/************************************************************************ ** ** @file vellipticalarc.cpp ** @author Valentina Zhuravska <zhuravska19(at)gmail.com> ** @date February 1, 2016 ** ** @brief ** @copyright ** This source code is part of the Valentina project, a pattern making ** program, whose allow create and modeling patterns of clothing. ** Copyright (C) 2013-2015 Valentina project ** <https://gitlab.com/smart-pattern/valentina> All Rights Reserved. ** ** Valentina is free software: you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation, either version 3 of the License, or ** (at your option) any later version. ** ** Valentina is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with Valentina. If not, see <http://www.gnu.org/licenses/>. ** *************************************************************************/ #include "vellipticalarc.h" #include <QLineF> #include <QPainterPath> #include <QPoint> #include <QtDebug> #include "../ifc/exception/vexception.h" #include "../ifc/ifcdef.h" #include "../vmisc/compatibility.h" #include "../vmisc/def.h" #include "../vmisc/fpm/fixed.hpp" #include "../vmisc/fpm/math.hpp" #include "../vmisc/vabstractapplication.h" #include "../vmisc/vmath.h" #include "vabstractcurve.h" #include "vellipticalarc_p.h" namespace { constexpr qreal tolerance = accuracyPointOnLine / 8; // Because of overflow we cannot generate arcs more than maxRadius constexpr int maxRadius = 10000; //--------------------------------------------------------------------------------------------------------------------- auto VLen(fpm::fixed_16_16 x, fpm::fixed_16_16 y) -> fpm::fixed_16_16 { x = fpm::abs(x); y = fpm::abs(y); if (x > y) { return x + qMax(y / 8, y / 2 - x / 8); } return y + qMax(x / 8, x / 2 - y / 8); } //--------------------------------------------------------------------------------------------------------------------- auto AuxRadius(fpm::fixed_16_16 xP, fpm::fixed_16_16 yP, fpm::fixed_16_16 xQ, fpm::fixed_16_16 yQ) -> fpm::fixed_16_16 { fpm::fixed_16_16 const dP = VLen(xP, yP); fpm::fixed_16_16 const dQ = VLen(xQ, yQ); fpm::fixed_16_16 const dJ = VLen(xP + xQ, yP + yQ); fpm::fixed_16_16 const dK = VLen(xP - xQ, yP - yQ); fpm::fixed_16_16 const r1 = qMax(dP, dQ); fpm::fixed_16_16 const r2 = qMax(dJ, dK); return qMax(r1 + r1 / 16, r2 - r2 / 4); } //--------------------------------------------------------------------------------------------------------------------- auto AngularInc(fpm::fixed_16_16 xP, fpm::fixed_16_16 yP, fpm::fixed_16_16 xQ, fpm::fixed_16_16 yQ, fpm::fixed_16_16 flatness) -> int { fpm::fixed_16_16 const r = AuxRadius(xP, yP, xQ, yQ); fpm::fixed_16_16 err2{r >> 3}; // 2nd-order term fpm::fixed_16_16 err4{r >> 7}; // 4th-order term const int kmax = qRound(0.5 * std::log2(maxSceneSize / (8. * tolerance))); for (int k = 0; k < kmax; ++k) { if (flatness >= err2 + err4) { return k; } err2 >>= 2; err4 >>= 4; } return kmax; } //--------------------------------------------------------------------------------------------------------------------- inline void CircleGen(fpm::fixed_16_16 &u, fpm::fixed_16_16 &v, uint k) { u -= v >> k; v += u >> k; } //--------------------------------------------------------------------------------------------------------------------- auto InitialValue(fpm::fixed_16_16 u0, fpm::fixed_16_16 v0, uint k) -> fpm::fixed_16_16 { uint const shift = 2 * k + 3; fpm::fixed_16_16 w{u0 >> shift}; fpm::fixed_16_16 U0 = u0 - w + (v0 >> (k + 1)); w >>= (shift + 1); U0 -= w; w >>= shift; U0 -= w; return U0; } //--------------------------------------------------------------------------------------------------------------------- auto EllipseCore(fpm::fixed_16_16 xC, fpm::fixed_16_16 