valentina/src/app/geometry/vspline.cpp
Roman Telezhynskyi 850d51adac cppcheck.
--HG--
branch : release
2015-03-02 19:54:33 +02:00

878 lines
28 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/************************************************************************
**
** @file vspline.cpp
** @author Roman Telezhynskyi <dismine(at)gmail.com>
** @date November 15, 2013
**
** @brief
** @copyright
** This source code is part of the Valentine project, a pattern making
** program, whose allow create and modeling patterns of clothing.
** Copyright (C) 2013-2015 Valentina project
** <https://bitbucket.org/dismine/valentina> All Rights Reserved.
**
** Valentina is free software: you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** Valentina is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with Valentina. If not, see <http://www.gnu.org/licenses/>.
**
*************************************************************************/
#include "vspline.h"
#include "vspline_p.h"
#include <QDebug>
#include <QPainterPath>
#include <QtCore/qmath.h>
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief VSpline default constructor
*/
VSpline::VSpline()
:VAbstractCurve(GOType::Spline), d(new VSplineData)
{}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief VSpline constructor.
* @param spline spline from which the copy.
*/
VSpline::VSpline ( const VSpline & spline )
:VAbstractCurve(spline), d(spline.d)
{}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief VSpline constructor.
* @param p1 first point spline.
* @param p4 last point spline.
* @param angle1 angle from first point to first control point.
* @param angle2 angle from second point to second control point.
* @param kCurve coefficient of curvature spline.
* @param kAsm1 coefficient of length first control line.
* @param kAsm2 coefficient of length second control line.
*/
VSpline::VSpline (VPointF p1, VPointF p4, qreal angle1, qreal angle2, qreal kAsm1, qreal kAsm2, qreal kCurve,
quint32 idObject, Draw mode)
:VAbstractCurve(GOType::Spline, idObject, mode), d(new VSplineData(p1, p4, angle1, angle2, kAsm1, kAsm2, kCurve))
{
CreateName();
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief VSpline constructor.
* @param p1 first point spline.
* @param p2 first control point.
* @param p3 second control point.
* @param p4 second point spline.
*/
VSpline::VSpline (VPointF p1, QPointF p2, QPointF p3, VPointF p4, qreal kCurve, quint32 idObject, Draw mode)
:VAbstractCurve(GOType::Spline, idObject, mode), d(new VSplineData(p1, p2, p3, p4, kCurve))
{
CreateName();
}
//---------------------------------------------------------------------------------------------------------------------
VSpline::~VSpline()
{}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetLength return length of spline.
* @return length.
*/
qreal VSpline::GetLength () const
{
return LengthBezier ( GetP1().toQPointF(), d->p2, d->p3, GetP4().toQPointF());
}
//---------------------------------------------------------------------------------------------------------------------
qreal VSpline::LengthT(qreal t) const
{
if (t < 0 || t > 1)
{
qDebug()<<"Wrong value t.";
return 0;
}
QLineF seg1_2 ( GetP1 ().toQPointF(), GetP2 () );
seg1_2.setLength(seg1_2.length () * t);
QPointF p12 = seg1_2.p2();
QLineF seg2_3 ( GetP2 (), GetP3 () );
seg2_3.setLength(seg2_3.length () * t);
QPointF p23 = seg2_3.p2();
QLineF seg12_23 ( p12, p23 );
seg12_23.setLength(seg12_23.length () * t);
QPointF p123 = seg12_23.p2();
QLineF seg3_4 ( GetP3 (), GetP4 ().toQPointF() );
seg3_4.setLength(seg3_4.length () * t);
QPointF p34 = seg3_4.p2();
QLineF seg23_34 ( p23, p34 );
seg23_34.setLength(seg23_34.length () * t);
QPointF p234 = seg23_34.p2();
QLineF seg123_234 ( p123, p234 );
seg123_234.setLength(seg123_234.length () * t);
QPointF p1234 = seg123_234.p2();
return LengthBezier ( GetP1().toQPointF(), p12, p123, p1234);
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief CutSpline cut spline. GetPointP1() of base spline will return first point for first spline, GetPointP4()
* of base spline will return forth point of second spline.
