valentina/src/libs/vobj/predicates.cpp

1081 lines
48 KiB
C++
Raw Normal View History

/*****************************************************************************/
/* */
/* Routines for Arbitrary Precision Floating-point Arithmetic */
/* and Fast Robust Geometric Predicates */
/* (predicates.cpp) */
/* */
/* May 18, 1996 */
/* */
/* Placed in the public domain by */
/* Jonathan Richard Shewchuk */
/* School of Computer Science */
/* Carnegie Mellon University */
/* 5000 Forbes Avenue */
/* Pittsburgh, Pennsylvania 15213-3891 */
/* jrs@cs.cmu.edu */
/* */
/* This file contains C implementation of algorithms for exact addition */
/* and multiplication of floating-point numbers, and predicates for */
/* robustly performing the orientation and incircle tests used in */
/* computational geometry. The algorithms and underlying theory are */
/* described in Jonathan Richard Shewchuk. "Adaptive Precision Floating- */
/* Point Arithmetic and Fast Robust Geometric Predicates." Technical */
/* Report CMU-CS-96-140, School of Computer Science, Carnegie Mellon */
/* University, Pittsburgh, Pennsylvania, May 1996. (Submitted to */
/* Discrete & Computational Geometry.) */
/* */
/* This file, the paper listed above, and other information are available */
/* from the Web page http://www.cs.cmu.edu/~quake/robust.html . */
/* */
/*****************************************************************************/
/*****************************************************************************/
/* */
/* Using this code: */
/* */
/* First, read the short or long version of the paper (from the Web page */
/* above). */
/* */
/* Be sure to call exactinit() once, before calling any of the arithmetic */
/* functions or geometric predicates. Also be sure to turn on the */
/* optimizer when compiling this file. */
/* */
/* */
/* Several geometric predicates are defined. Their parameters are all */
/* points. Each point is an array of two or three floating-point */
/* numbers. The geometric predicates, described in the papers, are */
/* */
/* incircle(pa, pb, pc, pd) */
/* incirclefast(pa, pb, pc, pd) */
/* */
/* Those with suffix "fast" are approximate, non-robust versions. Those */
/* without the suffix are adaptive precision, robust versions. There */
/* are also versions with the suffices "exact" and "slow", which are */
/* non-adaptive, exact arithmetic versions, which I use only for timings */
/* in my arithmetic papers. */
/* */
/* */
/* An expansion is represented by an array of floating-point numbers, */
/* sorted from smallest to largest magnitude (possibly with interspersed */
/* zeros). The length of each expansion is stored as a separate integer, */
/* and each arithmetic function returns an integer which is the length */
/* of the expansion it created. */
/* */
/* Several arithmetic functions are defined. Their parameters are */
/* */
/* e, f Input expansions */
/* elen, flen Lengths of input expansions (must be >= 1) */
/* h Output expansion */
/* b Input scalar */
/* */
/* The arithmetic functions are */
/* */
/* expansion_sum(elen, e, flen, f, h) */
/* expansion_sum_zeroelim1(elen, e, flen, f, h) */
/* expansion_sum_zeroelim2(elen, e, flen, f, h) */
/* fast_expansion_sum(elen, e, flen, f, h) */
/* fast_expansion_sum_zeroelim(elen, e, flen, f, h) */
/* linear_expansion_sum(elen, e, flen, f, h) */
/* linear_expansion_sum_zeroelim(elen, e, flen, f, h) */
/* scale_expansion(elen, e, b, h) */
/* scale_expansion_zeroelim(elen, e, b, h) */
/* compress(elen, e, h) */
/* */
/* All of these are described in the long version of the paper; some are */
/* described in the short version. All return an integer that is the */
/* length of h. Those with suffix _zeroelim perform zero elimination, */
/* and are recommended over their counterparts. The procedure */
/* fast_expansion_sum_zeroelim() (or linear_expansion_sum_zeroelim() on */
/* processors that do not use the round-to-even tiebreaking rule) is */
/* recommended over expansion_sum_zeroelim(). Each procedure has a */
/* little note next to it (in the code below) that tells you whether or */
/* not the output expansion may be the same array as one of the input */
/* expansions. */
/* */
/* */
/* If you look around below, you'll also find macros for a bunch of */
/* simple unrolled arithmetic operations, and procedures for printing */
