valentina/src/libs/vgeometry/vellipticalarc.cpp
2022-11-21 18:50:03 +02:00

944 lines
33 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/************************************************************************
**
** @file vellipticalarc.cpp
** @author Valentina Zhuravska <zhuravska19(at)gmail.com>
** @date February 1, 2016
**
** @brief
** @copyright
** This source code is part of the Valentina project, a pattern making
** program, whose allow create and modeling patterns of clothing.
** Copyright (C) 2013-2015 Valentina project
** <https://gitlab.com/smart-pattern/valentina> All Rights Reserved.
**
** Valentina is free software: you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** Valentina is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with Valentina. If not, see <http://www.gnu.org/licenses/>.
**
*************************************************************************/
#include "vellipticalarc.h"
#include <QLineF>
#include <QPoint>
#include <QPainterPath>
#include <QtDebug>
#include "../vmisc/def.h"
#include "../ifc/ifcdef.h"
#include "../ifc/exception/vexception.h"
#include "../vmisc/vabstractapplication.h"
#include "../vmisc/fpm/fixed.hpp"
#include "../vmisc/fpm/math.hpp"
#include "../vmisc/compatibility.h"
#include "vabstractcurve.h"
#include "vellipticalarc_p.h"
#include "../vmisc/vmath.h"
namespace
{
constexpr qreal tolerance = accuracyPointOnLine/8;
// Because of overflow we cannot generate arcs more than maxRadius
constexpr int maxRadius = 10000;
//---------------------------------------------------------------------------------------------------------------------
auto VLen(fpm::fixed_16_16 x, fpm::fixed_16_16 y) -> fpm::fixed_16_16
{
x = fpm::abs(x);
y = fpm::abs(y);
if (x > y)
{
return x + qMax(y/8, y/2 - x/8);
}
return y + qMax(x/8, x/2 - y/8);
}
//---------------------------------------------------------------------------------------------------------------------
auto AuxRadius(fpm::fixed_16_16 xP, fpm::fixed_16_16 yP, fpm::fixed_16_16 xQ, fpm::fixed_16_16 yQ) -> fpm::fixed_16_16
{
fpm::fixed_16_16 dP = VLen(xP, yP);
fpm::fixed_16_16 dQ = VLen(xQ, yQ);
fpm::fixed_16_16 dJ = VLen(xP + xQ, yP + yQ);
fpm::fixed_16_16 dK = VLen(xP - xQ, yP - yQ);
fpm::fixed_16_16 r1 = qMax(dP, dQ);
fpm::fixed_16_16 r2 = qMax(dJ, dK);
return qMax(r1 + r1/16, r2 - r2/4);
}
//---------------------------------------------------------------------------------------------------------------------
auto AngularInc(fpm::fixed_16_16 xP, fpm::fixed_16_16 yP, fpm::fixed_16_16 xQ, fpm::fixed_16_16 yQ,
fpm::fixed_16_16 flatness) -> int
{
fpm::fixed_16_16 r = AuxRadius(xP, yP, xQ, yQ);
fpm::fixed_16_16 err2{r >> 3};
// 2nd-order term
fpm::fixed_16_16 err4{r >> 7};
// 4th-order term
const int kmax = qRound(0.5 * std::log2(maxSceneSize / (8. * tolerance)));
for (int k = 0; k < kmax; ++k)
{
if (flatness >= err2 + err4)
{
return k;
}
err2 >>= 2;
err4 >>= 4;
}
return kmax;
}
//---------------------------------------------------------------------------------------------------------------------
inline void CircleGen(fpm::fixed_16_16& u, fpm::fixed_16_16& v, uint k)
{
u -= v >> k;
v += u >> k;
}
//---------------------------------------------------------------------------------------------------------------------
auto InitialValue(fpm::fixed_16_16 u0, fpm::fixed_16_16 v0, uint k) -> fpm::fixed_16_16
{
uint shift = 2*k + 3;
fpm::fixed_16_16 w {u0 >> shift};
