valentina/src/libs/vmisc/bpstd/span.hpp
Roman Telezhynskyi 03630fb273 Refactoring.
2023-05-03 14:07:08 +03:00

760 lines
27 KiB
C++

////////////////////////////////////////////////////////////////////////////////
/// \file span.hpp
///
/// \brief This header provides definitions from the C++ header <span>
////////////////////////////////////////////////////////////////////////////////
/*
The MIT License (MIT)
Copyright (c) 2020 Matthew Rodusek All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#ifndef BPSTD_SPAN_HPP
#define BPSTD_SPAN_HPP
#include "detail/config.hpp"
#include "detail/proxy_iterator.hpp"
#include "cstddef.hpp" // byte
#include "memory.hpp" // to_address
#include "type_traits.hpp" // conjunction, remove_cvref_t, etc
#include <cstddef> // std::size_t
#include <array> // std::array
#include <iterator> // std::iterator_traits
BPSTD_COMPILER_DIAGNOSTIC_PREAMBLE
namespace bpstd {
//============================================================================
// constants : dynamic_extent
//============================================================================
BPSTD_CPP17_INLINE constexpr auto dynamic_extent = static_cast<std::size_t>(-1);
namespace detail {
template <std::size_t Extent>
class extent_storage
{
public:
constexpr extent_storage() noexcept = default;
template <std::size_t UExtent>
constexpr explicit extent_storage(extent_storage<UExtent>)
{
static_assert(
UExtent == Extent,
"Extent must be the same size as UExtent"
);
}
constexpr explicit extent_storage(std::size_t)
{
}
constexpr auto size() const noexcept -> std::size_t { return Extent; }
};
template <>
class extent_storage<dynamic_extent>
{
public:
template <std::size_t Extent>
constexpr explicit extent_storage(extent_storage<Extent> ext)
: m_size{ext.size()}
{
}
constexpr explicit extent_storage(std::size_t size)
: m_size{size}
{
}
constexpr auto size() const noexcept -> std::size_t { return m_size; }
private:
std::size_t m_size;
};
template <typename T, std::size_t Extent>
class span_storage_type : public extent_storage<Extent>
{
//------------------------------------------------------------------------
// Constructors
//------------------------------------------------------------------------
public:
template <typename ExtentType>
constexpr span_storage_type(T* data, ExtentType ext)
: extent_storage<Extent>(ext),
m_data{data}
{
}
//------------------------------------------------------------------------
// Observers
//------------------------------------------------------------------------
public:
using extent_storage<Extent>::size;
constexpr auto data() const noexcept -> T * { return m_data; }
//------------------------------------------------------------------------
// Private Members
//------------------------------------------------------------------------
private:
T* m_data;
};
template <std::size_t From, std::size_t To>
struct is_allowed_extent_conversion
: bool_constant<(From == To) || (To == dynamic_extent)>{};
template <std::size_t Extent, std::size_t Offset, std::size_t Count>
struct compute_subspan_size
: integral_constant<std::size_t,
(Count != dynamic_extent)
? Count
: ((Extent != dynamic_extent) ? (Extent - Offset) : Extent)
>{};
template <typename It>
using iter_reference = typename std::iterator_traits<It>::reference;
template <typename It, typename T>
using is_iter_convertible = conjunction<
is_same<remove_cvref_t<iter_reference<It>>,remove_cv_t<T>>,
is_convertible<iter_reference<It>,remove_cv_t<T>>
>;
} // namespace detail
//============================================================================
// class : span
//============================================================================
//////////////////////////////////////////////////////////////////////////////
/// \brief This class is a non-owning view of a contiguous piece of memory
///
/// This type describes an object that can refer to a contiguous sequence of
/// objects with the first element of the sequence at position zero. A span
/// can either have a static extent, in which case the number of elements in
/// the sequence is known and encoded in the type, or a dynamic extent,
/// in which case the size is known at runtime.
