/************************************************************************ ** ** @file ** @author Roman Telezhynskyi ** @date 3 11, 2016 ** ** @brief ** @copyright ** This source code is part of the Valentine project, a pattern making ** program, whose allow create and modeling patterns of clothing. ** Copyright (C) 2016 Valentina project ** All Rights Reserved. ** ** Valentina is free software: you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation, either version 3 of the License, or ** (at your option) any later version. ** ** Valentina is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with Valentina. If not, see . ** *************************************************************************/ #include "vabstractpiece.h" #include "vabstractpiece_p.h" #include "../vmisc/vabstractapplication.h" #include "../vgeometry/vpointf.h" #include #include #include #include const qreal maxL = 2.4; //--------------------------------------------------------------------------------------------------------------------- VAbstractPiece::VAbstractPiece() : d(new VAbstractPieceData) {} //--------------------------------------------------------------------------------------------------------------------- VAbstractPiece::VAbstractPiece(const VAbstractPiece &piece) :d (piece.d) {} //--------------------------------------------------------------------------------------------------------------------- VAbstractPiece &VAbstractPiece::operator=(const VAbstractPiece &piece) { if ( &piece == this ) { return *this; } d = piece.d; return *this; } //--------------------------------------------------------------------------------------------------------------------- VAbstractPiece::~VAbstractPiece() {} //--------------------------------------------------------------------------------------------------------------------- QString VAbstractPiece::GetName() const { return d->m_name; } //--------------------------------------------------------------------------------------------------------------------- void VAbstractPiece::SetName(const QString &value) { d->m_name = value; } //--------------------------------------------------------------------------------------------------------------------- bool VAbstractPiece::IsForbidFlipping() const { return d->m_forbidFlipping; } //--------------------------------------------------------------------------------------------------------------------- void VAbstractPiece::SetForbidFlipping(bool value) { d->m_forbidFlipping = value; } //--------------------------------------------------------------------------------------------------------------------- bool VAbstractPiece::IsSeamAllowance() const { return d->m_seamAllowance; } //--------------------------------------------------------------------------------------------------------------------- void VAbstractPiece::SetSeamAllowance(bool value) { d->m_seamAllowance = value; } //--------------------------------------------------------------------------------------------------------------------- qreal VAbstractPiece::GetSAWidth() const { return d->m_width; } //--------------------------------------------------------------------------------------------------------------------- void VAbstractPiece::SetSAWidth(qreal value) { value >= 0 ? d->m_width = value : d->m_width = 0; } //--------------------------------------------------------------------------------------------------------------------- QVector VAbstractPiece::Equidistant(const QVector &points, qreal width) { if (width < 0) { qDebug()<<"Width < 0."; return QVector(); } QVector p = CorrectEquidistantPoints(points); if ( p.size() < 3 ) { qDebug()<<"Not enough points for building the equidistant."; return QVector(); } if (p.last().toPoint() != p.first().toPoint()) { p.append(p.at(0));// Should be always closed } QVector ekvPoints; for (qint32 i = 0; i < p.size(); ++i ) { if ( i == 0) {//first point ekvPoints << EkvPoint(p.at(p.size()-2), p.at(p.size()-1), p.at(1), p.at(0), width); continue; } if (i == p.size()-1) {//last point if (not ekvPoints.isEmpty()) { ekvPoints.append(ekvPoints.at(0)); } continue; } //points