yC, fpm::fixed_16_16 xP, fpm::fixed_16_16 yP, fpm::fixed_16_16 xQ, fpm::fixed_16_16 yQ, fpm::fixed_16_16 sweep, fpm::fixed_16_16 flatness) -> QVector<QPointF> { uint const k = qMin(static_cast<uint>(AngularInc(xP, yP, xQ, yQ, flatness)), 16U); const uint count = static_cast<std::uint32_t>(sweep.raw_value()) >> (16 - k); QVector<QPointF> arc; arc.reserve(static_cast<int>(count) + 1); // Arc start point arc.append({static_cast<qreal>(xP + xC), static_cast<qreal>(yP + yC)}); xQ = InitialValue(xQ, xP, k); yQ = InitialValue(yQ, yP, k); for (uint i = 0; i < count; ++i) { CircleGen(xQ, xP, k); CircleGen(yQ, yP, k); arc.append({static_cast<qreal>(xP + xC), static_cast<qreal>(yP + yC)}); } return arc; } //--------------------------------------------------------------------------------------------------------------------- auto EllipticArcPoints(QPointF c, qreal radius1, qreal radius2, qreal astart, qreal asweep, qreal approximationScale) -> QVector<QPointF> { fpm::fixed_16_16 const xC{c.x()}; fpm::fixed_16_16 const yC{c.y()}; fpm::fixed_16_16 xP{c.x() + radius1}; fpm::fixed_16_16 yP{c.y()}; fpm::fixed_16_16 xQ{c.x()}; fpm::fixed_16_16 yQ{c.y() - radius2}; xP -= xC; yP -= yC; xQ -= xC; yQ -= yC; if (not qFuzzyIsNull(astart)) { // Set new conjugate diameter end points P’ and Q’ fpm::fixed_16_16 const cosa{cos(astart)}; fpm::fixed_16_16 const sina{sin(astart)}; fpm::fixed_16_16 const x{xP * cosa + xQ * sina}; fpm::fixed_16_16 const y{yP * cosa + yQ * sina}; xQ = xQ * cosa - xP * sina; yQ = yQ * cosa - yP * sina; xP = x; yP = y; } // If sweep angle is negative, switch direction if (asweep < 0) { xQ = -xQ; yQ = -yQ; asweep = -asweep; } if (approximationScale < minCurveApproximationScale || approximationScale > maxCurveApproximationScale) { approximationScale = VAbstractApplication::VApp()->Settings()->GetCurveApproximationScale(); } fpm::fixed_16_16 const flatness{maxCurveApproximationScale / approximationScale * tolerance}; fpm::fixed_16_16 const swangle{asweep}; QVector<QPointF> arc = EllipseCore(xC, yC, xP, yP, xQ, yQ, swangle, flatness); // Arc end point fpm::fixed_16_16 const cosb{qCos(asweep)}; fpm::fixed_16_16 const sinb{qSin(asweep)}; xP = xP * cosb + xQ * sinb; yP = yP * cosb + yQ * sinb; arc.append({static_cast<qreal>(xP + xC), static_cast<qreal>(yP + yC)}); return arc; } //--------------------------------------------------------------------------------------------------------------------- auto JoinVectors(const QVector<QPointF> &v1, const QVector<QPointF> &v2) -> QVector<QPointF> { QVector<QPointF> v; v.reserve(v1.size() + v2.size()); v = v1; constexpr qreal accuracy = MmToPixel(0.0001); for (auto p : v2) { if (not VFuzzyComparePoints(v.constLast(), p, accuracy)) { v.append(p); } } return v; } //--------------------------------------------------------------------------------------------------------------------- auto IsBoundedIntersection(QLineF::IntersectType type, QPointF p, const QLineF &segment1, const QLineF &segment2) -> bool { return type == QLineF::BoundedIntersection || (type == QLineF::UnboundedIntersection && VGObject::IsPointOnLineSegment(p, segment1.p1(), segment2.p1()) && VGObject::IsPointOnLineSegment(p, segment2.p1(), segment2.p2())); } } // namespace //--------------------------------------------------------------------------------------------------------------------- /** * @brief VEllipticalArc default constructor. */ VEllipticalArc::VEllipticalArc() : VAbstractArc(GOType::EllipticalArc), d(new VEllipticalArcData) { } //--------------------------------------------------------------------------------------------------------------------- /** * @brief VEllipticalArc constructor. * @param center center point. * @param radius1 arc