///
/// \tparam T the underlying type of the span
/// \tparam Extent the extent (size) of the span
//////////////////////////////////////////////////////////////////////////////
template <typename T, std::size_t Extent = dynamic_extent>
class span
{
//--------------------------------------------------------------------------
// Public Member Types
//--------------------------------------------------------------------------
public:
using element_type = T;
using value_type = remove_cv_t<T>;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using pointer = element_type*;
using const_pointer = const element_type*;
using reference = element_type&;
using const_reference = const element_type&;
using iterator = detail::proxy_iterator<T*,detail::span_storage_type<T,Extent>>;
using reverse_iterator = std::reverse_iterator<iterator>;
//--------------------------------------------------------------------------
// Public Member Constants
//--------------------------------------------------------------------------
public:
BPSTD_CPP17_INLINE static constexpr std::size_t extent = Extent;
//--------------------------------------------------------------------------
// Constructors / Assignment
//--------------------------------------------------------------------------
public:
/// \brief Default-constructs a span
///
/// This constructor only participates in overload resolution if the span
/// either is size 0, or has a dynamic extent
template <std::size_t UExtent = Extent,
typename = enable_if_t<detail::is_allowed_extent_conversion<0,UExtent>::value>>
constexpr span() noexcept;
/// \{
/// \brief Constructs a span from an iterator \p it and the \p count
///
/// This constructor only participates in overload resolution if the
/// following criteria are met:
/// * Extent is dynamic_extent
/// * to_address(it) is convertible to T*
///
/// This constructor is explicit if `Extent` != `dynamic_extent`
///
/// \param it the iterator
/// \param count the number of entries in the sequence
template <typename It,
enable_if_t<(Extent == bpstd::dynamic_extent) &&
bpstd::detail::is_iter_convertible<It, T>::value,int> = 0>
constexpr span(It it, size_type count) noexcept;
template <typename It,
enable_if_t<(Extent != bpstd::dynamic_extent) &&
bpstd::detail::is_iter_convertible<It, T>::value,int> = 0>
constexpr explicit span(It it, size_type count) noexcept;
/// \}
/// \brief Constructs a span from an iterator range
///
/// This constructor only participates in overload resolution if the
/// following criteria are met:
/// * Extent is dynamic_extent
/// * to_address(it) is convertible to T*
///
/// \param it the iterator
/// \param end the end iterator
template <typename It, typename End,
enable_if_t<(Extent == bpstd::dynamic_extent) &&
bpstd::detail::is_iter_convertible<It, T>::value, int> = 0>
constexpr span(It it, End end) noexcept;
template <typename It, typename End,
enable_if_t<(Extent != bpstd::dynamic_extent) &&
bpstd::detail::is_iter_convertible<It, T>::value, int> = 0>
constexpr explicit span(It it, End end) noexcept;
/// \brief Constructs a span from an array reference
///
/// This constructor only participates in overload resolution if any of the
/// following criteria are met:
/// * Extent is dynamic_extent
/// * N is the same as Extent
///
/// \param arr the array reference
template <std::size_t N,
typename = enable_if_t<detail::is_allowed_extent_conversion<N,Extent>::value>>
// cppcheck-suppress noExplicitConstructor
constexpr span(element_type (&arr)[N]) noexcept;
/// \{
/// \brief Constructs a span from a reference to a std::array
///
/// This constructor only participates in overload resolution if the
/// following criteria are met:
/// * Extent is dynamic_extent or N is the same as Extent
/// * U is at most a cv-qualification difference from T
///
/// \param arr the array reference
template <typename U, std::size_t N,
typename = enable_if_t<detail::is_allowed_extent_conversion<N,Extent>::value>>
// cppcheck-suppress noExplicitConstructor
constexpr span(std::array<U, N>& arr) noexcept;
template <typename U, std::size_t N,
typename = enable_if_t<detail::is_allowed_extent_conversion<N,Extent>::value>>
// cppcheck-suppress noExplicitConstructor
constexpr span(const std::array<U, N>& arr) noexcept;
/// \}
// range-constructor omitted since ranges are not part of backport yet
/// \brief Constructs a span from a different span
///
/// This constructor only participates in overload resolution if the
/// following criteria are met:
/// * Extent is dynamic_extent or N is the same as Extent
/// * U is at most a cv-qualification difference from T
///
/// \param s the span
template <typename U, std::size_t N,
typename = enable_if_t<detail::is_allowed_extent_conversion<N,Extent>::value>>
// cppcheck-suppress noExplicitConstructor
constexpr span(const span<U, N>& s) noexcept;
/// \brief Constructs a span by copying \p other
///
/// \param other the other span to copy