* @param length length first spline
* @param spl1p2 second point of first spline
* @param spl1p3 third point of first spline
* @param spl2p2 second point of second spline
* @param spl2p3 third point of second spline
* @return point of cutting. This point is forth point of first spline and first point of second spline.
*/
QPointF VSpline::CutSpline ( qreal length, QPointF &spl1p2, QPointF &spl1p3, QPointF &spl2p2, QPointF &spl2p3 ) const
{
//Always need return two splines, so we must correct wrong length.
if (length < GetLength()*0.02)
{
length = GetLength()*0.02;
}
else if ( length > GetLength()*0.98)
{
length = GetLength()*0.98;
}
// Very stupid way find correct value of t.
// Better first compare with t = 0.5. Find length of spline.
// If length larger, take t = 0.75 and so on.
// If length less, take t = 0.25 and so on.
qreal parT = 0;
qreal step = 0.001;
while (1)
{
parT = parT + step;
qreal splLength = LengthT(parT);
if (splLength >= length || parT > 1)
{
break;
}
}
QLineF seg1_2 ( GetP1 ().toQPointF(), GetP2 () );
seg1_2.setLength(seg1_2.length () * parT);
QPointF p12 = seg1_2.p2();
QLineF seg2_3 ( GetP2 (), GetP3 () );
seg2_3.setLength(seg2_3.length () * parT);
QPointF p23 = seg2_3.p2();
QLineF seg12_23 ( p12, p23 );
seg12_23.setLength(seg12_23.length () * parT);
QPointF p123 = seg12_23.p2();
QLineF seg3_4 ( GetP3 (), GetP4 ().toQPointF() );
seg3_4.setLength(seg3_4.length () * parT);
QPointF p34 = seg3_4.p2();
QLineF seg23_34 ( p23, p34 );
seg23_34.setLength(seg23_34.length () * parT);
QPointF p234 = seg23_34.p2();
QLineF seg123_234 ( p123, p234 );
seg123_234.setLength(seg123_234.length () * parT);
QPointF p1234 = seg123_234.p2();
spl1p2 = p12;
spl1p3 = p123;
spl2p2 = p234;
spl2p3 = p34;
return p1234;
}
//---------------------------------------------------------------------------------------------------------------------
QPointF VSpline::CutSpline(qreal length, VSpline &spl1, VSpline &spl2) const
{
QPointF spl1p2;
QPointF spl1p3;
QPointF spl2p2;
QPointF spl2p3;
QPointF cutPoint = CutSpline (length, spl1p2, spl1p3, spl2p2, spl2p3 );
spl1 = VSpline(GetP1(), spl1p2, spl1p3, cutPoint, GetKcurve());
spl2 = VSpline(cutPoint, spl2p2, spl2p3, GetP4(), GetKcurve());
return cutPoint;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetPoints return list with spline points.
* @return list of points.
*/
QVector<QPointF> VSpline::GetPoints () const
{
return GetPoints(GetP1().toQPointF(), d->p2, d->p3, GetP4().toQPointF());
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetPoints return list with spline points.
* @param p1 first spline point.
* @param p2 first control point.
* @param p3 second control point.
* @param p4 last spline point.
* @return list of points.
*/
QVector<QPointF> VSpline::GetPoints (const QPointF &p1, const QPointF &p2, const QPointF &p3, const QPointF &p4)
{
QVector<QPointF> pvector;
QVector<qreal> x;
QVector<qreal> y;
QVector<qreal>& wx = x;
QVector<qreal>& wy = y;
x.append ( p1.x () );
y.append ( p1.y () );
PointBezier_r ( p1.x (), p1.y (), p2.x (), p2.y (),
p3.x (), p3.y (), p4.x (), p4.y (), 0, wx, wy );
x.append ( p4.x () );
y.append ( p4.y () );
for ( qint32 i = 0; i < x.count(); ++i )
{
pvector.append( QPointF ( x.at(i), y.at(i)) );
}
return pvector;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief LengthBezier return spline length using 4 spline point.
* @param p1 first spline point
* @param p2 first control point.
* @param p3 second control point.
* @param p4 last spline point.
* @return length.