major radius. * @param radius2 arc minor radius. * @param f1 start angle (degree). * @param f2 end angle (degree). */ VEllipticalArc::VEllipticalArc(const VPointF ¢er, qreal radius1, qreal radius2, const QString &formulaRadius1, const QString &formulaRadius2, qreal f1, const QString &formulaF1, qreal f2, const QString &formulaF2, qreal rotationAngle, const QString &formulaRotationAngle, quint32 idObject, Draw mode) : VAbstractArc(GOType::EllipticalArc, center, f1, formulaF1, f2, formulaF2, idObject, mode), d(new VEllipticalArcData(radius1, radius2, formulaRadius1, formulaRadius2, rotationAngle, formulaRotationAngle)) { CreateName(); SetFlipped(radius1 < 0 || radius2 < 0); } //--------------------------------------------------------------------------------------------------------------------- VEllipticalArc::VEllipticalArc(const VPointF ¢er, qreal radius1, qreal radius2, qreal f1, qreal f2, qreal rotationAngle) : VAbstractArc(GOType::EllipticalArc, center, f1, f2, NULL_ID, Draw::Calculation), d(new VEllipticalArcData(radius1, radius2, rotationAngle)) { CreateName(); SetFlipped(radius1 < 0 || radius2 < 0); } //--------------------------------------------------------------------------------------------------------------------- VEllipticalArc::VEllipticalArc(qreal length, const QString &formulaLength, const VPointF ¢er, qreal radius1, qreal radius2, const QString &formulaRadius1, const QString &formulaRadius2, qreal f1, const QString &formulaF1, qreal rotationAngle, const QString &formulaRotationAngle, quint32 idObject, Draw mode) : VAbstractArc(GOType::EllipticalArc, formulaLength, center, f1, formulaF1, idObject, mode), d(new VEllipticalArcData(radius1, radius2, formulaRadius1, formulaRadius2, rotationAngle, formulaRotationAngle)) { CreateName(); FindF2(length); } //--------------------------------------------------------------------------------------------------------------------- VEllipticalArc::VEllipticalArc(qreal length, const VPointF ¢er, qreal radius1, qreal radius2, qreal f1, qreal rotationAngle) : VAbstractArc(GOType::EllipticalArc, center, f1, NULL_ID, Draw::Calculation), d(new VEllipticalArcData(radius1, radius2, rotationAngle)) { CreateName(); FindF2(length); SetFormulaLength(QString::number(length)); } //--------------------------------------------------------------------------------------------------------------------- COPY_CONSTRUCTOR_IMPL_2(VEllipticalArc, VAbstractArc) //--------------------------------------------------------------------------------------------------------------------- /** * @brief operator = assignment operator * @param arc arc * @return arc */ auto VEllipticalArc::operator=(const VEllipticalArc &arc) -> VEllipticalArc & { if (&arc == this) { return *this; } VAbstractArc::operator=(arc); d = arc.d; return *this; } //--------------------------------------------------------------------------------------------------------------------- VEllipticalArc::VEllipticalArc(VEllipticalArc &&arc) noexcept : VAbstractArc(std::move(arc)), d(std::move(arc.d)) // NOLINT(bugprone-use-after-move) { } //--------------------------------------------------------------------------------------------------------------------- auto VEllipticalArc::operator=(VEllipticalArc &&arc) noexcept -> VEllipticalArc & { VAbstractArc::operator=(arc); std::swap(d, arc.d); return *this; } //--------------------------------------------------------------------------------------------------------------------- auto VEllipticalArc::Rotate(QPointF originPoint, qreal degrees, const QString &prefix) const -> VEllipticalArc { originPoint = d->m_transform.inverted().map(originPoint); QTransform t = d->m_transform; t.translate(originPoint.x(), originPoint.y()); t.rotate(-degrees); t.translate(-originPoint.x(), -originPoint.y()); VEllipticalArc elArc(VAbstractArc::GetCenter(), d->radius1, d->radius2, VAbstractArc::GetStartAngle(), VAbstractArc::GetEndAngle(), d->rotationAngle); elArc.setName(name() + prefix); if (not GetAliasSuffix().isEmpty()) { elArc.SetAliasSuffix(GetAliasSuffix() + prefix); } elArc.SetColor(GetColor()); elArc.SetPenStyle(GetPenStyle()); elArc.SetFlipped(IsFlipped()); elArc.SetTransform(t); elArc.SetApproximationScale(GetApproximationScale()); return elArc; } //--------------------------------------------------------------------------------------------------------------------- auto VEllipticalArc::Flip(const QLineF &axis, const QString &prefix) const -> VEllipticalArc { VEllipticalArc elArc(VAbstractArc::GetCenter(), d->radius1, d->radius2, VAbstractArc::GetStartAngle(), VAbstractArc::GetEndAngle(), d->rotationAngle); elArc.setName(name() + prefix); if (not GetAliasSuffix().isEmpty()) { elArc.SetAliasSuffix(GetAliasSuffix() + prefix); } elArc.SetColor(GetColor()); elArc.SetPenStyle(GetPenStyle()); elArc.SetFlipped(not IsFlipped()); elArc.SetTransform(d->m_transform * VGObject::FlippingMatrix(d->m_transform.inverted().map(axis))); elArc.SetApproximationScale(GetApproximationScale()); return elArc; } //--------------------------------------------------------------------------------------------------------------------- auto VEllipticalArc::Move(qreal length, qreal angle, const QString &prefix) const -> VEllipticalArc { const VPointF oldCenter = VAbstractArc::GetCenter(); const VPointF center = oldCenter.Move(length, angle); const QPointF position = d->m_transform.inverted().map(center.toQPointF()) - d->m_transform.inverted().map(oldCenter.toQPointF()); QTransform t = d->m_transform; t.translate(position.x(), position.y()); VEllipticalArc elArc(oldCenter, d->radius1, d->radius2, VAbstractArc::GetStartAngle(), VAbstractArc::GetEndAngle(), d->rotationAngle); elArc.setName(name() + prefix); if (not GetAliasSuffix().isEmpty()) { elArc.SetAliasSuffix(GetAliasSuffix() + prefix); } elArc.SetColor(GetColor()); elArc.SetPenStyle(GetPenStyle()); elArc.SetFlipped(IsFlipped()); elArc.SetTransform(t); elArc.SetApproximationScale(GetApproximationScale()); return elArc; } //--------------------------------------------------------------------------------------------------------------------- VEllipticalArc::~VEllipticalArc() = default; //--------------------------------------------------------------------------------------------------------------------- /** * @brief GetLength return arc length. * @return length. */ auto VEllipticalArc::GetLength() const -> qreal { qreal length = PathLength(GetPoints()); if (IsFlipped()) { length *= -1; } return length; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief GetP1 return point associated with start angle. * @return point. */ auto VEllipticalArc::GetP1() const -> QPointF { return GetTransform().map(GetP(VAbstractArc::GetStartAngle())); } //--------------------------------------------------------------------------------------------------------------------- /** * @brief GetP2 return point associated with end angle. * @return point. */ auto VEllipticalArc::GetP2() const -> QPointF { return GetTransform().map(GetP(VAbstractArc::GetEndAngle())); } //--------------------------------------------------------------------------------------------------------------------- auto VEllipticalArc::GetTransform() const -> QTransform { return d->m_transform; } //--------------------------------------------------------------------------------------------------------------------- void VEllipticalArc::SetTransform(const QTransform &matrix, bool combine) { d->m_transform = combine ? d->m_transform * matrix : matrix; } //--------------------------------------------------------------------------------------------------------------------- auto VEllipticalArc::GetCenter() const -> VPointF { VPointF center = VAbstractArc::GetCenter(); const QPointF p = d->m_transform.map(center.toQPointF()); center.setX(p.x()); center.setY(p.y()); return center; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief GetPoints return list of points needed for drawing arc. * @return list of points */ auto VEllipticalArc::GetPoints() const -> QVector<QPointF> { const QPointF center = VAbstractArc::GetCenter().toQPointF(); if (qFuzzyIsNull(d->radius1) && qFuzzyIsNull(d->radius2)) { return {center}; } // Don't work with 0 radius. Always make it bigger than 0. Q_RELAXED_CONSTEXPR qreal threshold = ToPixel(0.001, Unit::Mm); qreal radius1 = qMax(qAbs(d->radius1), threshold); qreal radius2 = qMax(qAbs(d->radius2), threshold); qreal const max = qMax(qAbs(d->radius1), qAbs(d->radius2)); qreal scale = 1; if (max > maxRadius) { scale = max / maxRadius; radius1 /= scale; radius2 /= scale; } // Generate complete ellipse because angles are not correct and have to be fixed manually QVector<QPointF> points = EllipticArcPoints(center, radius1, radius2, 0.0, M_2PI, GetApproximationScale()); points = ArcPoints(points); QTransform t = d->m_transform; t.translate(center.x(), center.y()); if (not VFuzzyComparePossibleNulls(scale, 1)) { // Because fixed 16.16 type has limitations it is very easy to get overflow error. // To avoid this we calculate an arc for scaled radiuses and then scale up to original size. t.scale(scale, scale); } t.rotate(-d->rotationAngle); t.translate(-center.x(), -center.y()); std::transform(points.begin(), points.end(), points.begin(), [&t](const QPointF &point) { return t.map(point); }); return IsFlipped() ? Reverse(points) : points; } //--------------------------------------------------------------------------------------------------------------------- auto VEllipticalArc::GetStartAngle() const -> qreal { return QLineF(GetCenter().toQPointF(), GetP1()).angle() - d->rotationAngle; } //--------------------------------------------------------------------------------------------------------------------- auto VEllipticalArc::GetEndAngle() const -> qreal { return QLineF(GetCenter().toQPointF(), GetP2()).angle() - d->rotationAngle; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief CutArc cut arc into two arcs. * @param length length first arc. * @param arc1 first arc. * @param arc2 second arc. * @return point cutting */ auto VEllipticalArc::CutArc(qreal length, VEllipticalArc &arc1, VEllipticalArc &arc2, const QString &pointName) const -> QPointF { const qreal fullLength = GetLength(); if (qFuzzyIsNull(fullLength) || (qFuzzyIsNull(d->radius1) && qFuzzyIsNull(d->radius2))) { arc1 = *this; arc2 = *this; return GetCenter().toQPointF(); } if (qFuzzyIsNull(length) || qFuzzyIsNull(length + fullLength)) { arc1 = VEllipticalArc(GetCenter(), d->radius1, d->radius2, d->formulaRadius1, d->formulaRadius2, GetStartAngle(), GetFormulaF1(), GetStartAngle(), GetFormulaF1(), d->rotationAngle, GetFormulaRotationAngle(), getIdObject(), getMode()); arc1.SetApproximationScale(GetApproximationScale()); arc1.SetFlipped(IsFlipped()); arc1.SetAllowEmpty(true); arc2 = *this; return GetP1(); } if (VFuzzyComparePossibleNulls(length, fullLength)) { arc1 = *this; arc2 = VEllipticalArc(GetCenter(), d->radius1, d->radius2, d->formulaRadius1, d->formulaRadius2, GetEndAngle(), GetFormulaF2(), GetEndAngle(), GetFormulaF2(), d->rotationAngle, GetFormulaRotationAngle(), getIdObject(), getMode()); arc2.SetApproximationScale(GetApproximationScale()); arc2.SetFlipped(IsFlipped()); arc2.SetAllowEmpty(true); return