/* expansions (commented out because they don't work with all C */
/* compilers) and for generating random floating-point numbers whose */
/* significand bits are all random. Most of the macros have undocumented */
/* requirements that certain of their parameters should not be the same */
/* variable; for safety, better to make sure all the parameters are */
/* distinct variables. Feel free to send email to jrs@cs.cmu.edu if you */
/* have questions. */
/* */
/*****************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <QtGlobal>
#ifdef Q_CC_GNU
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wold-style-cast"
#pragma GCC diagnostic ignored "-Wfloat-equal"
#endif
/* On some machines, the exact arithmetic routines might be defeated by the */
/* use of internal extended precision floating-point registers. Sometimes */
/* this problem can be fixed by defining certain values to be volatile, */
/* thus forcing them to be stored to memory and rounded off. This isn't */
/* a great solution, though, as it slows the arithmetic down. */
/* */
/* To try this out, write "#define INEXACT volatile" below. Normally, */
/* however, INEXACT should be defined to be nothing. ("#define INEXACT".) */
#define INEXACT /* Nothing */
/* #define INEXACT volatile */
#define REALPRINT doubleprint
#define REALRAND doublerand
#define NARROWRAND narrowdoublerand
#define UNIFORMRAND uniformdoublerand
/* Which of the following two methods of finding the absolute values is */
/* fastest is compiler-dependent. A few compilers can inline and optimize */
/* the fabs() call; but most will incur the overhead of a function call, */
/* which is disastrously slow. A faster way on IEEE machines might be to */
/* mask the appropriate bit, but that's difficult to do in C. */
#define Absolute(a) ((a) >= 0.0 ? (a) : -(a))
/* #define Absolute(a) fabs(a) */
/* Many of the operations are broken up into two pieces, a main part that */
/* performs an approximate operation, and a "tail" that computes the */
/* roundoff error of that operation. */
/* */
/* The operations Fast_Two_Sum(), Fast_Two_Diff(), Two_Sum(), Two_Diff(), */
/* Split(), and Two_Product() are all implemented as described in the */
/* reference. Each of these macros requires certain variables to be */
/* defined in the calling routine. The variables `bvirt', `c', `abig', */
/* `_i', `_j', `_k', `_l', `_m', and `_n' are declared `INEXACT' because */
/* they store the result of an operation that may incur roundoff error. */
/* The input parameter `x' (or the highest numbered `x_' parameter) must */
/* also be declared `INEXACT'. */
#define Fast_Two_Sum_Tail(a, b, x, y) \
bvirt = x - a; \
y = b - bvirt
#define Fast_Two_Sum(a, b, x, y) \
x = (qreal) (a + b); \
Fast_Two_Sum_Tail(a, b, x, y)
#define Two_Sum_Tail(a, b, x, y) \
bvirt = (qreal) (x - a); \
avirt = x - bvirt; \
bround = b - bvirt; \
around = a - avirt; \
y = around + bround
#define Two_Sum(a, b, x, y) \
x = (qreal) (a + b); \
Two_Sum_Tail(a, b, x, y)
#define Two_Diff_Tail(a, b, x, y) \
bvirt = (qreal) (a - x); \
avirt = x + bvirt; \
bround = bvirt - b; \
around = a - avirt; \
y = around + bround
#define Two_Diff(a, b, x, y) \
x = (qreal) (a - b); \
Two_Diff_Tail(a, b, x, y)
#define Split(a, ahi, alo) \
c = (qreal) (splitter * a); \
abig = (qreal) (c - a); \
ahi = c - abig; \
alo = a - ahi
#define Two_Product_Tail(a, b, x, y) \
Split(a, ahi, alo); \
Split(b, bhi, blo); \
err1 = x - (ahi * bhi); \
err2 = err1 - (alo * bhi); \
err3 = err2 - (ahi * blo); \
y = (alo * blo) - err3
#define Two_Product(a, b, x, y) \
x = (qreal) (a * b); \
Two_Product_Tail(a, b, x, y)
/* Two_Product_Presplit() is Two_Product() where one of the inputs has */
/* already been split. Avoids redundant splitting. */
#define Two_Product_Presplit(a, b, bhi, blo, x, y) \
x = (qreal) (a * b); \
Split(a, ahi, alo); \
err1 = x - (ahi * bhi); \
err2 = err1 - (alo * bhi); \
err3 = err2 - (ahi * blo); \
y = (alo * blo) - err3
/* Square() can be done more quickly than Two_Product(). */
#define Square_Tail(a, x, y) \
Split(a, ahi, alo); \
err1 = x - (ahi * ahi); \
err3 = err1 - ((ahi + ahi) * alo); \
y = (alo * alo) - err3
#define Square(a, x, y) \
x = (qreal) (a * a); \
Square_Tail(a, x, y)
/* Macros for summing expansions of various fixed lengths. These are all */
/* unrolled versions of Expansion_Sum(). */