fpm::fixed_16_16 U0 = u0 - w + (v0 >> (k + 1));
w >>= (shift + 1);
U0 -= w;
w >>= shift;
U0 -= w;
return U0;
}
//---------------------------------------------------------------------------------------------------------------------
auto EllipseCore(fpm::fixed_16_16 xC, fpm::fixed_16_16 yC, fpm::fixed_16_16 xP, fpm::fixed_16_16 yP,
fpm::fixed_16_16 xQ, fpm::fixed_16_16 yQ, fpm::fixed_16_16 sweep,
fpm::fixed_16_16 flatness) -> QVector<QPointF>
{
uint k = qMin(static_cast<uint>(AngularInc(xP, yP, xQ, yQ, flatness)), 16U);
const uint count = static_cast<std::uint32_t>(sweep.raw_value()) >> (16 - k);
QVector<QPointF> arc;
arc.reserve(static_cast<int>(count) + 1);
// Arc start point
arc.append({static_cast<qreal>(xP + xC), static_cast<qreal>(yP + yC)});
xQ = InitialValue(xQ, xP, k);
yQ = InitialValue(yQ, yP, k);
for (uint i = 0; i < count; ++i)
{
CircleGen(xQ, xP, k);
CircleGen(yQ, yP, k);
arc.append({static_cast<qreal>(xP + xC), static_cast<qreal>(yP + yC)});
}
return arc;
}
//---------------------------------------------------------------------------------------------------------------------
auto EllipticArcPoints(QPointF c, qreal radius1, qreal radius2, qreal astart, qreal asweep,
qreal approximationScale) -> QVector<QPointF>
{
fpm::fixed_16_16 xC{c.x()};
fpm::fixed_16_16 yC{c.y()};
fpm::fixed_16_16 xP{c.x() + radius1};
fpm::fixed_16_16 yP{c.y()};
fpm::fixed_16_16 xQ{c.x()};
fpm::fixed_16_16 yQ{c.y() - radius2};
xP -= xC;
yP -= yC;
xQ -= xC;
yQ -= yC;
if (not qFuzzyIsNull(astart))
{
// Set new conjugate diameter end points P and Q
fpm::fixed_16_16 cosa {cos(astart)};
fpm::fixed_16_16 sina {sin(astart)};
fpm::fixed_16_16 x {xP * cosa + xQ * sina};
fpm::fixed_16_16 y {yP * cosa + yQ * sina};
xQ = xQ * cosa - xP * sina;
yQ = yQ * cosa - yP * sina;
xP = x;
yP = y;
}
// If sweep angle is negative, switch direction
if (asweep < 0)
{
xQ = -xQ;
yQ = -yQ;
asweep = -asweep;
}
if(approximationScale < minCurveApproximationScale || approximationScale > maxCurveApproximationScale)
{
approximationScale = VAbstractApplication::VApp()->Settings()->GetCurveApproximationScale();
}
fpm::fixed_16_16 flatness {maxCurveApproximationScale / approximationScale * tolerance};
fpm::fixed_16_16 swangle{asweep};
QVector<QPointF> arc = EllipseCore(xC, yC, xP, yP, xQ, yQ, swangle, flatness);
// Arc end point
fpm::fixed_16_16 cosb {qCos(asweep)};
fpm::fixed_16_16 sinb {qSin(asweep)};
xP = xP*cosb + xQ*sinb;
yP = yP*cosb + yQ*sinb;
arc.append({static_cast<qreal>(xP+xC), static_cast<qreal>(yP+yC)});
return arc;
}
//---------------------------------------------------------------------------------------------------------------------
auto JoinVectors(const QVector<QPointF> &v1, const QVector<QPointF> &v2) -> QVector<QPointF>
{
QVector<QPointF> v;
v.reserve(v1.size() + v2.size());
v = v1;
constexpr qreal accuracy = MmToPixel(0.0001);
for (auto p : v2)
{
if (not VFuzzyComparePoints(ConstLast(v), p, accuracy))
{
v.append(p);
}
}
return v;
}
} // namespace
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief VEllipticalArc default constructor.
*/
VEllipticalArc::VEllipticalArc()
: VAbstractArc(GOType::EllipticalArc), d (new VEllipticalArcData)
{}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief VEllipticalArc constructor.
* @param center center point.
* @param radius1 arc major radius.
* @param radius2 arc minor radius.
* @param f1 start angle (degree).
* @param f2 end angle (degree).