in the middle of polyline ekvPoints << EkvPoint(p.at(i-1), p.at(i), p.at(i+1), p.at(i), width); } const bool removeFirstAndLast = false; ekvPoints = CheckLoops(CorrectEquidistantPoints(ekvPoints, removeFirstAndLast));//Result path can contain loops return ekvPoints; } //--------------------------------------------------------------------------------------------------------------------- qreal VAbstractPiece::SumTrapezoids(const QVector &points) { // Calculation a polygon area through the sum of the areas of trapezoids qreal s, res = 0; const int n = points.size(); if(n > 2) { for (int i = 0; i < n; ++i) { if (i == 0) { //if i == 0, then y[i-1] replace on y[n-1] s = points.at(i).x()*(points.at(n-1).y() - points.at(i+1).y()); res += s; } else { if (i == n-1) { // if i == n-1, then y[i+1] replace on y[0] s = points.at(i).x()*(points.at(i-1).y() - points.at(0).y()); res += s; } else { s = points.at(i).x()*(points.at(i-1).y() - points.at(i+1).y()); res += s; } } } } return res; } //--------------------------------------------------------------------------------------------------------------------- /** * @brief CheckLoops seek and delete loops in equidistant. * @param points vector of points of equidistant. * @return vector of points of equidistant. */ QVector VAbstractPiece::CheckLoops(const QVector &points) { int count = points.size(); /*If we got less than 4 points no need seek loops.*/ if (count < 4) { return points; } const bool pathClosed = (points.first() == points.last()); QVector ekvPoints; qint32 i, j, jNext = 0; for (i = 0; i < count; ++i) { /*Last three points no need check.*/ /*Triangle has not contain loops*/ if (i > count-3) { ekvPoints.append(points.at(i)); continue; } enum LoopIntersectType { NoIntersection, BoundedIntersection, ParallelIntersection }; QPointF crosPoint; LoopIntersectType status = NoIntersection; const QLineF line1(points.at(i), points.at(i+1)); // Because a path can contains several loops we will seek the last and only then remove the loop(s) // That's why we parse from the end for (j = count-1; j >= i+2; --j) { j == count-1 ? jNext = 0 : jNext = j+1; QLineF line2(points.at(j), points.at(jNext)); if(qFuzzyIsNull(line2.length())) {//If a path is closed the edge (count-1;0) length will be 0 continue; } QSet uniqueVertices; uniqueVertices << i << i+1 << j; // For closed path last point is equal to first. Using index of the first. pathClosed && jNext == count-1 ? uniqueVertices << 0 : uniqueVertices << jNext; const QLineF::IntersectType intersect = line1.intersect(line2, &crosPoint); if (intersect == QLineF::NoIntersection) { // According to the documentation QLineF::NoIntersection indicates that the lines do not intersect; // i.e. they are parallel. But parallel also mean they can be on the same line. // Method IsPointOnLineviaPDP will check it. if (VGObject::IsPointOnLineviaPDP(points.at(j), points.at(i), points.at(i+1)) // Lines are not neighbors && uniqueVertices.size() == 4) { // Left to catch case where segments are on the same line, but do not have real intersections. QLineF tmpLine1 = line1; QLineF tmpLine2 = line2; tmpLine1.setAngle(tmpLine1.angle()+90); QPointF tmpCrosPoint; const QLineF::IntersectType tmpIntrs1 = tmpLine1.intersect(tmpLine2, &tmpCrosPoint); tmpLine1 = line1; tmpLine2.setAngle(tmpLine2.angle()+90); const QLineF::IntersectType tmpIntrs2 = tmpLine1.intersect(tmpLine2, &tmpCrosPoint); if (tmpIntrs1 == QLineF::BoundedIntersection || tmpIntrs2 == QLineF::BoundedIntersection) { // Now we really sure that lines are on the same lines and have real intersections. QPointF cPoint; const bool caseFlag = ParallelCrossPoint(line1, line2, cPoint); if (not caseFlag || CheckIntersection(points, i, i+1, j, jNext, cPoint)) { status = ParallelIntersection; break; } } } } else if (intersect == QLineF::BoundedIntersection) { if (uniqueVertices.size() == 4) { // Break, but not if lines are neighbors if ((line1.p1() != crosPoint && line1.p2() != crosPoint && line2.p1() != crosPoint && line2.p2() != crosPoint) || CheckIntersection(points, i, i+1, j, jNext, crosPoint)) { status = BoundedIntersection; break; } } } status = NoIntersection; } switch (status) { case ParallelIntersection: /*We have found a loop.