointF tmpCrosPoint;
const QLineF::IntersectType tmpIntrs1 = tmpLine1.intersect(tmpLine2, &tmpCrosPoint);
tmpLine1 = line1;
tmpLine2.setAngle(tmpLine2.angle()+90);
const QLineF::IntersectType tmpIntrs2 = tmpLine1.intersect(tmpLine2, &tmpCrosPoint);
if (tmpIntrs1 == QLineF::BoundedIntersection || tmpIntrs2 == QLineF::BoundedIntersection)
{ // Now we really sure that lines are on the same lines and have real intersections.
QPointF cPoint;
const bool caseFlag = ParallelCrossPoint(line1, line2, cPoint);
if (not caseFlag || CheckIntersection(points, i, i+1, j, jNext, cPoint))
{
status = ParallelIntersection;
break;
}
}
}
}
else if (intersect == QLineF::BoundedIntersection)
{
if (uniqueVertices.size() == 4)
{ // Break, but not if lines are neighbors
if ((line1.p1() != crosPoint
&& line1.p2() != crosPoint
&& line2.p1() != crosPoint
&& line2.p2() != crosPoint) || CheckIntersection(points, i, i+1, j, jNext, crosPoint))
{
status = BoundedIntersection;
break;
}
}
}
status = NoIntersection;
}
switch (status)
{
case ParallelIntersection:
/*We have found a loop.*/
ekvPoints.append(points.at(i));
ekvPoints.append(points.at(jNext));
jNext > j ? i = jNext : i = j; // Skip a loop
break;
case BoundedIntersection:
ekvPoints.append(points.at(i));
ekvPoints.append(crosPoint);
i = j;
break;
case NoIntersection:
/*We have not found loop.*/
ekvPoints.append(points.at(i));
break;
default:
break;
}
}
return ekvPoints;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief EkvPoint return seam aloowance points in place of intersection two edges. Last points of two edges should be
* equal.
* @param width global seam allowance width.
* @return seam aloowance points.
*/
QVector<QPointF> VAbstractPiece::EkvPoint(QVector<QPointF> points, const VSAPoint &p1Line1, VSAPoint p2Line1,
const VSAPoint &p1Line2, VSAPoint p2Line2, qreal width, bool *needRollback)
{
if (width < 0)
{ // width can't be < 0
return QVector<QPointF>();
}
if (p2Line1 != p2Line2)
{
qDebug()<<"Last points of two lines must be equal.";
return QVector<QPointF>(); // Wrong edges
}
const QLineF bigLine1 = ParallelLine(p1Line1, p2Line1, width );
const QLineF bigLine2 = ParallelLine(p2Line2, p1Line2, width );
if (VFuzzyComparePoints(bigLine1.p2(), bigLine2.p1()))
{
points.append(bigLine1.p2());
return points;
}
QPointF crosPoint;
const QLineF::IntersectType type = bigLine1.intersect( bigLine2, &crosPoint );
switch (type)
{// There are at least three big cases
case (QLineF::BoundedIntersection):
// The easiest, real intersection
points.append(crosPoint);
return points;
case (QLineF::UnboundedIntersection):
{ // Most common case
/* Case when a path has point on line (both segments lie on the same line) and seam allowance creates
* prong. */
auto IsOnLine = [](const QPointF &base, const QPointF &sp1, const QPointF &sp2)
{
if (not VFuzzyComparePoints(base, sp1))
{
return VGObject::IsPointOnLineviaPDP(sp2, base, sp1);
}
if (not VFuzzyComparePoints(base, sp2))