GetP2(); } qreal const len = CorrectCutLength(length, fullLength, pointName); // the first arc has given length and startAngle just like in the origin arc arc1 = VEllipticalArc(len, QString().setNum(length), GetCenter(), d->radius1, d->radius2, d->formulaRadius1, d->formulaRadius2, GetStartAngle(), GetFormulaF1(), d->rotationAngle, GetFormulaRotationAngle(), getIdObject(), getMode()); arc1.SetApproximationScale(GetApproximationScale()); arc1.SetFlipped(IsFlipped()); // the second arc has startAngle just like endAngle of the first arc // and it has endAngle just like endAngle of the origin arc arc2 = VEllipticalArc(GetCenter(), d->radius1, d->radius2, d->formulaRadius1, d->formulaRadius2, arc1.GetEndAngle(), arc1.GetFormulaF2(), GetEndAngle(), GetFormulaF2(), d->rotationAngle, GetFormulaRotationAngle(), getIdObject(), getMode()); arc2.SetApproximationScale(GetApproximationScale()); arc2.SetFlipped(IsFlipped()); return arc1.GetP2(); } //--------------------------------------------------------------------------------------------------------------------- auto VEllipticalArc::CutArc(qreal length, const QString &pointName) const -> QPointF { VEllipticalArc arc1; VEllipticalArc arc2; return CutArc(length, arc1, arc2, pointName); } //--------------------------------------------------------------------------------------------------------------------- void VEllipticalArc::CreateName() { QString name = ELARC_ + this->GetCenter().name(); const auto nameStr = QStringLiteral("_%1"); if (getMode() == Draw::Modeling && getIdObject() != NULL_ID) { name += nameStr.arg(getIdObject()); } else if (VAbstractCurve::id() != NULL_ID) { name += nameStr.arg(VAbstractCurve::id()); } if (GetDuplicate() > 0) { name += nameStr.arg(GetDuplicate()); } setName(name); } //--------------------------------------------------------------------------------------------------------------------- void VEllipticalArc::CreateAlias() { const QString aliasSuffix = GetAliasSuffix(); if (aliasSuffix.isEmpty()) { SetAlias(QString()); return; } SetAlias(ELARC_ + aliasSuffix); } //--------------------------------------------------------------------------------------------------------------------- void VEllipticalArc::FindF2(qreal length) { qreal gap = 180; if (length < 0 || d->radius1 < 0 || d->radius2 < 0) { SetFlipped(true); gap = -gap; } else if (qAbs(length) > qAbs(MaxLength())) { length = MaxLength(); } // We need to calculate the second angle // first approximation of angle between start and end angles VPointF const center = GetCenter(); QLineF radius1(center.x(), center.y(), center.x() + qAbs(d->radius1), center.y()); radius1.setAngle(GetStartAngle()); radius1.setAngle(radius1.angle() + gap); qreal endAngle = radius1.angle(); // we need to set the end angle, because we want to use GetLength() SetFormulaF2(QString::number(endAngle), endAngle); qreal lenBez = GetLength(); // first approximation of length Q_RELAXED_CONSTEXPR qreal eps = ToPixel(0.001, Unit::Mm); while (qAbs(lenBez - length) > eps) { gap = gap / 2; if (qAbs(gap) < 0.0001) { break; } if (qAbs(lenBez) > qAbs(length)) { // we selected too big end angle radius1.setAngle(endAngle - qAbs(gap)); } else { // we selected too little end angle radius1.setAngle(endAngle + qAbs(gap)); } endAngle = radius1.angle(); // we need to set d->f2, because we use it when we calculate GetLength SetFormulaF2(QString::number(endAngle), endAngle); lenBez = GetLength(); } } //--------------------------------------------------------------------------------------------------------------------- auto VEllipticalArc::MaxLength() const -> qreal { const qreal h = qPow(qAbs(d->radius1) - qAbs(d->radius2), 