*/
qreal VSpline::LengthBezier ( const QPointF &p1, const QPointF &p2, const QPointF &p3, const QPointF &p4 )
{
QPainterPath splinePath;
QVector<QPointF> points = GetPoints (p1, p2, p3, p4);
splinePath.moveTo(points.at(0));
for (qint32 i = 1; i < points.count(); ++i)
{
splinePath.lineTo(points.at(i));
}
return splinePath.length();
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief PointBezier_r find spline point using four point of spline.
* @param x1 х coordinate first point.
* @param y1 у coordinate first point.
* @param x2 х coordinate first control point.
* @param y2 у coordinate first control point.
* @param x3 х coordinate second control point.
* @param y3 у coordinate second control point.
* @param x4 х coordinate last point.
* @param y4 у coordinate last point.
* @param level level of recursion. In the begin 0.
* @param px list х coordinat spline points.
* @param py list у coordinat spline points.
*/
void VSpline::PointBezier_r ( qreal x1, qreal y1, qreal x2, qreal y2,
qreal x3, qreal y3, qreal x4, qreal y4,
qint16 level, QVector<qreal> &px, QVector<qreal> &py)
{
if (px.size() >= 2)
{
for (int i=1; i < px.size(); ++i)
{
if (QPointF(px.at(i-1), py.at(i-1)) == QPointF(px.at(i), py.at(i)))
{
qCritical("All neighbors points in path must be unique.");
}
}
}
const double curve_collinearity_epsilon = 1e-30;
const double curve_angle_tolerance_epsilon = 0.01;
const double m_angle_tolerance = 0.0;
enum curve_recursion_limit_e { curve_recursion_limit = 32 };
const double m_cusp_limit = 0.0;
double m_approximation_scale = 1.0;
double m_distance_tolerance_square;
m_distance_tolerance_square = 0.5 / m_approximation_scale;
m_distance_tolerance_square *= m_distance_tolerance_square;
if (level > curve_recursion_limit)
{
return;
}
// Calculate all the mid-points of the line segments
//----------------------
const double x12 = (x1 + x2) / 2;
const double y12 = (y1 + y2) / 2;
const double x23 = (x2 + x3) / 2;
const double y23 = (y2 + y3) / 2;
const double x34 = (x3 + x4) / 2;
const double y34 = (y3 + y4) / 2;
const double x123 = (x12 + x23) / 2;
const double y123 = (y12 + y23) / 2;
const double x234 = (x23 + x34) / 2;
const double y234 = (y23 + y34) / 2;
const double x1234 = (x123 + x234) / 2;
const double y1234 = (y123 + y234) / 2;
// Try to approximate the full cubic curve by a single straight line
//------------------
const double dx = x4-x1;
const double dy = y4-y1;
double d2 = fabs((x2 - x4) * dy - (y2 - y4) * dx);
double d3 = fabs((x3 - x4) * dy - (y3 - y4) * dx);
switch ((static_cast<int>(d2 > curve_collinearity_epsilon) << 1) +
static_cast<int>(d3 > curve_collinearity_epsilon))
{
case 0:
{
// All collinear OR p1==p4
//----------------------
double k = dx*dx + dy*dy;
if (k < 0.000000001)
{
d2 = CalcSqDistance(x1, y1, x2, y2);
d3 = CalcSqDistance(x4, y4, x3, y3);
}
else
{
k = 1 / k;
{
const double da1 = x2 - x1;
const double da2 = y2 - y1;
d2 = k * (da1*dx + da2*dy);
}
{
const double da1 = x3 - x1;
const double da2 = y3 - y1;
d3 = k * (da1*dx + da2*dy);
}
// cppcheck-suppress incorrectLogicOperator
if (d2 > 0 && d2 < 1 && d3 > 0 && d3 < 1)
{
// Simple collinear case, 1---2---3---4
// We can leave just two endpoints
return;
}
if (d2 <= 0)
{
d2 = CalcSqDistance(x2, y2, x1, y1);
}
else if (d2 >= 1)
{
d2 = CalcSqDistance(x2, y2, x4, y4);
}
else
{
d2 = CalcSqDistance(x2, y2, x1 + d2*dx, y1 + d2*dy);