*/
VEllipticalArc::VEllipticalArc (const VPointF &center, qreal radius1, qreal radius2, const QString &formulaRadius1,
const QString &formulaRadius2, qreal f1, const QString &formulaF1, qreal f2,
const QString &formulaF2, qreal rotationAngle, const QString &formulaRotationAngle,
quint32 idObject, Draw mode)
: VAbstractArc(GOType::EllipticalArc, center, f1, formulaF1, f2, formulaF2, idObject, mode),
d (new VEllipticalArcData(radius1, radius2, formulaRadius1, formulaRadius2, rotationAngle, formulaRotationAngle))
{
CreateName();
}
//---------------------------------------------------------------------------------------------------------------------
VEllipticalArc::VEllipticalArc(const VPointF &center, qreal radius1, qreal radius2, qreal f1, qreal f2,
qreal rotationAngle)
: VAbstractArc(GOType::EllipticalArc, center, f1, f2, NULL_ID, Draw::Calculation),
d (new VEllipticalArcData(radius1, radius2, rotationAngle))
{
CreateName();
}
//---------------------------------------------------------------------------------------------------------------------
VEllipticalArc::VEllipticalArc(qreal length, const QString &formulaLength, const VPointF &center, qreal radius1,
qreal radius2, const QString &formulaRadius1, const QString &formulaRadius2, qreal f1,
const QString &formulaF1, qreal rotationAngle, const QString &formulaRotationAngle,
quint32 idObject, Draw mode)
: VAbstractArc(GOType::EllipticalArc, formulaLength, center, f1, formulaF1, idObject, mode),
d (new VEllipticalArcData(radius1, radius2, formulaRadius1, formulaRadius2, rotationAngle, formulaRotationAngle))
{
CreateName();
FindF2(length);
}
//---------------------------------------------------------------------------------------------------------------------
VEllipticalArc::VEllipticalArc(qreal length, const VPointF &center, qreal radius1, qreal radius2, qreal f1,
qreal rotationAngle)
: VAbstractArc(GOType::EllipticalArc, center, f1, NULL_ID, Draw::Calculation),
d (new VEllipticalArcData(radius1, radius2, rotationAngle))
{
CreateName();
FindF2(length);
SetFormulaLength(QString::number(length));
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief VEllipticalArc copy constructor
* @param arc arc
*/
VEllipticalArc::VEllipticalArc(const VEllipticalArc &arc)
: VAbstractArc(arc), d (arc.d)
{}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief operator = assignment operator
* @param arc arc
* @return arc
*/
auto VEllipticalArc::operator =(const VEllipticalArc &arc) -> VEllipticalArc &
{
if ( &arc == this )
{
return *this;
}
VAbstractArc::operator=(arc);
d = arc.d;
return *this;
}
#ifdef Q_COMPILER_RVALUE_REFS
//---------------------------------------------------------------------------------------------------------------------
VEllipticalArc::VEllipticalArc(VEllipticalArc &&arc) Q_DECL_NOTHROW
: VAbstractArc(std::move(arc)),
d(std::move(arc.d))
{}
//---------------------------------------------------------------------------------------------------------------------
auto VEllipticalArc::operator=(VEllipticalArc &&arc) Q_DECL_NOTHROW -> VEllipticalArc &
{
VAbstractArc::operator=(arc);
std::swap(d, arc.d);
return *this;
}
#endif
//---------------------------------------------------------------------------------------------------------------------
auto VEllipticalArc::Rotate(QPointF originPoint, qreal degrees, const QString &prefix) const -> VEllipticalArc
{
originPoint = d->m_transform.inverted().map(originPoint);
QTransform t = d->m_transform;
t.translate(originPoint.x(), originPoint.y());
t.rotate(IsFlipped() ? degrees : -degrees);
t.translate(-originPoint.x(), -originPoint.y());
VEllipticalArc elArc(VAbstractArc::GetCenter(), GetRadius1(), GetRadius2(), VAbstractArc::GetStartAngle(),
VAbstractArc::GetEndAngle(), GetRotationAngle());
elArc.setName(name() + prefix);
if (not GetAliasSuffix().isEmpty())
{
elArc.SetAliasSuffix(GetAliasSuffix() + prefix);
}
elArc.SetColor(GetColor());
elArc.SetPenStyle(GetPenStyle());
elArc.SetFlipped(IsFlipped());
elArc.SetTransform(t);
elArc.SetApproximationScale(GetApproximationScale());
return elArc;
}
//---------------------------------------------------------------------------------------------------------------------
auto VEllipticalArc::Flip(const QLineF &axis, const QString &prefix) const -> VEllipticalArc
{