2) / qPow(qAbs(d->radius1) + qAbs(d->radius2), 2); qreal ellipseLength = M_PI * (qAbs(d->radius1) + qAbs(d->radius2)) * (1 + 3 * h / (10 + qSqrt(4 - 3 * h))); if (d->radius1 < 0 || d->radius2 < 0) { ellipseLength *= -1; } return ellipseLength; } //--------------------------------------------------------------------------------------------------------------------- auto VEllipticalArc::GetP(qreal angle) const -> QPointF { if (qFuzzyIsNull(d->radius1) && qFuzzyIsNull(d->radius2)) { return GetCenter().toQPointF(); } QLineF line(0, 0, 100, 0); line.setAngle(angle); const qreal a = not qFuzzyIsNull(d->radius1) ? line.p2().x() / qAbs(d->radius1) : 0; const qreal b = not qFuzzyIsNull(d->radius2) ? line.p2().y() / qAbs(d->radius2) : 0; const qreal k = qSqrt(a * a + b * b); if (qFuzzyIsNull(k)) { return GetCenter().toQPointF(); } QPointF const p(line.p2().x() / k, line.p2().y() / k); QLineF line2(QPointF(), p); SCASSERT(VFuzzyComparePossibleNulls(line2.angle(), line.angle())) line2.setAngle(line2.angle() + d->rotationAngle); return line2.p2() + VAbstractArc::GetCenter().toQPointF(); } //--------------------------------------------------------------------------------------------------------------------- auto VEllipticalArc::ArcPoints(QVector<QPointF> points) const -> QVector<QPointF> { if (points.size() < 2 || (qFuzzyIsNull(d->radius1) && qFuzzyIsNull(d->radius2))) { return points; } QPointF const center = VAbstractArc::GetCenter().toQPointF(); qreal const radius = qMax(qAbs(d->radius1), qAbs(d->radius2)) * 2; QLineF start(center.x(), center.y(), center.x() + radius, center.y()); start.setAngle(VAbstractArc::GetStartAngle()); QLineF end(center.x(), center.y(), center.x() + radius, center.y()); end.setAngle(VAbstractArc::GetEndAngle()); bool begin = true; if (start.angle() >= end.angle()) { for (int i = 0; i < points.size() - 1; ++i) { QLineF const edge(points.at(i), points.at(i + 1)); QPointF p; QLineF::IntersectType const type = start.intersects(edge, &p); // QLineF::intersects not always accurate on edge cases if (IsBoundedIntersection(type, p, edge, start)) { QVector<QPointF> const head = points.mid(0, i + 1); QVector<QPointF> tail = points.mid(i + 1, -1); tail = JoinVectors({p}, tail); points = JoinVectors(tail, head); points = JoinVectors(points, {p}); if (VFuzzyComparePossibleNulls(start.angle(), end.angle())) { return points; } begin = false; break; } } } QVector<QPointF> arc; arc.reserve(points.size()); for (int i = 0; i < points.size() - 1; ++i) { QLineF const edge(points.at(i), points.at(i + 1)); if (begin) { QPointF p; QLineF::IntersectType const type = start.intersects(edge, &p); // QLineF::intersects not always accurate on edge cases if (IsBoundedIntersection(type, p, edge, start)) { arc.append(p); begin = false; } } else { QPointF p; QLineF::IntersectType const type = end.intersects(edge, &p); // QLineF::intersects not always accurate on edge cases if (IsBoundedIntersection(type, p, edge, end)) { arc.append(points.at(i)); arc.append(p); break; } arc.append(points.at(i)); } } if (arc.isEmpty()) { return points; } return arc; } //--------------------------------------------------------------------------------------------------------------------- auto VEllipticalArc::CorrectCutLength(qreal length, qreal fullLength, const QString &pointName) const -> qreal { qreal len = length; auto TooSmallWarning = [this, pointName]() { QString errorMsg; if (not pointName.isEmpty()) { errorMsg = QObject::tr("Curve '%1'. Length of a cut segment (%2) is too small. Optimize it to minimal " "value.") .arg(name(), pointName); } else { errorMsg = QObject::tr("Curve '%1'. Length of a cut segment is too small. Optimize it to minimal