constexpr span(const span& other) noexcept = default;
//--------------------------------------------------------------------------
/// \brief Assigns a span from \p other
///
/// \param other the other span to copy
/// \return reference to this
BPSTD_CPP14_CONSTEXPR auto operator=(const span &other) noexcept -> span & = default;
//--------------------------------------------------------------------------
// Element Access
//--------------------------------------------------------------------------
public:
/// \brief Gets a reference to the front element of this span
///
/// \pre empty() is false
/// \return reference to front element
constexpr auto front() const noexcept -> reference;
/// \brief Gets a reference to the back element of this span
///
/// \pre empty() is false
/// \return reference to back element
constexpr auto back() const noexcept -> reference;
/// \brief Gets a reference to the element at \p idx
///
/// \pre \p idx is less than size()
/// \param idx the index
/// \return reference to the element at \p idx
constexpr auto operator[](size_type idx) const noexcept -> reference;
/// \brief Gets a pointer to the start of the data
///
/// \return pointer to the data
constexpr auto data() const noexcept -> pointer;
//--------------------------------------------------------------------------
// Observers
//--------------------------------------------------------------------------
public:
/// \brief Gets the number of elements in this span
///
/// \return the number of elements in this span
constexpr auto size() const noexcept -> size_type;
/// \brief Gets the number of bytes in this span
///
/// \return the number of bytes in this span
constexpr auto size_bytes() const noexcept -> size_type;
/// \brief Queries whether this span is empty
///
/// \return true if this span is empty
constexpr auto empty() const noexcept -> bool;
//--------------------------------------------------------------------------
// Subviews
//--------------------------------------------------------------------------
public:
/// \brief Creates a subspan from the first \p Count elements
///
/// \pre A program is ill-formed if \p Count > Extent
///
/// \tparam Count the number of elements to create in the subspan
/// \return the first \p Count elements
template <std::size_t Count> constexpr auto first() const -> span<element_type, Count>;
/// \brief Creates a subspan from the first \p count elements
///
/// \pre It is undefined behavior if \p count > size()
///
/// \param count the number of elements to create in the subspan
/// \return the first \p count elements
constexpr auto first(size_t count) const -> span<element_type>;
//--------------------------------------------------------------------------
/// \brief Creates a subspan from the last \p Count elements
///
/// \pre A program is ill-formed if \p Count > Extent
///
/// \tparam Count the number of elements to create in the subspan
/// \return the last \p Count elements
template <std::size_t Count> constexpr auto last() const -> span<element_type, Count>;
/// \brief Creates a subspan from the last \p count elements
///
/// \pre It is undefined behavior if \p count > size()
///
/// \param count the number of elements to create in the subspan
/// \return the last \p count elements
constexpr auto last(size_t count) const -> span<element_type>;
//--------------------------------------------------------------------------
/// \brief Creates a subspan that is \p Count elements long, \p Offset from
/// the start of this span
///
/// \tparam Offset the amount to offset the span by
/// \tparam Count the number of elements to create in the subspan
/// \return the created subspan
template <std::size_t Offset, std::size_t Count = dynamic_extent>
constexpr auto subspan() const -> span<element_type, detail::compute_subspan_size<Extent, Offset, Count>::value>;
/// \brief Creates a subspan that is \p count elements long, \p offset from
/// the start of this span
///
/// \param offset the amount to offset the span by
/// \param count the number of elements to create in the subspan
/// \return the created subspan
constexpr auto subspan(std::size_t offset, std::size_t count = dynamic_extent) const -> span<element_type>;
//--------------------------------------------------------------------------
// Iterators
//--------------------------------------------------------------------------
public:
constexpr auto begin() const noexcept -> iterator;
constexpr auto end() const noexcept -> iterator;
constexpr auto rbegin() const noexcept -> reverse_iterator;
constexpr auto rend() const noexcept -> reverse_iterator;
//--------------------------------------------------------------------------
// Private Members
//--------------------------------------------------------------------------
private:
using storage_type = detail::span_storage_type<element_type,Extent>;
storage_type m_storage;
};
//============================================================================