VEllipticalArc elArc(VAbstractArc::GetCenter(), GetRadius1(), GetRadius2(), VAbstractArc::GetStartAngle(),
VAbstractArc::GetEndAngle(), GetRotationAngle());
elArc.setName(name() + prefix);
if (not GetAliasSuffix().isEmpty())
{
elArc.SetAliasSuffix(GetAliasSuffix() + prefix);
}
elArc.SetColor(GetColor());
elArc.SetPenStyle(GetPenStyle());
elArc.SetFlipped(not IsFlipped());
elArc.SetTransform(d->m_transform * VGObject::FlippingMatrix(d->m_transform.inverted().map(axis)));
elArc.SetApproximationScale(GetApproximationScale());
return elArc;
}
//---------------------------------------------------------------------------------------------------------------------
auto VEllipticalArc::Move(qreal length, qreal angle, const QString &prefix) const -> VEllipticalArc
{
const VPointF oldCenter = VAbstractArc::GetCenter();
const VPointF center = oldCenter.Move(length, angle);
const QPointF position = d->m_transform.inverted().map(center.toQPointF()) -
d->m_transform.inverted().map(oldCenter.toQPointF());
QTransform t = d->m_transform;
t.translate(position.x(), position.y());
VEllipticalArc elArc(oldCenter, GetRadius1(), GetRadius2(), VAbstractArc::GetStartAngle(),
VAbstractArc::GetEndAngle(), GetRotationAngle());
elArc.setName(name() + prefix);
if (not GetAliasSuffix().isEmpty())
{
elArc.SetAliasSuffix(GetAliasSuffix() + prefix);
}
elArc.SetColor(GetColor());
elArc.SetPenStyle(GetPenStyle());
elArc.SetFlipped(IsFlipped());
elArc.SetTransform(t);
elArc.SetApproximationScale(GetApproximationScale());
return elArc;
}
//---------------------------------------------------------------------------------------------------------------------
VEllipticalArc::~VEllipticalArc() // NOLINT(hicpp-use-equals-default, modernize-use-equals-default)
{}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetLength return arc length.
* @return length.
*/
auto VEllipticalArc::GetLength() const -> qreal
{
qreal length = PathLength(GetPoints());
if (IsFlipped())
{
length = length * -1;
}
return length;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetP1 return point associated with start angle.
* @return point.
*/
auto VEllipticalArc::GetP1() const -> QPointF
{
return GetTransform().map(GetP(VAbstractArc::GetStartAngle()));
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetP2 return point associated with end angle.
* @return point.
*/
auto VEllipticalArc::GetP2 () const -> QPointF
{
return GetTransform().map(GetP(VAbstractArc::GetEndAngle()));
}
//---------------------------------------------------------------------------------------------------------------------
auto VEllipticalArc::GetTransform() const -> QTransform
{
return d->m_transform;
}
//---------------------------------------------------------------------------------------------------------------------
void VEllipticalArc::SetTransform(const QTransform &matrix, bool combine)
{
d->m_transform = combine ? d->m_transform * matrix : matrix;
}
//---------------------------------------------------------------------------------------------------------------------
auto VEllipticalArc::GetCenter() const -> VPointF
{
VPointF center = VAbstractArc::GetCenter();
const QPointF p = d->m_transform.map(center.toQPointF());
center.setX(p.x());
center.setY(p.y());
return center;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetPoints return list of points needed for drawing arc.
* @return list of points
*/
auto VEllipticalArc::GetPoints() const -> QVector<QPointF>
{
const QPointF center = VAbstractArc::GetCenter().toQPointF();
// Don't work with 0 radius. Always make it bigger than 0.
Q_RELAXED_CONSTEXPR qreal threshold = ToPixel(0.001, Unit::Mm);
qreal radius1 = qMax(d->radius1, threshold);
qreal radius2 = qMax(d->radius2, threshold);
qreal max = qMax(d->radius1, d->radius2);
qreal scale = 1;
if (max > maxRadius)
{
scale = max / maxRadius;
radius1 /= scale;
radius2 /= scale;
}
// Generate complete ellipse because angles are not correct and have to be fixed manually
QVector<QPointF> points = EllipticArcPoints(center, radius1, radius2, 0.0, M_2PI, GetApproximationScale());
points = ArcPoints(points);
QTransform t = d->m_transform;
t.translate(center.x(), center.y());
if (not VFuzzyComparePossibleNulls(scale, 1))
{
// Because fixed 16.16 type has limitations it is very easy to get overflow error.