*/ ekvPoints.append(points.at(i)); ekvPoints.append(points.at(jNext)); jNext > j ? i = jNext : i = j; // Skip a loop break; case BoundedIntersection: ekvPoints.append(points.at(i)); ekvPoints.append(crosPoint); i = j; break; case NoIntersection: /*We have not found loop.*/ ekvPoints.append(points.at(i)); break; default: break; } } return ekvPoints; } //--------------------------------------------------------------------------------------------------------------------- Q_DECL_CONSTEXPR qreal VAbstractPiece::PointPosition(const QPointF &p, const QLineF &line) { return (line.p2().x() - line.p1().x()) * (p.y() - line.p1().y()) - (line.p2().y() - line.p1().y()) * (p.x() - line.p1().x()); } //--------------------------------------------------------------------------------------------------------------------- qreal VAbstractPiece::MaxLocalSA(const VSAPoint &p, qreal width) { qreal w1 = p.GetSAAfter(); if (w1 < 0) { w1 = width; } qreal w2 = p.GetSABefore(); if (w2 < 0) { w2 = width; } return qMax(w1, w2); } //--------------------------------------------------------------------------------------------------------------------- /** * @brief EkvPoint return seam aloowance points in place of intersection two edges. Last points of two edges should be * equal. * @param width global seam allowance width. * @return seam aloowance points. */ QVector VAbstractPiece::EkvPoint(const VSAPoint &p1Line1, const VSAPoint &p2Line1, const VSAPoint &p1Line2, const VSAPoint &p2Line2, qreal width) { if (width < 0) { // width can't be < 0 return QVector(); } QVector points; if (p2Line1 != p2Line2) { qDebug()<<"Last points of two lines must be equal."; return QVector(); // Wrong edges } const QLineF bigLine1 = ParallelLine(p1Line1, p2Line1, width ); const QLineF bigLine2 = ParallelLine(p2Line2, p1Line2, width ); QPointF CrosPoint; const QLineF::IntersectType type = bigLine1.intersect( bigLine2, &CrosPoint ); switch (type) {// There are at least three big cases case (QLineF::BoundedIntersection): // The easiest, real intersection points.append(CrosPoint); return points; break; case (QLineF::UnboundedIntersection): { // Most common case const qreal localWidth = MaxLocalSA(p2Line1, width); QLineF line( p2Line1, CrosPoint ); // Checking two subcases const QLineF b1 = BisectorLine(p1Line1, p2Line1, p1Line2); const QLineF b2 = BisectorLine(bigLine1.p1(), CrosPoint, bigLine2.p2()); const qreal angle = AngleBetweenBisectors(b1, b2); // Comparison bisector angles helps to find direction if (angle < 90 || VFuzzyComparePossibleNulls(angle, 90.0))// Go in a same direction {//Regular equdistant case QT_WARNING_PUSH QT_WARNING_DISABLE_GCC("-Wswitch-default") switch (p2Line1.GetAngleType()) { case PieceNodeAngle::ByLength: return AngleByLength(p2Line1, bigLine1.p1(), CrosPoint, bigLine2.p2(), localWidth); case PieceNodeAngle::ByPointsIntersection: return AngleByIntersection(p1Line1, p2Line1, p1Line2, bigLine1.p1(), CrosPoint, bigLine2.p2(), localWidth); case PieceNodeAngle::ByFirstEdgeSymmetry: return AngleByFirstSymmetry(p1Line1, p2Line1, bigLine1.p1(), CrosPoint, bigLine2.p2(), localWidth); case PieceNodeAngle::BySecondEdgeSymmetry: return AngleBySecondSymmetry(p2Line1, p1Line2, bigLine1.p1(), CrosPoint,bigLine2.p2(), localWidth); case PieceNodeAngle::ByFirstEdgeRightAngle: return AngleByFirstRightAngle(p1Line1, p2Line1, bigLine1.p1(), CrosPoint, bigLine2.p2(), localWidth); case PieceNodeAngle::BySecondEdgeRightAngle: return AngleBySecondRightAngle(p2Line1, p1Line2, bigLine1.p1(), CrosPoint, bigLine2.p2(), localWidth); } QT_WARNING_POP } else { // Different directions QLineF bisector(p2Line1, p1Line1); bisector.setAngle(b1.angle()); const qreal result1 = PointPosition(bisector.p2(), QLineF(p1Line1, p2Line1)); const qreal result2 = PointPosition(bisector.p2(), QLineF(p2Line2, p1Line2)); if ((result1 < 0 || qFuzzyIsNull(result1)) && (result2 < 0 || qFuzzyIsNull(result2))) {// Dart case. A bisector watch outside. In some cases a point still valid, but ignore if going // outside of an equdistant. const QLineF bigEdge = ParallelLine(p1Line1, p1Line2, localWidth ); QPointF px; const QLineF::IntersectType type = bigEdge.intersect(line, &px); if (type != QLineF::BoundedIntersection) { if (line.length() < QLineF(p2Line1, px).length()) { points.append(CrosPoint); return points; } } } else { // New subcase. This is not a dart. An angle is acute and bisector watch inside. const qreal result1 = PointPosition(CrosPoint, QLineF(p1Line1, p2Line1)); const qreal result2 = PointPosition(CrosPoint, QLineF(p2Line2, p1Line2)); if ((result1 < 0 || qFuzzyIsNull(result1)) && (result2 < 0 || qFuzzyIsNull(result2))) {// The cross point is still outside of a piece if (line.length() >= localWidth) { points.append(CrosPoint); return points; } else {// but not enough far, fix it line.setLength(localWidth); points.append(line.p2()); return points; } } else {// Wrong cross point, probably inside of a piece. Manually creating correct seam allowance const QLineF bigEdge = ParallelLine(bigLine1.p2(), bigLine2.p1(), localWidth ); points.append(bigEdge.p1()); points.append(bigEdge.p2()); return points; } } } break; } case (QLineF::NoIntersection): /*If we have correct lines this means lines lie on a line.*/ points.append(bigLine1.p2()); return points; break; default: break; } return points; } //--------------------------------------------------------------------------------------------------------------------- QVector VAbstractPiece::AngleByLength(const QPointF &p2, const QPointF &sp1, const QPointF &sp2, const QPointF &sp3, qreal width) { QVector points; QLineF line(p2, sp2); const qreal length = line.length(); if (length > width*maxL) { // Cutting too long a cut angle line.setLength(width); QLineF cutLine(line.p2(), sp2); // Cut line is a perpendicular cutLine.setLength(length); // Decided take this length // We do not check intersection type because intersection must alwayse exist QPointF px; cutLine.setAngle(cutLine.angle()+90); QLineF::IntersectType type = QLineF(sp1, sp2).intersect(cutLine, &px); if (type == QLineF::NoIntersection) { qDebug()<<"Couldn't find intersection with cut line."; } points.append(px); cutLine.setAngle(cutLine.angle()-180); type = QLineF(sp2, sp3).intersect(cutLine, &px); if (type == QLineF::NoIntersection) { qDebug()<<"Couldn't find intersection with cut line."; } points.append(px); } else { // The point just fine points.append(sp2); } return points; } //--------------------------------------------------------------------------------------------------------------------- QVector VAbstractPiece::AngleByIntersection(const QPointF &p1, const QPointF &p2, const QPointF &p3, const QPointF &sp1, const QPointF &sp2, const QPointF &sp3, qreal width) { QVector points; QLineF edge2(p2, p3); QLineF sEdge1(sp1, sp2); QPointF px; QLineF::IntersectType type = edge2.intersect(sEdge1, &px); if (type == QLineF::NoIntersection) { return AngleByLength(p2, sp1, sp2, sp3, width); } if (QLineF(p2, px).length() > width*maxL) { return AngleByLength(p2, sp1, sp2, sp3, width); } points.append(px); QLineF edge1(p1, p2); QLineF sEdge2(sp2, sp3); type = edge1.intersect(sEdge2, &px); if (type == QLineF::NoIntersection) { return AngleByLength(p2, sp1, sp2, sp3, width); } if (QLineF(p2, px).length() > width*maxL) { return AngleByLength(p2, sp1, sp2, sp3, width); } points.append(px); return points; } //--------------------------------------------------------------------------------------------------------------------- QVector VAbstractPiece::AngleByFirstSymmetry(const QPointF &p1, const QPointF &p2, const QPointF &sp1, const QPointF &sp2, const QPointF &sp3, qreal width) { QVector points; QLineF sEdge2(sp2, sp3); QPointF fp1 = VPointF::FlipPF(sEdge2, p1); QPointF fp2 = VPointF::FlipPF(sEdge2, p2); QLineF fEdge(fp1, fp2); QPointF px; QLineF sEdge1(sp1, sp2); QLineF::IntersectType type = fEdge.intersect(sEdge1, &px); if (type == QLineF::NoIntersection) { return