// non-member functions : class : span
//============================================================================
//----------------------------------------------------------------------------
// Utilities
//----------------------------------------------------------------------------
/// \brief Converts a span \p s to a byte span
///
/// \param s the span to convert
/// \return a span of the byte range that \p s covered
template <typename T, std::size_t N> auto as_bytes(span<T, N> s) noexcept -> span<const byte, sizeof(T) * N>;
/// \brief Converts a span \p s to a writable byte span
///
/// \param s the span to convert
/// \return a span of the byte range that \p s covered
template <typename T, std::size_t N> auto as_writable_bytes(span<T, N> s) noexcept -> span<byte, sizeof(T) * N>;
} // namespace bpstd
template <typename T, std::size_t Extent>
constexpr std::size_t bpstd::span<T,Extent>::extent;
//==============================================================================
// non-member functions : class : span
//==============================================================================
//------------------------------------------------------------------------------
// Constructors
//------------------------------------------------------------------------------
template <typename T, std::size_t Extent>
template <std::size_t UExtent, typename>
inline BPSTD_INLINE_VISIBILITY constexpr
bpstd::span<T,Extent>::span()
noexcept
: m_storage{nullptr, detail::extent_storage<0>{}}
{
}
template <typename T, std::size_t Extent>
template <typename It,
bpstd::enable_if_t<(Extent == bpstd::dynamic_extent) &&
bpstd::detail::is_iter_convertible<It, T>::value,int>>
inline BPSTD_INLINE_VISIBILITY constexpr
bpstd::span<T,Extent>::span(It it, size_type count)
noexcept
: m_storage{to_address(it), count}
{
}
template <typename T, std::size_t Extent>
template <typename It,
bpstd::enable_if_t<(Extent != bpstd::dynamic_extent) &&
bpstd::detail::is_iter_convertible<It, T>::value,int>>
inline BPSTD_INLINE_VISIBILITY constexpr
bpstd::span<T,Extent>::span(It it, size_type count)
noexcept
: m_storage{to_address(it), count}
{
}
template <typename T, std::size_t Extent>
template <typename It, typename End,
bpstd::enable_if_t<(Extent == bpstd::dynamic_extent) &&
bpstd::detail::is_iter_convertible<It, T>::value, int>>
inline BPSTD_INLINE_VISIBILITY constexpr
bpstd::span<T,Extent>::span(It it, End end)
noexcept
: m_storage{to_address(it), static_cast<size_type>(end - it)}
{
}
template <typename T, std::size_t Extent>
template <typename It, typename End,
bpstd::enable_if_t<(Extent != bpstd::dynamic_extent) &&
bpstd::detail::is_iter_convertible<It, T>::value, int>>
inline BPSTD_INLINE_VISIBILITY constexpr
bpstd::span<T,Extent>::span(It it, End end)
noexcept
: m_storage{to_address(it), static_cast<size_type>(end - it)}
{
}
template <typename T, std::size_t Extent>
template <std::size_t N, typename>
inline BPSTD_INLINE_VISIBILITY constexpr
bpstd::span<T,Extent>::span(element_type (&arr)[N])
noexcept
: m_storage{static_cast<element_type*>(arr), detail::extent_storage<N>{}}
{
}
template <typename T, std::size_t Extent>
template <typename U, std::size_t N, typename>
inline BPSTD_INLINE_VISIBILITY constexpr
bpstd::span<T,Extent>::span(std::array<U, N>& arr)
noexcept
: m_storage{arr.data(), detail::extent_storage<N>{}}
{
}
template <typename T, std::size_t Extent>
template <typename U, std::size_t N, typename>
inline BPSTD_INLINE_VISIBILITY constexpr
bpstd::span<T,Extent>::span(const std::array<U, N>& arr)
noexcept
: m_storage{arr.data(), detail::extent_storage<N>{}}
{
}
template <typename T, std::size_t Extent>
template <typename U, std::size_t N, typename>
inline BPSTD_INLINE_VISIBILITY constexpr
bpstd::span<T,Extent>::span(const span<U, N>& s)
noexcept
: m_storage{s.data(), detail::extent_storage<N>{s.size()}}
{
}
//------------------------------------------------------------------------------
// Element Access
//------------------------------------------------------------------------------
template <typename T, std::size_t Extent>
inline BPSTD_INLINE_VISIBILITY constexpr auto bpstd::span<T, Extent>::front() const noexcept ->
typename bpstd::span<T, Extent>::reference
{
return data()[0];
}
template <typename T, std::size_t Extent>
inline BPSTD_INLINE_VISIBILITY constexpr auto bpstd::span<T, Extent>::back() const noexcept ->
typename bpstd::span<T, Extent>::reference
{
return data()[m_storage.size()-1];
}
template <typename T, std::size_t Extent>
inline BPSTD_INLINE_VISIBILITY constexpr auto bpstd::span<T, Extent>::operator[](size_type idx) const noexcept ->
typename bpstd::span<T, Extent>::reference
{
return data()[idx];
}
template <typename T, std::size_t Extent>
inline BPSTD_INLINE_VISIBILITY constexpr auto bpstd::span<T, Extent>::data() const noexcept ->
typename bpstd::span<T, Extent>::pointer
{
return m_storage.data();
}
//------------------------------------------------------------------------------