// To avoid this we calculate an arc for scaled radiuses and then scale up to original size.
t.scale(scale, scale);
}
t.rotate(-GetRotationAngle());
t.translate(-center.x(), -center.y());
std::transform(points.begin(), points.end(), points.begin(), [t](const QPointF &point) { return t.map(point); });
return points;
}
//---------------------------------------------------------------------------------------------------------------------
auto VEllipticalArc::GetStartAngle() const -> qreal
{
return QLineF(GetCenter().toQPointF(), GetP1()).angle() - GetRotationAngle();
}
//---------------------------------------------------------------------------------------------------------------------
auto VEllipticalArc::GetEndAngle() const -> qreal
{
return QLineF(GetCenter().toQPointF(), GetP2()).angle() - GetRotationAngle();
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief CutArc cut arc into two arcs.
* @param length length first arc.
* @param arc1 first arc.
* @param arc2 second arc.
* @return point cutting
*/
auto VEllipticalArc::CutArc(const qreal &length, VEllipticalArc &arc1, VEllipticalArc &arc2,
const QString &pointName) const -> QPointF
{
//Always need return two arcs, so we must correct wrong length.
qreal len = 0;
const qreal fullLength = GetLength();
if (fullLength <= minLength)
{
arc1 = VEllipticalArc();
arc2 = VEllipticalArc();
const QString errorMsg = QObject::tr("Unable to cut curve '%1'. The curve is too short.").arg(name());
VAbstractApplication::VApp()->IsPedantic() ? throw VException(errorMsg) :
qWarning() << VAbstractApplication::warningMessageSignature + errorMsg;
return {};
}
const qreal maxLength = fullLength - minLength;
if (length < minLength)
{
len = minLength;
QString errorMsg;
if (not pointName.isEmpty())
{
errorMsg = QObject::tr("Curve '%1'. Length of a cut segment (%2) is too small. Optimize it to minimal "
"value.").arg(name(), pointName);
}
else
{
errorMsg = QObject::tr("Curve '%1'. Length of a cut segment is too small. Optimize it to minimal value.")
.arg(name());
}
VAbstractApplication::VApp()->IsPedantic() ? throw VException(errorMsg) :
qWarning() << VAbstractApplication::warningMessageSignature + errorMsg;
}
else if (length > maxLength)
{
len = maxLength;
QString errorMsg;
if (not pointName.isEmpty())
{
errorMsg = QObject::tr("Curve '%1'. Length of a cut segment (%2) is too big. Optimize it to maximal value.")
.arg(name(), pointName);
}
else
{
errorMsg = QObject::tr("Curve '%1'. Length of a cut segment is too big. Optimize it to maximal value.")
.arg(name());
}
VAbstractApplication::VApp()->IsPedantic() ? throw VException(errorMsg) :
qWarning() << VAbstractApplication::warningMessageSignature + errorMsg;
}
else
{
len = length;
}
// the first arc has given length and startAngle just like in the origin arc
arc1 = VEllipticalArc (len, QString().setNum(length), GetCenter(), d->radius1, d->radius2,
d->formulaRadius1, d->formulaRadius2, GetStartAngle(), GetFormulaF1(), d->rotationAngle,
GetFormulaRotationAngle(), getIdObject(), getMode());
// the second arc has startAngle just like endAngle of the first arc
// and it has endAngle just like endAngle of the origin arc
arc2 = VEllipticalArc (GetCenter(), d->radius1, d->radius2, d->formulaRadius1, d->formulaRadius2,
arc1.GetEndAngle(), arc1.GetFormulaF2(), GetEndAngle(), GetFormulaF2(), d->rotationAngle,
GetFormulaRotationAngle(), getIdObject(), getMode());
return arc1.GetP1();
}
//---------------------------------------------------------------------------------------------------------------------
auto VEllipticalArc::CutArc(const qreal &length, const QString &pointName) const -> QPointF
{
VEllipticalArc arc1;
VEllipticalArc arc2;
return this->CutArc(length, arc1, arc2, pointName);
}
//---------------------------------------------------------------------------------------------------------------------
void VEllipticalArc::CreateName()
{
QString name = ELARC_ + QStringLiteral("%1").arg(this->GetCenter().name());
const QString nameStr = QStringLiteral("_%1");
if (getMode() == Draw::Modeling && getIdObject() != NULL_ID)