{
return VGObject::IsPointOnLineviaPDP(sp1, base, sp2);
}
return true;
};
if (VGObject::IsPointOnLineSegment(p2Line1, p1Line1, p1Line2)
&& IsOnLine(p2Line1, bigLine1.p2(), bigLine2.p1()))
{
points.append(bigLine1.p2());
points.append(bigLine2.p1());
return points;
}
const qreal localWidth = p2Line1.MaxLocalSA(width);
QLineF line( p2Line1, crosPoint );
// Checking two subcases
const QLineF b1 = BisectorLine(p1Line1, p2Line1, p1Line2);
const QLineF b2 = BisectorLine(bigLine1.p1(), crosPoint, bigLine2.p2());
const qreal angle = AngleBetweenBisectors(b1, b2);
// Comparison bisector angles helps to find direction
if (angle < 135
|| VFuzzyComparePossibleNulls(angle, 135.0))// Go in a same direction
{//Regular equdistant case
QT_WARNING_PUSH
QT_WARNING_DISABLE_GCC("-Wswitch-default")
// This check helps to find missed angle types in the switch
Q_STATIC_ASSERT_X(static_cast<int>(PieceNodeAngle::LAST_ONE_DO_NOT_USE) == 7,
"Not all types were handled.");
switch (p2Line1.GetAngleType())
{
case PieceNodeAngle::LAST_ONE_DO_NOT_USE:
Q_UNREACHABLE(); //-V501
break;
case PieceNodeAngle::ByLength:
case PieceNodeAngle::ByLengthCurve:
return AngleByLength(points, p2Line1, bigLine1, crosPoint, bigLine2, p2Line1, width,
needRollback);
case PieceNodeAngle::ByPointsIntersection:
return AngleByIntersection(points, p1Line1, p2Line1, p1Line2, bigLine1, crosPoint, bigLine2,
p2Line1, width, needRollback);
case PieceNodeAngle::ByFirstEdgeSymmetry:
return AngleByFirstSymmetry(points, p1Line1, p2Line1, bigLine1, crosPoint, bigLine2,
p2Line1, width, needRollback);
case PieceNodeAngle::BySecondEdgeSymmetry:
return AngleBySecondSymmetry(points, p2Line1, p1Line2, bigLine1, crosPoint, bigLine2,
p2Line1, width, needRollback);
case PieceNodeAngle::ByFirstEdgeRightAngle:
return AngleByFirstRightAngle(points, p1Line1, p2Line1, bigLine1, crosPoint, bigLine2,
p2Line1, width, needRollback);
case PieceNodeAngle::BySecondEdgeRightAngle:
return AngleBySecondRightAngle(points, p2Line1, p1Line2, bigLine1, crosPoint, bigLine2,
p2Line1, width, needRollback);
}
QT_WARNING_POP
}
else
{ // Different directions
QLineF bisector(p2Line1, p1Line1);
bisector.setAngle(b1.angle());
const qreal result1 = PointPosition(bisector.p2(), QLineF(p1Line1, p2Line1));
const qreal result2 = PointPosition(bisector.p2(), QLineF(p2Line2, p1Line2));
if ((result1 < 0 || qFuzzyIsNull(result1)) && (result2 < 0 || qFuzzyIsNull(result2)))
{// Dart case. A bisector watch outside. In some cases a point still valid, but ignore if going
// outside of an equdistant.
const QLineF bigEdge = ParallelLine(p1Line1, p1Line2, localWidth );
QPointF px;
const QLineF::IntersectType type = bigEdge.intersect(line, &px);
if (type != QLineF::BoundedIntersection)
{
if (line.length() < QLineF(p2Line1, px).length())
{
points.append(crosPoint);
return points;
}
}
}
else
{ // New subcase. This is not a dart. An angle is acute and bisector watch inside.