}
if (d3 <= 0)
{
d3 = CalcSqDistance(x3, y3, x1, y1);
}
else if (d3 >= 1)
{
d3 = CalcSqDistance(x3, y3, x4, y4);
}
else
{
d3 = CalcSqDistance(x3, y3, x1 + d3*dx, y1 + d3*dy);
}
}
if (d2 > d3)
{
if (d2 < m_distance_tolerance_square)
{
px.append(x2);
py.append(y2);
return;
}
}
else
{
if (d3 < m_distance_tolerance_square)
{
px.append(x3);
py.append(y3);
return;
}
}
break;
}
case 1:
{
// p1,p2,p4 are collinear, p3 is significant
//----------------------
if (d3 * d3 <= m_distance_tolerance_square * (dx*dx + dy*dy))
{
if (m_angle_tolerance < curve_angle_tolerance_epsilon)
{
px.append(x23);
py.append(y23);
return;
}
// Angle Condition
//----------------------
double da1 = fabs(atan2(y4 - y3, x4 - x3) - atan2(y3 - y2, x3 - x2));
if (da1 >= M_PI)
{
da1 = 2*M_PI - da1;
}
if (da1 < m_angle_tolerance)
{
px.append(x2);
py.append(y2);
px.append(x3);
py.append(y3);
return;
}
if (m_cusp_limit > 0.0 || m_cusp_limit < 0.0)
{
if (da1 > m_cusp_limit)
{
px.append(x3);
py.append(y3);
return;
}
}
}
break;
}
case 2:
{
// p1,p3,p4 are collinear, p2 is significant
//----------------------
if (d2 * d2 <= m_distance_tolerance_square * (dx*dx + dy*dy))
{
if (m_angle_tolerance < curve_angle_tolerance_epsilon)
{
px.append(x23);
py.append(y23);
return;
}
// Angle Condition
//----------------------
double da1 = fabs(atan2(y3 - y2, x3 - x2) - atan2(y2 - y1, x2 - x1));
if (da1 >= M_PI)
{
da1 = 2*M_PI - da1;
}
if (da1 < m_angle_tolerance)
{
px.append(x2);
py.append(y2);
px.append(x3);
py.append(y3);
return;
}
if (m_cusp_limit > 0.0 || m_cusp_limit < 0.0)
{
if (da1 > m_cusp_limit)
{
px.append(x2);
py.append(y2);
return;
}
}
}
break;
}
case 3:
{
// Regular case
//-----------------
if ((d2 + d3)*(d2 + d3) <= m_distance_tolerance_square * (dx*dx + dy*dy))
{
// If the curvature doesn't exceed the distance_tolerance value
// we tend to finish subdivisions.
//----------------------
if (m_angle_tolerance < curve_angle_tolerance_epsilon)
{
px.append(x23);
py.append(y23);
return;
}
// Angle & Cusp Condition
//----------------------
const double k = atan2(y3 - y2, x3 - x2);
double da1 = fabs(k - atan2(y2 - y1, x2 - x1));
double da2 = fabs(atan2(y4 - y3, x4 - x3) - k);
if (da1 >= M_PI)
{
da1 = 2*M_PI - da1;
}
if (da2 >= M_PI)
{
da2 = 2*M_PI - da2;
}
if (da1 + da2 < m_angle_tolerance)
{
// Finally we can stop the recursion
//----------------------
px.append(x23);
py.append(y23);
return;
}
if (m_cusp_limit > 0.0 || m_cusp_limit < 0.0)
{
if (da1 > m_cusp_limit)
{
px.append(x2);
py.append(y2);
return;
}
if (da2 > m_cusp_limit)
{
px.append(x3);
py.append(y3);
return;
}
}
}
break;
}
default:
break;
}
// Continue subdivision
//----------------------
PointBezier_r(x1, y1, x12, y12, x123, y123, x1234, y1234, static_cast<qint16>(level + 1), px, py);
PointBezier_r(x1234, y1234, x234, y234, x34, y34, x4, y4, static_cast<qint16>(level + 1), px, py);
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief CalcSqDistance calculate squared distance.
* @param x1 х coordinate first point.
* @param y1 у coordinate first point.
* @param x2 х coordinate second point.
* @param y2 у coordinate second point.
* @return squared length.
*/
qreal VSpline::CalcSqDistance (qreal x1, qreal y1, qreal x2, qreal y2)
{
qreal dx = x2 - x1;
qreal dy = y2 - y1;
return dx * dx + dy * dy;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief CreateName create spline name.