// Observers
//------------------------------------------------------------------------------
template <typename T, std::size_t Extent>
inline BPSTD_INLINE_VISIBILITY constexpr auto bpstd::span<T, Extent>::size() const noexcept ->
typename bpstd::span<T, Extent>::size_type
{
return m_storage.size();
}
template <typename T, std::size_t Extent>
inline BPSTD_INLINE_VISIBILITY constexpr auto bpstd::span<T, Extent>::size_bytes() const noexcept ->
typename bpstd::span<T, Extent>::size_type
{
return size() * sizeof(T);
}
template <typename T, std::size_t Extent>
inline BPSTD_INLINE_VISIBILITY constexpr auto bpstd::span<T, Extent>::empty() const noexcept -> bool
{
return size() == 0u;
}
//------------------------------------------------------------------------------
// Subviews
//------------------------------------------------------------------------------
template <typename T, std::size_t Extent>
template <std::size_t Count>
inline BPSTD_INLINE_VISIBILITY constexpr auto bpstd::span<T, Extent>::first() const
-> bpstd::span<typename bpstd::span<T, Extent>::element_type, Count>
{
static_assert(
Count <= Extent,
"A Count larger than Extent is ill-formed"
);
return span<element_type, Count>{data(), Count};
}
template <typename T, std::size_t Extent>
inline BPSTD_INLINE_VISIBILITY constexpr auto bpstd::span<T, Extent>::first(size_t count) const
-> bpstd::span<typename bpstd::span<T, Extent>::element_type>
{
return {data(), count};
}
//------------------------------------------------------------------------------
template <typename T, std::size_t Extent>
template <std::size_t Count>
inline BPSTD_INLINE_VISIBILITY constexpr auto bpstd::span<T, Extent>::last() const
-> bpstd::span<typename bpstd::span<T, Extent>::element_type, Count>
{
static_assert(
Count <= Extent,
"A Count larger than Extent is ill-formed"
);
return span<element_type, Count>{data() + (size() - Count), Count};
}
template <typename T, std::size_t Extent>
inline BPSTD_INLINE_VISIBILITY constexpr auto bpstd::span<T, Extent>::last(size_t count) const
-> bpstd::span<typename bpstd::span<T, Extent>::element_type>
{
return {data() + (size() - count), count};
}
//------------------------------------------------------------------------------
template <typename T, std::size_t Extent>
template <std::size_t Offset, std::size_t Count>
inline BPSTD_INLINE_VISIBILITY constexpr auto bpstd::span<T, Extent>::subspan() const
-> bpstd::span<typename bpstd::span<T, Extent>::element_type,
bpstd::detail::compute_subspan_size<Extent, Offset, Count>::value>
{
using result_type = span<
element_type,
detail::compute_subspan_size<Extent,Offset,Count>::value
>;
return result_type{
data() + Offset,
(Count == dynamic_extent) ? (size() - Offset) : Count
};
}
template <typename T, std::size_t Extent>
inline BPSTD_INLINE_VISIBILITY constexpr auto bpstd::span<T, Extent>::subspan(std::size_t offset,
std::size_t count) const
-> bpstd::span<typename bpstd::span<T, Extent>::element_type>
{
return {
data() + offset,
(count == dynamic_extent) ? (size() - offset) : count
};
}
//------------------------------------------------------------------------------
// Iterators
//------------------------------------------------------------------------------
template <typename T, std::size_t Extent>
inline BPSTD_INLINE_VISIBILITY constexpr auto bpstd::span<T, Extent>::begin() const noexcept ->
typename bpstd::span<T, Extent>::iterator
{
return iterator{data()};
}
template <typename T, std::size_t Extent>
inline BPSTD_INLINE_VISIBILITY constexpr auto bpstd::span<T, Extent>::end() const noexcept ->
typename bpstd::span<T, Extent>::iterator
{
return iterator{data() + size()};
}
template <typename T, std::size_t Extent>
inline BPSTD_INLINE_VISIBILITY constexpr auto bpstd::span<T, Extent>::rbegin() const noexcept ->
typename bpstd::span<T, Extent>::reverse_iterator
{
return reverse_iterator(end());
}
template <typename T, std::size_t Extent>
inline BPSTD_INLINE_VISIBILITY constexpr auto bpstd::span<T, Extent>::rend() const noexcept ->
typename bpstd::span<T, Extent>::reverse_iterator
{
return reverse_iterator(begin());
}
//==============================================================================
// non-member functions : class : span
//==============================================================================
//------------------------------------------------------------------------------
// Utilities
//------------------------------------------------------------------------------
template <typename T, std::size_t N>
inline auto bpstd::as_bytes(span<T, N> s) noexcept -> bpstd::span<const bpstd::byte, sizeof(T) * N>
{
return {reinterpret_cast<const byte*>(s.data()), s.size_bytes()};
}
template <typename T, std::size_t N>
inline auto bpstd::as_writable_bytes(span<T, N> s) noexcept -> bpstd::span<bpstd::byte, sizeof(T) * N>
{
return {reinterpret_cast<byte*>(s.data()), s.size_bytes()};
}
BPSTD_COMPILER_DIAGNOSTIC_POSTAMBLE
#endif /* BPSTD_SPAN_HPP */