value.") .arg(name()); } VAbstractApplication::VApp()->IsPedantic() ? throw VException(errorMsg) : qWarning() << VAbstractApplication::warningMessageSignature + errorMsg; }; auto TooBigWarning = [this, pointName]() { QString errorMsg; if (not pointName.isEmpty()) { errorMsg = QObject::tr("Curve '%1'. Length of a cut segment (%2) is too big. Optimize it to maximal value.") .arg(name(), pointName); } else { errorMsg = QObject::tr("Curve '%1'. Length of a cut segment is too big. Optimize it to maximal value.") .arg(name()); } VAbstractApplication::VApp()->IsPedantic() ? throw VException(errorMsg) : qWarning() << VAbstractApplication::warningMessageSignature + errorMsg; }; if (!IsFlipped()) { if (length < 0) { len = 0; TooSmallWarning(); } else if (length > fullLength) { len = fullLength; TooBigWarning(); } } else { if (length < fullLength) { len = fullLength; TooSmallWarning(); } else if (length > 0) { len = 0; TooBigWarning(); } } return len; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief GetFormulaRadius1 return formula for major radius. * @return radius. */ auto VEllipticalArc::GetFormulaRadius1() const -> QString { return d->formulaRadius1; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief GetFormulaRadius2 return formula for minor radius. * @return radius. */ auto VEllipticalArc::GetFormulaRadius2() const -> QString { return d->formulaRadius2; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief GetFormulaRotationAngle return formula for rotation angle. * @return rotationAngle. */ auto VEllipticalArc::GetFormulaRotationAngle() const -> QString { return d->formulaRotationAngle; } //--------------------------------------------------------------------------------------------------------------------- void VEllipticalArc::SetFormulaRadius1(const QString &formula, qreal value) { d->formulaRadius1 = formula; d->radius1 = value; } //--------------------------------------------------------------------------------------------------------------------- void VEllipticalArc::SetRadius1(qreal value) { d->formulaRadius1 = QString::number(value); d->radius1 = value; } //--------------------------------------------------------------------------------------------------------------------- void VEllipticalArc::SetFormulaRadius2(const QString &formula, qreal value) { d->formulaRadius2 = formula; d->radius2 = value; } //--------------------------------------------------------------------------------------------------------------------- void VEllipticalArc::SetRadius2(qreal value) { d->formulaRadius2 = QString::number(value); d->radius2 = value; } //--------------------------------------------------------------------------------------------------------------------- void VEllipticalArc::SetFormulaRotationAngle(const QString &formula, qreal value) { d->formulaRotationAngle = formula; d->rotationAngle = value; } //--------------------------------------------------------------------------------------------------------------------- void VEllipticalArc::SetRotationAngle(qreal value) { d->formulaRotationAngle = QString::number(value); d->rotationAngle = value; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief GetRadius1 return elliptical arc major radius. * @return string with formula. */ auto VEllipticalArc::GetRadius1() const -> qreal { return d->radius1; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief GetRadius2 return elliptical arc minor radius. * @return string with formula. */ auto VEllipticalArc::GetRadius2() const -> qreal { return d->radius2; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief GetRotationAngle return rotation angle. * @return rotationAngle. */ auto VEllipticalArc::GetRotationAngle() const -> qreal { return d->rotationAngle; }