AngleByLength(p2, sp1, sp2, sp3, width); } if (QLineF(p2, px).length() > width*maxL) { return AngleByLength(p2, sp1, sp2, sp3, width); } points.append(px); type = fEdge.intersect(sEdge2, &px); if (type == QLineF::NoIntersection) { return AngleByLength(p2, sp1, sp2, sp3, width); } if (QLineF(p2, px).length() > width*maxL) { return AngleByLength(p2, sp1, sp2, sp3, width); } points.append(px); return points; } //--------------------------------------------------------------------------------------------------------------------- QVector VAbstractPiece::AngleBySecondSymmetry(const QPointF &p2, const QPointF &p3, const QPointF &sp1, const QPointF &sp2, const QPointF &sp3, qreal width) { QVector points; QLineF sEdge1(sp1, sp2); QPointF fp2 = VPointF::FlipPF(sEdge1, p2); QPointF fp3 = VPointF::FlipPF(sEdge1, p3); QLineF fEdge(fp2, fp3); QPointF px; QLineF::IntersectType type = fEdge.intersect(sEdge1, &px); if (type == QLineF::NoIntersection) { return AngleByLength(p2, sp1, sp2, sp3, width); } if (QLineF(p2, px).length() > width*maxL) { return AngleByLength(p2, sp1, sp2, sp3, width); } points.append(px); QLineF sEdge2(sp2, sp3); type = fEdge.intersect(sEdge2, &px); if (type == QLineF::NoIntersection) { return AngleByLength(p2, sp1, sp2, sp3, width); } if (QLineF(p2, px).length() > width*maxL) { return AngleByLength(p2, sp1, sp2, sp3, width); } points.append(px); return points; } //--------------------------------------------------------------------------------------------------------------------- QVector VAbstractPiece::AngleByFirstRightAngle(const QPointF &p1, const QPointF &p2, const QPointF &sp1, const QPointF &sp2, const QPointF &sp3, qreal width) { QVector points; QLineF edge1(p2, p1); edge1.setAngle(edge1.angle()-90); QPointF px; QLineF::IntersectType type = edge1.intersect(QLineF(sp1, sp2), &px); if (type == QLineF::NoIntersection) { return AngleByLength(p2, sp1, sp2, sp3, width); } if (QLineF(p2, px).length() > width*maxL) { return AngleByLength(p2, sp1, sp2, sp3, width); } points.append(px); type = edge1.intersect(QLineF(sp2, sp3), &px); if (type == QLineF::NoIntersection) { return AngleByLength(p2, sp1, sp2, sp3, width); } if (QLineF(p2, px).length() > width*maxL) { return AngleByLength(p2, sp1, sp2, sp3, width); } points.append(px); return points; } //--------------------------------------------------------------------------------------------------------------------- QVector VAbstractPiece::AngleBySecondRightAngle(const QPointF &p2, const QPointF &p3, const QPointF &sp1, const QPointF &sp2, const QPointF &sp3, qreal width) { QVector points; QLineF edge2(p2, p3); edge2.setAngle(edge2.angle()+90); QPointF px; QLineF::IntersectType type = edge2.intersect(QLineF(sp1, sp2), &px); if (type == QLineF::NoIntersection) { return AngleByLength(p2, sp1, sp2, sp3, width); } if (QLineF(p2, px).length() > width*maxL) { return AngleByLength(p2, sp1, sp2, sp3, width); } points.append(px); type = edge2.intersect(QLineF(sp2, sp3), &px); if (type == QLineF::NoIntersection) { return AngleByLength(p2, sp1, sp2, sp3, width); } if (QLineF(p2, px).length() > width*maxL) { return AngleByLength(p2, sp1, sp2, sp3, width); } points.append(px); return points; } //--------------------------------------------------------------------------------------------------------------------- QLineF VAbstractPiece::ParallelLine(const VSAPoint &p1, const VSAPoint &p2, qreal width) { qreal w1 = p1.GetSAAfter(); if (w1 < 0) { w1 = width; } qreal w2 = p2.GetSABefore(); if (w2 < 0) { w2 = width; } const QLineF paralel = QLineF(SingleParallelPoint(p1, p2, 90, w1), SingleParallelPoint(p2, p1, -90, w2)); return paralel; } //--------------------------------------------------------------------------------------------------------------------- QLineF VAbstractPiece::ParallelLine(const QPointF &p1, const QPointF &p2, qreal width) { const QLineF paralel = QLineF(SingleParallelPoint(p1, p2, 90, width), SingleParallelPoint(p2, p1, -90, width)); return paralel; } //--------------------------------------------------------------------------------------------------------------------- QPointF