*/
void VSpline::CreateName()
{
setName(QString(spl_+"%1_%2").arg(this->GetP1().name(), this->GetP4().name()));
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief SplinePoints return list with spline points.
* @param p1 first spline point.
* @param p4 last spline point.
* @param angle1 angle from first point to first control point.
* @param angle2 angle from second point to second control point.
* @param kAsm1 coefficient of length first control line.
* @param kAsm2 coefficient of length second control line.
* @param kCurve coefficient of curvature spline.
* @return list with spline points.
*/
// cppcheck-suppress unusedFunction
QVector<QPointF> VSpline::SplinePoints(const QPointF &p1, const QPointF &p4, qreal angle1, qreal angle2, qreal kAsm1,
qreal kAsm2, qreal kCurve)
{
QLineF p1pX(p1.x(), p1.y(), p1.x() + 100, p1.y());
p1pX.setAngle( angle1 );
qreal L = 0, radius = 0, angle = 90;
radius = QLineF(QPointF(p1.x(), p4.y()), p4).length();
L = kCurve * radius * 4 / 3 * tan( angle * M_PI / 180.0 / 4 );
QLineF p1p2(p1.x(), p1.y(), p1.x() + L * kAsm1, p1.y());
p1p2.setAngle(angle1);
QLineF p4p3(p4.x(), p4.y(), p4.x() + L * kAsm2, p4.y());
p4p3.setAngle(angle2);
QPointF p2 = p1p2.p2();
QPointF p3 = p4p3.p2();
return GetPoints(p1, p2, p3, p4);
}
//---------------------------------------------------------------------------------------------------------------------
VSpline &VSpline::operator =(const VSpline &spline)
{
if ( &spline == this )
{
return *this;
}
VAbstractCurve::operator=(spline);
d = spline.d;
return *this;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetP1 return first spline point.
* @return first point.
*/
VPointF VSpline::GetP1() const
{
return d->p1;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetP2 return first control point.
* @return first control point.
*/
QPointF VSpline::GetP2() const
{
return d->p2;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetP3 return second control point.
* @return second control point.
*/
QPointF VSpline::GetP3() const
{
return d->p3;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetP4 return last spline point.
* @return остання точка сплайну.
*/
VPointF VSpline::GetP4() const
{
return d->p4;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetAngle1 return first angle control line.
* @return angle.
*/
qreal VSpline::GetAngle1() const
{
return d->angle1;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetAngle2 return second angle control line.
* @return angle.
*/
qreal VSpline::GetAngle2() const
{
return d->angle2;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetKasm1 return coefficient of length first control line.
* @return coefficient.
*/
qreal VSpline::GetKasm1() const
{
return d->kAsm1;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetKasm2 return coefficient of length second control line.
* @return coefficient.
*/
qreal VSpline::GetKasm2() const
{
return d->kAsm2;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetKcurve return coefficient of curvature spline.
* @return coefficient
*/
qreal VSpline::GetKcurve() const
{
return d->kCurve;
}
//---------------------------------------------------------------------------------------------------------------------
void VSpline::SetKcurve(qreal factor)
{
if (factor > 0)
{
d->kCurve = factor;
}
}
//---------------------------------------------------------------------------------------------------------------------
int VSpline::Sign(long double ld)
{
if (qAbs(ld)<0.00000000001)
{
return 0;
}
return (ld>0) ? 1 : -1;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief Cubic Cubic equation solution. Real coefficients case.
*
* This method use method Vieta-Cardano for eval cubic equations.
* Cubic equation write in form x3+a*x2+b*x+c=0.
*
* Output:
* 3 real roots -> then x is filled with them;
* 1 real + 2 complex -> x[0] is real, x[1] is real part of complex roots, x[2] - non-negative imaginary part.
*
* @param x solution array (size 3).
* @param a coefficient
* @param b coefficient
* @param c coefficient
* @return 3 - 3 real roots;
* 1 - 1 real root + 2 complex;
* 2 - 1 real root + complex roots imaginary part is zero (i.e. 2 real roots).