const qreal result1 = PointPosition(crosPoint, QLineF(p1Line1, p2Line1));
const qreal result2 = PointPosition(crosPoint, QLineF(p2Line2, p1Line2));
if ((result1 < 0 || qFuzzyIsNull(result1)) && (result2 < 0 || qFuzzyIsNull(result2)))
{// The cross point is still outside of a piece
if (line.length() >= localWidth)
{
points.append(crosPoint);
return points;
}
else
{// but not enough far, fix it
line.setLength(localWidth);
points.append(line.p2());
return points;
}
}
else
{// Wrong cross point, probably inside of a piece. Manually creating correct seam allowance
const QLineF bigEdge = SimpleParallelLine(bigLine1.p2(), bigLine2.p1(), localWidth );
points.append(bigEdge.p1());
points.append(bigEdge.p2());
return points;
}
}
}
break;
}
case (QLineF::NoIntersection):
/*If we have correct lines this means lines lie on a line or parallel.*/
points.append(bigLine1.p2());
points.append(bigLine2.p1()); // Second point for parallel line
return points;
default:
break;
}
return points;
}
//---------------------------------------------------------------------------------------------------------------------
QLineF VAbstractPiece::ParallelLine(const VSAPoint &p1, const VSAPoint &p2, qreal width)
{
qreal w1 = p1.GetSAAfter();
if (w1 < 0)
{
w1 = width;
}
qreal w2 = p2.GetSABefore();
if (w2 < 0)
{
w2 = width;
}
const QLineF paralel = QLineF(SingleParallelPoint(p1, p2, 90, w1),
SingleParallelPoint(p2, p1, -90, w2));
return paralel;
}
//---------------------------------------------------------------------------------------------------------------------
bool VAbstractPiece::IsAllowanceValid(const QVector<QPointF> &base, const QVector<QPointF> &allowance)
{
if (base.size() < 3 || allowance.size() < 3)
{
return false; // Not enough data
}
// DumpVector(base); // Uncomment for dumping test data
// DumpVector(allowance); // Uncomment for dumping test data
const qreal baseDirection = VPiece::SumTrapezoids(base);
const qreal allowanceDirection = VPiece::SumTrapezoids(allowance);
if (baseDirection >= 0 || allowanceDirection >= 0)
{
return false; // Wrong direction
}
for (auto i = 0; i < base.count()-1; ++i)
{
QLineF baseSegment(base.at(i), base.at(i+1));
if (baseSegment.isNull())
{
continue;
}
for (auto j = 0; j < allowance.count()-1; ++j)
{
QLineF allowanceSegment(allowance.at(j), allowance.at(j+1));
if (allowanceSegment.isNull())
{
continue;
}
QPointF crosPoint;
const auto type = baseSegment.intersect(allowanceSegment, &crosPoint);
if (type == QLineF::BoundedIntersection
&& not VFuzzyComparePoints(baseSegment.p1(), crosPoint)
&& not VFuzzyComparePoints(baseSegment.p2(), crosPoint)
&& not VGObject::IsPointOnLineviaPDP(allowanceSegment.p1(), baseSegment.p1(), baseSegment.p2())
&& not VGObject::IsPointOnLineviaPDP(allowanceSegment.p2(), baseSegment.p1(), baseSegment.p2()))
{
return false;
}
}
}
return true;
}
//---------------------------------------------------------------------------------------------------------------------
bool VAbstractPiece::IsEkvPointOnLine(const QPointF &iPoint, const QPointF &prevPoint, const QPointF &nextPoint)
{
return VGObject::IsPointOnLineviaPDP(iPoint, prevPoint, nextPoint);
}
//---------------------------------------------------------------------------------------------------------------------
bool VAbstractPiece::IsEkvPointOnLine(const VSAPoint &iPoint, const VSAPoint &prevPoint, const VSAPoint &nextPoint)
{
// See bug #671
const qreal tmpWidth = 10;
const QLineF bigLine1 = ParallelLine(prevPoint, iPoint, tmpWidth );
const QLineF bigLine2 = ParallelLine(iPoint, nextPoint, tmpWidth );
return (VGObject::IsPointOnLineviaPDP(iPoint, prevPoint, nextPoint)
&& VGObject::IsPointOnLineviaPDP(bigLine1.p2(), bigLine1.p1(), bigLine2.p2())
&& VGObject::IsPointOnLineviaPDP(bigLine2.p1(), bigLine1.p1(), bigLine2.p2())
&& qAbs(prevPoint.GetSAAfter(tmpWidth) - nextPoint.GetSABefore(tmpWidth)) < accuracyPointOnLine);