{
name += nameStr.arg(getIdObject());
}
else if (VAbstractCurve::id() != NULL_ID)
{
name += nameStr.arg(VAbstractCurve::id());
}
if (GetDuplicate() > 0)
{
name += nameStr.arg(GetDuplicate());
}
setName(name);
}
//---------------------------------------------------------------------------------------------------------------------
void VEllipticalArc::CreateAlias()
{
const QString aliasSuffix = GetAliasSuffix();
if (aliasSuffix.isEmpty())
{
SetAlias(QString());
return;
}
SetAlias(ELARC_ + aliasSuffix);
}
//---------------------------------------------------------------------------------------------------------------------
void VEllipticalArc::FindF2(qreal length)
{
qreal gap = 180;
if (length < 0)
{
SetFlipped(true);
gap = -gap;
}
while (length > MaxLength())
{
length = MaxLength();
}
// We need to calculate the second angle
// first approximation of angle between start and end angles
QLineF radius1(GetCenter().x(), GetCenter().y(), GetCenter().x() + d->radius1, GetCenter().y());
radius1.setAngle(GetStartAngle());
radius1.setAngle(radius1.angle() + gap);
qreal endAngle = radius1.angle();
// we need to set the end angle, because we want to use GetLength()
SetFormulaF2(QString::number(endAngle), endAngle);
qreal lenBez = GetLength(); // first approximation of length
const qreal eps = ToPixel(0.001, Unit::Mm);
while (qAbs(lenBez - length) > eps)
{
gap = gap/2;
if (gap < 0.0001)
{
break;
}
if (lenBez > length)
{ // we selected too big end angle
radius1.setAngle(endAngle - qAbs(gap));
}
else
{ // we selected too little end angle
radius1.setAngle(endAngle + qAbs(gap));
}
endAngle = radius1.angle();
// we need to set d->f2, because we use it when we calculate GetLength
SetFormulaF2(QString::number(endAngle), endAngle);
lenBez = GetLength();
}
}
//---------------------------------------------------------------------------------------------------------------------
auto VEllipticalArc::MaxLength() const -> qreal
{
const qreal h = qPow(d->radius1 - d->radius2, 2) / qPow(d->radius1 + d->radius2, 2);
const qreal ellipseLength = M_PI * (d->radius1 + d->radius2) * (1+3*h/(10+qSqrt(4-3*h)));
return ellipseLength;
}
//---------------------------------------------------------------------------------------------------------------------
auto VEllipticalArc::GetP(qreal angle) const -> QPointF
{
if (qFuzzyIsNull(GetRadius1()) && qFuzzyIsNull(GetRadius2()))
{
return GetCenter().toQPointF();
}
QLineF line(0, 0, 100, 0);
line.setAngle(angle);
const qreal a = not qFuzzyIsNull(GetRadius1()) ? line.p2().x() / GetRadius1() : 0;
const qreal b = not qFuzzyIsNull(GetRadius2()) ? line.p2().y() / GetRadius2() : 0;
const qreal k = qSqrt(a*a + b*b);
if (qFuzzyIsNull(k))
{
return GetCenter().toQPointF();
}
QPointF p(line.p2().x() / k, line.p2().y() / k);
QLineF line2(QPointF(), p);
SCASSERT(VFuzzyComparePossibleNulls(line2.angle(), line.angle()))
line2.setAngle(line2.angle() + GetRotationAngle());
return line2.p2() + VAbstractArc::GetCenter().toQPointF();
}
//---------------------------------------------------------------------------------------------------------------------
auto VEllipticalArc::ArcPoints(QVector<QPointF> points) const -> QVector<QPointF>
{
if (points.size() < 2 || (qFuzzyIsNull(d->radius1) && qFuzzyIsNull(d->radius2)))
{
return points;
}
QPointF center = VAbstractArc::GetCenter().toQPointF();
qreal radius = qMax(d->radius1, d->radius2) * 2;
QLineF start(center.x(), center.y(), center.x() + radius, center.y());
start.setAngle(VAbstractArc::GetStartAngle());
QLineF end(center.x(), center.y(), center.x() + radius, center.y());
end.setAngle(VAbstractArc::GetEndAngle());
auto IsBoundedIntersection = [](QLineF::IntersectType type, QPointF p, const QLineF &segment1,
const QLineF &segment2)
{
return type == QLineF::BoundedIntersection ||
(type == QLineF::UnboundedIntersection &&
VGObject::IsPointOnLineSegment (p, segment1.p1(), segment2.p1()) &&
VGObject::IsPointOnLineSegment (p, segment2.p1(), segment2.p2()));
};
bool begin = true;
if (start.angle() >= end.angle())
{