VAbstractPiece::SingleParallelPoint(const QPointF &p1, const QPointF &p2, qreal angle, qreal width) { QLineF pLine(p1, p2); pLine.setAngle( pLine.angle() + angle ); pLine.setLength( width ); return pLine.p2(); } //--------------------------------------------------------------------------------------------------------------------- QLineF VAbstractPiece::BisectorLine(const QPointF &p1, const QPointF &p2, const QPointF &p3) { QLineF line1(p2, p1); QLineF line2(p2, p3); QLineF bLine; const qreal angle1 = line1.angleTo(line2); const qreal angle2 = line2.angleTo(line1); if (angle1 <= angle2) { bLine = line1; bLine.setAngle(bLine.angle() + angle1/2.0); } else { bLine = line2; bLine.setAngle(bLine.angle() + angle2/2.0); } return bLine; } //--------------------------------------------------------------------------------------------------------------------- qreal VAbstractPiece::AngleBetweenBisectors(const QLineF &b1, const QLineF &b2) { const QLineF newB2 = b2.translated(-(b2.p1().x() - b1.p1().x()), -(b2.p1().y() - b1.p1().y())); qreal angle1 = newB2.angleTo(b1); if (VFuzzyComparePossibleNulls(angle1, 360)) { angle1 = 0; } qreal angle2 = b1.angleTo(newB2); if (VFuzzyComparePossibleNulls(angle2, 360)) { angle2 = 0; } if (angle1 <= angle2) { return angle1; } else { return angle2; } } //--------------------------------------------------------------------------------------------------------------------- bool VAbstractPiece::CheckIntersection(const QVector &points, int i, int iNext, int j, int jNext, const QPointF &crossPoint) { QVector sub1 = SubPath(points, iNext, j); sub1.append(crossPoint); sub1 = CheckLoops(CorrectEquidistantPoints(sub1, false)); const qreal sub1Sum = SumTrapezoids(sub1); QVector sub2 = SubPath(points, jNext, i); sub2.append(crossPoint); sub2 = CheckLoops(CorrectEquidistantPoints(sub2, false)); const qreal sub2Sum = SumTrapezoids(sub2); if (sub1Sum < 0 && sub2Sum < 0) { if (Crossing(sub1, sub2)) { return true; } } else { if (not Crossing(sub1, sub2)) { return true; } } return false; } //--------------------------------------------------------------------------------------------------------------------- bool VAbstractPiece::ParallelCrossPoint(const QLineF &line1, const QLineF &line2, QPointF &point) { const bool l1p1el2p1 = (line1.p1() == line2.p1()); const bool l1p2el2p2 = (line1.p2() == line2.p2()); const bool l1p1el2p2 = (line1.p1() == line2.p2()); const bool l1p2el2p1 = (line1.p2() == line2.p1()); if (l1p2el2p2 || l1p2el2p1) { point = line1.p2(); return true; } else if (l1p1el2p1 || l1p1el2p2) { point = line1.p1(); return true; } else { point = QPointF(); return false; } } //--------------------------------------------------------------------------------------------------------------------- bool VAbstractPiece::Crossing(const QVector &sub1, const QVector &sub2) { if (sub1.isEmpty() || sub2.isEmpty()) { return false; } const QRectF sub1Rect = QPolygonF(sub1).boundingRect(); const QRectF sub2Rect = QPolygonF(sub2).boundingRect(); if (not sub1Rect.intersects(sub2Rect)) { return false; } QPainterPath sub1Path; sub1Path.setFillRule(Qt::WindingFill); sub1Path.moveTo(sub1.at(0)); for (qint32 i = 1; i < sub1.count(); ++i) { sub1Path.lineTo(sub1.at(i)); } sub1Path.lineTo(sub1.at(0)); QPainterPath sub2Path; sub2Path.setFillRule(Qt::WindingFill); sub2Path.moveTo(sub2.at(0)); for (qint32 i = 1; i < sub2.count(); ++i) { sub2Path.lineTo(sub2.at(i)); } sub2Path.lineTo(sub2.at(0)); if (not sub1Path.intersects(sub2Path)) { return false; } else { return true; } } //--------------------------------------------------------------------------------------------------------------------- QVector VAbstractPiece::SubPath(const QVector &path, int startIndex, int endIndex) { if (path.isEmpty() || startIndex < 0 || startIndex >= path.size() || endIndex < 0 || endIndex >= path.size() || startIndex == endIndex) { return path; } QVector subPath; int i = startIndex - 1; do { ++i; if (i >= path.size()) { i = 0; } subPath.append(path.at(i)); } while (i != endIndex); return subPath; }