}
//---------------------------------------------------------------------------------------------------------------------
qreal VAbstractPiece::GetMx() const
{
return d->m_mx;
}
//---------------------------------------------------------------------------------------------------------------------
void VAbstractPiece::SetMx(qreal value)
{
d->m_mx = value;
}
//---------------------------------------------------------------------------------------------------------------------
qreal VAbstractPiece::GetMy() const
{
return d->m_my;
}
//---------------------------------------------------------------------------------------------------------------------
void VAbstractPiece::SetMy(qreal value)
{
d->m_my = value;
}
//---------------------------------------------------------------------------------------------------------------------
qreal VSAPoint::GetSABefore(qreal width) const
{
if (m_before < 0)
{
return width;
}
return m_before;
}
//---------------------------------------------------------------------------------------------------------------------
qreal VSAPoint::GetSAAfter(qreal width) const
{
if (m_after < 0)
{
return width;
}
return m_after;
}
//---------------------------------------------------------------------------------------------------------------------
qreal VSAPoint::MaxLocalSA(qreal width) const
{
qreal w1 = GetSAAfter();
if (w1 < 0)
{
w1 = width;
}
qreal w2 = GetSABefore();
if (w2 < 0)
{
w2 = width;
}
return qMax(w1, w2);
}
//---------------------------------------------------------------------------------------------------------------------
qreal VSAPoint::PassmarkLength(qreal width) const
{
if (not m_manualPassmarkLength)
{
qreal passmarkLength = MaxLocalSA(width) * passmarkFactor;
passmarkLength = qMin(passmarkLength, maxPassmarkLength);
return passmarkLength;
}
else
{
return m_passmarkLength;
}
}
//---------------------------------------------------------------------------------------------------------------------
// Because artificial loop can lead to wrong clipping we must rollback current seam allowance points
QVector<QPointF> VAbstractPiece::RollbackSeamAllowance(QVector<QPointF> points, const QLineF &cuttingEdge,
bool *success)
{
*success = false;
QVector<QPointF> clipped;
clipped.reserve(points.count()+1);
for (int i = points.count()-1; i > 0; --i)
{
QLineF segment(points.at(i), points.at(i-1));
QPointF crosPoint;
const QLineF::IntersectType type = cuttingEdge.intersect(segment, &crosPoint);
if (type != QLineF::NoIntersection
&& VGObject::IsPointOnLineSegment(crosPoint, segment.p1(), segment.p2())
&& IsOutsidePoint(cuttingEdge.p2(), cuttingEdge.p1(), crosPoint))
{
clipped.append(crosPoint);
for (int j=i-1; j>=0; --j)
{
clipped.append(points.at(j));
}
points = VGObject::GetReversePoints(clipped);
*success = true;
break;
}
}
if (not *success && points.size() > 1)
{
QPointF crosPoint;
QLineF secondLast(points.at(points.size()-2), points.at(points.size()-1));
QLineF::IntersectType type = secondLast.intersect(cuttingEdge, &crosPoint);
if (type != QLineF::NoIntersection && IsOutsidePoint(secondLast.p1(), secondLast.p2(), crosPoint))
{
points.append(crosPoint);
*success = true;
}
}
return points;
}
//---------------------------------------------------------------------------------------------------------------------
bool VAbstractPiece::IsItemContained(const QRectF &parentBoundingRect, const QVector<QPointF> &shape, qreal &dX,
qreal &dY)
{
dX = 0;
dY = 0;
// single point differences
bool bInside = true;
for (auto p : shape)
{
qreal dPtX = 0;
qreal dPtY = 0;
if (not parentBoundingRect.contains(p))
{
if (p.x() < parentBoundingRect.left())
{
dPtX = parentBoundingRect.left() - p.x();
}
else if (p.x() > parentBoundingRect.right())
{
dPtX = parentBoundingRect.right() - p.x();
}
if (p.y() < parentBoundingRect.top())
{