*/
qint32 VSpline::Cubic(QVector<qreal> &x, qreal a, qreal b, qreal c)
{
//To find cubic equation roots in the case of real coefficients, calculated at the beginning
const qreal q = (pow(a, 2) - 3*b)/9.;
const qreal r = (2*pow(a, 3) - 9*a*b + 27.*c)/54.;
if (pow(r, 2) < pow(q, 3))
{ // equation has three real roots, use formula Vieta
const qreal t = acos(r/sqrt(pow(q, 3)))/3.;
x.insert(0, -2.*sqrt(q)*cos(t)-a/3);
x.insert(1, -2.*sqrt(q)*cos(t + (2*M_2PI/3.)) - a/3.);
x.insert(2, -2.*sqrt(q)*cos(t - (2*M_2PI/3.)) - a/3.);
return(3);
}
else
{ // 1 real root + 2 complex
//Formula Cardano
const qreal aa = -Sign(r)*pow(fabs(r)+sqrt(pow(r, 2)-pow(q, 3)), 1./3.);
const qreal bb = Sign(aa) == 0 ? 0 : q/aa;
x.insert(0, aa+bb-a/3.); // Real root
x.insert(1, (-0.5)*(aa+bb)-a/3.); //Complex root
x.insert(2, (sqrt(3.)*0.5)*fabs(aa-bb)); // Complex root
if (qFuzzyCompare(x.at(2) + 1, 0. + 1))
{
return(2);
}
return(1);
}
}
//---------------------------------------------------------------------------------------------------------------------
QVector<qreal> VSpline::CalcT (qreal curveCoord1, qreal curveCoord2, qreal curveCoord3,
qreal curveCoord4, qreal pointCoord) const
{
const qreal a = -curveCoord1 + 3*curveCoord2 - 3*curveCoord3 + curveCoord4;
const qreal b = 3*curveCoord1 - 6*curveCoord2 + 3*curveCoord3;
const qreal c = -3*curveCoord1 + 3*curveCoord2;
const qreal d = -pointCoord + curveCoord1;
QVector<qreal> t = QVector<qreal>(3, -1);
Cubic(t, b/a, c/a, d/a);
QVector<qreal> retT;
for (int i=0; i < t.size(); ++i)
{
if ( t.at(i) >= 0 && t.at(i) <= 1 )
{
retT.append(t.at(i));
}
}
return retT;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief VSpline::ParamT calculate t coeffient that reprezent point on curve.
*
* Each point that belongs to Cubic Bézier curve can be shown by coefficient in interval [0; 1].
*
* @param pBt point on curve
* @return t coeffient that reprezent this point on curve. Return -1 if point doesn't belongs to curve.
*/
qreal VSpline::ParamT (const QPointF &pBt) const
{
QVector<qreal> ts;
// Calculate t coefficient for each axis
ts += CalcT (GetP1().toQPointF().x(), d->p2.x(), d->p3.x(), GetP4().toQPointF().x(), pBt.x());
ts += CalcT (GetP1().toQPointF().y(), d->p2.y(), d->p3.y(), GetP4().toQPointF().y(), pBt.y());
if (ts.isEmpty())
{
return -1; // We don't have candidates
}
qreal tx = -1;
qreal eps = 3; // Error calculation
// In morst case we will have 6 result in interval [0; 1].
// Here we try find closest to our point.
for (int i=0; i< ts.size(); ++i)
{
const qreal t = ts.at(i);
const QPointF p0 = GetP1().toQPointF();
const QPointF p1 = d->p2;
const QPointF p2 = d->p3;
const QPointF p3 = GetP4().toQPointF();
//The explicit form of the Cubic Bézier curve
const qreal pointX = pow(1-t, 3)*p0.x() + 3*pow(1-t, 2)*t*p1.x() + 3*(1-t)*pow(t, 2)*p2.x() + pow(t, 3)*p3.x();
const qreal pointY = pow(1-t, 3)*p0.y() + 3*pow(1-t, 2)*t*p1.y() + 3*(1-t)*pow(t, 2)*p2.y() + pow(t, 3)*p3.y();
const QLineF line(pBt, QPointF(pointX, pointY));
if (line.length() <= eps)
{
tx = t;
eps = line.length(); //Next point should be even closest
}
}
return tx;
}