for (int i=0; i < points.size()-1; ++i)
{
QLineF edge(points.at(i), points.at(i+1));
QPointF p;
QLineF::IntersectType type = Intersects(start, edge, &p);
// QLineF::intersects not always accurate on edge cases
if (IsBoundedIntersection(type, p, edge, start))
{
QVector<QPointF> head = points.mid(0, i+1);
QVector<QPointF> tail = points.mid(i+1, -1);
tail = JoinVectors({p}, tail);
points = JoinVectors(tail, head);
points = JoinVectors(points, {p});
if (VFuzzyComparePossibleNulls(start.angle(), end.angle()))
{
return points;
}
begin = false;
break;
}
}
}
QVector<QPointF> arc;
arc.reserve(points.size());
for (int i=0; i < points.size()-1; ++i)
{
QLineF edge(points.at(i), points.at(i+1));
if (begin)
{
QPointF p;
QLineF::IntersectType type = Intersects(start, edge, &p);
// QLineF::intersects not always accurate on edge cases
if (IsBoundedIntersection(type, p, edge, start))
{
arc.append(p);
begin = false;
}
}
else
{
QPointF p;
QLineF::IntersectType type = Intersects(end, edge, &p);
// QLineF::intersects not always accurate on edge cases
if (IsBoundedIntersection(type, p, edge, end))
{
arc.append(points.at(i));
arc.append(p);
break;
}
arc.append(points.at(i));
}
}
if (arc.isEmpty())
{
return points;
}
return arc;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetFormulaRadius1 return formula for major radius.
* @return radius.
*/
auto VEllipticalArc::GetFormulaRadius1() const -> QString
{
return d->formulaRadius1;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetFormulaRadius2 return formula for minor radius.
* @return radius.
*/
auto VEllipticalArc::GetFormulaRadius2() const -> QString
{
return d->formulaRadius2;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetFormulaRotationAngle return formula for rotation angle.
* @return rotationAngle.
*/
auto VEllipticalArc::GetFormulaRotationAngle() const -> QString
{
return d->formulaRotationAngle;
}
//---------------------------------------------------------------------------------------------------------------------
void VEllipticalArc::SetFormulaRadius1(const QString &formula, qreal value)
{
d->formulaRadius1 = formula;
d->radius1 = value;
}
//---------------------------------------------------------------------------------------------------------------------
void VEllipticalArc::SetRadius1(qreal value)
{
d->formulaRadius1 = QString::number(value);
d->radius1 = value;
}
//---------------------------------------------------------------------------------------------------------------------
void VEllipticalArc::SetFormulaRadius2(const QString &formula, qreal value)
{
d->formulaRadius2 = formula;
d->radius2 = value;
}
//---------------------------------------------------------------------------------------------------------------------
void VEllipticalArc::SetRadius2(qreal value)
{
d->formulaRadius2 = QString::number(value);
d->radius2 = value;
}
//---------------------------------------------------------------------------------------------------------------------
void VEllipticalArc::SetFormulaRotationAngle(const QString &formula, qreal value)
{
d->formulaRotationAngle = formula;
d->rotationAngle = value;
}
//---------------------------------------------------------------------------------------------------------------------
void VEllipticalArc::SetRotationAngle(qreal value)
{
d->formulaRotationAngle = QString::number(value);
d->rotationAngle = value;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetRadius1 return elliptical arc major radius.
* @return string with formula.
*/
auto VEllipticalArc::GetRadius1() const -> qreal
{
return d->radius1;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetRadius2 return elliptical arc minor radius.
* @return string with formula.
*/
auto VEllipticalArc::GetRadius2() const -> qreal
{
return d->radius2;
}
//---------------------------------------------------------------------------------------------------------------------
/**
* @brief GetRotationAngle return rotation angle.
* @return rotationAngle.
*/
auto VEllipticalArc::GetRotationAngle() const -> qreal
{
return d->rotationAngle;
}