dPtY = parentBoundingRect.top() - p.y();
}
else if (p.y() > parentBoundingRect.bottom())
{
dPtY = parentBoundingRect.bottom() - p.y();
}
if (qAbs(dPtX) > qAbs(dX))
{
dX = dPtX;
}
if (qAbs(dPtY) > qAbs(dY))
{
dY = dPtY;
}
bInside = false;
}
}
return bInside;
}
//---------------------------------------------------------------------------------------------------------------------
QVector<QPointF> VAbstractPiece::CorrectPosition(const QRectF &parentBoundingRect, QVector<QPointF> points)
{
qreal dX = 0;
qreal dY = 0;
if (not IsItemContained(parentBoundingRect, points, dX, dY))
{
for (int i =0; i < points.size(); ++i)
{
points[i] = QPointF(points.at(i).x() + dX, points.at(i).y() + dY);
}
}
return points;
}
//---------------------------------------------------------------------------------------------------------------------
bool VAbstractPiece::FindGrainlineGeometry(const VGrainlineData& geom, const VContainer *pattern, qreal &length,
qreal &rotationAngle, QPointF &pos)
{
SCASSERT(pattern != nullptr)
const quint32 topPin = geom.TopPin();
const quint32 bottomPin = geom.BottomPin();
if (topPin != NULL_ID && bottomPin != NULL_ID)
{
try
{
const auto topPinPoint = pattern->GeometricObject<VPointF>(topPin);
const auto bottomPinPoint = pattern->GeometricObject<VPointF>(bottomPin);
QLineF grainline(static_cast<QPointF>(*bottomPinPoint), static_cast<QPointF>(*topPinPoint));
length = grainline.length();
rotationAngle = grainline.angle();
if (not VFuzzyComparePossibleNulls(rotationAngle, 0))
{
grainline.setAngle(0);
}
pos = grainline.p1();
rotationAngle = qDegreesToRadians(rotationAngle);
return true;
}
catch(const VExceptionBadId &)
{
// do nothing.
}
}
try
{
Calculator cal1;
rotationAngle = cal1.EvalFormula(pattern->DataVariables(), geom.GetRotation());
rotationAngle = qDegreesToRadians(rotationAngle);
Calculator cal2;
length = cal2.EvalFormula(pattern->DataVariables(), geom.GetLength());
length = ToPixel(length, *pattern->GetPatternUnit());
}
catch(qmu::QmuParserError &e)
{
Q_UNUSED(e);
return false;
}
const quint32 centerPin = geom.CenterPin();
if (centerPin != NULL_ID)
{
try
{
const auto centerPinPoint = pattern->GeometricObject<VPointF>(centerPin);
QLineF grainline(centerPinPoint->x(), centerPinPoint->y(),
centerPinPoint->x() + length / 2.0, centerPinPoint->y());
grainline.setAngle(qRadiansToDegrees(rotationAngle));
grainline = QLineF(grainline.p2(), grainline.p1());
grainline.setLength(length);
pos = grainline.p2();
}
catch(const VExceptionBadId &)
{
pos = geom.GetPos();
}
}
else
{
pos = geom.GetPos();
}
return true;
}
//---------------------------------------------------------------------------------------------------------------------
QVector<QPointF> VAbstractPiece::GrainlinePoints(const VGrainlineData &geom, const VContainer *pattern,
const QRectF &boundingRect, qreal &dAng)
{
SCASSERT(pattern != nullptr)
QPointF pt1;
qreal dLen = 0;
if ( not FindGrainlineGeometry(geom, pattern, dLen, dAng, pt1))
{
return QVector<QPointF>();
}
qreal rotation = dAng;
QPointF pt2(pt1.x() + dLen * qCos(rotation), pt1.y() - dLen * qSin(rotation));
const qreal dArrowLen = ToPixel(0.5, *pattern->GetPatternUnit());
const qreal dArrowAng = M_PI/9;
QVector<QPointF> v;
v << pt1;
if (geom.GetArrowType() != ArrowType::atFront)
{
v << QPointF(pt1.x() + dArrowLen * qCos(rotation + dArrowAng),
pt1.y() - dArrowLen * qSin(rotation + dArrowAng));
v << QPointF(pt1.x() + dArrowLen * qCos(rotation - dArrowAng),
pt1.y() - dArrowLen * qSin(rotation - dArrowAng));
v << pt1;
}
v << pt2;
if (geom.GetArrowType() != ArrowType::atRear)
{
rotation += M_PI;
v << QPointF(pt2.x() + dArrowLen * qCos(rotation + dArrowAng),
pt2.y() - dArrowLen * qSin(rotation + dArrowAng));
v << QPointF(pt2.x() + dArrowLen * qCos(rotation - dArrowAng),
pt2.y() - dArrowLen * qSin(rotation - dArrowAng));
v << pt2;
}
return CorrectPosition(boundingRect, v);
}