#define Two_One_Sum(a1, a0, b, x2, x1, x0) \
Two_Sum(a0, b , _i, x0); \
Two_Sum(a1, _i, x2, x1)
#define Two_One_Diff(a1, a0, b, x2, x1, x0) \
Two_Diff(a0, b , _i, x0); \
Two_Sum( a1, _i, x2, x1)
#define Two_Two_Sum(a1, a0, b1, b0, x3, x2, x1, x0) \
Two_One_Sum(a1, a0, b0, _j, _0, x0); \
Two_One_Sum(_j, _0, b1, x3, x2, x1)
#define Two_Two_Diff(a1, a0, b1, b0, x3, x2, x1, x0) \
Two_One_Diff(a1, a0, b0, _j, _0, x0); \
Two_One_Diff(_j, _0, b1, x3, x2, x1)
qreal splitter; /* = 2^ceiling(p / 2) + 1. Used to split floats in half. */
qreal epsilon; /* = 2^(-p). Used to estimate roundoff errors. */
/* A set of coefficients used to calculate maximum roundoff errors. */
qreal resulterrbound;
qreal ccwerrboundA, ccwerrboundB, ccwerrboundC;
qreal o3derrboundA, o3derrboundB, o3derrboundC;
qreal iccerrboundA, iccerrboundB, iccerrboundC;
qreal isperrboundA, isperrboundB, isperrboundC;
/*****************************************************************************/
/* */
/* exactinit() Initialize the variables used for exact arithmetic. */
/* */
/* `epsilon' is the largest power of two such that 1.0 + epsilon = 1.0 in */
/* floating-point arithmetic. `epsilon' bounds the relative roundoff */
/* error. It is used for floating-point error analysis. */
/* */
/* `splitter' is used to split floating-point numbers into two half- */
/* length significands for exact multiplication. */
/* */
/* I imagine that a highly optimizing compiler might be too smart for its */
/* own good, and somehow cause this routine to fail, if it pretends that */
/* floating-point arithmetic is too much like real arithmetic. */
/* */
/* Don't change this routine unless you fully understand it. */
/* */
/*****************************************************************************/
void exactinit()
{
qreal half;
qreal check, lastcheck;
int every_other;
every_other = 1;
half = 0.5;
epsilon = 1.0;
splitter = 1.0;
check = 1.0;
/* Repeatedly divide `epsilon' by two until it is too small to add to */
/* one without causing roundoff. (Also check if the sum is equal to */
/* the previous sum, for machines that round up instead of using exact */
/* rounding. Not that this library will work on such machines anyway. */
do
{
lastcheck = check;
epsilon *= half;
if (every_other)
{
splitter *= 2.0;
}
every_other = !every_other;
check = 1.0 + epsilon;
} while ((check != 1.0) && (check != lastcheck));
splitter += 1.0;
/* Error bounds for orientation and incircle tests. */
resulterrbound = (3.0 + 8.0 * epsilon) * epsilon;
ccwerrboundA = (3.0 + 16.0 * epsilon) * epsilon;
ccwerrboundB = (2.0 + 12.0 * epsilon) * epsilon;
ccwerrboundC = (9.0 + 64.0 * epsilon) * epsilon * epsilon;
o3derrboundA = (7.0 + 56.0 * epsilon) * epsilon;
o3derrboundB = (3.0 + 28.0 * epsilon) * epsilon;
o3derrboundC = (26.0 + 288.0 * epsilon) * epsilon * epsilon;
iccerrboundA = (10.0 + 96.0 * epsilon) * epsilon;
iccerrboundB = (4.0 + 48.0 * epsilon) * epsilon;
iccerrboundC = (44.0 + 576.0 * epsilon) * epsilon * epsilon;
isperrboundA = (16.0 + 224.0 * epsilon) * epsilon;
isperrboundB = (5.0 + 72.0 * epsilon) * epsilon;
isperrboundC = (71.0 + 1408.0 * epsilon) * epsilon * epsilon;
}
/*****************************************************************************/
/* */
/* fast_expansion_sum_zeroelim() Sum two expansions, eliminating zero */
/* components from the output expansion. */
/* */
/* Sets h = e + f. See the long version of my paper for details. */
/* */
/* If round-to-even is used (as with IEEE 754), maintains the strongly */
/* nonoverlapping property. (That is, if e is strongly nonoverlapping, h */
/* will be also.) Does NOT maintain the nonoverlapping or nonadjacent */
/* properties. */
/* */
/*****************************************************************************/
int fast_expansion_sum_zeroelim(int elen, qreal *e, int flen, qreal *f, qreal *h) /* h cannot be e or f. */
{
qreal Q;
INEXACT qreal Qnew;
INEXACT qreal hh;
INEXACT qreal bvirt;
qreal avirt, bround, around;
int eindex, findex, hindex;
qreal enow, fnow;
enow = e[0];
fnow = f[0];
eindex = findex = 0;
if ((fnow > enow) == (fnow > -enow))
{
Q = enow;
enow = e[++eindex];
}
else
{
Q = fnow;
fnow = f[++findex];
}
hindex = 0;
if ((eindex < elen) && (findex < flen))
{
if ((fnow > enow) == (fnow > -enow))
{
Fast_Two_Sum(enow, Q, Qnew, hh);
enow = e[++eindex];
}
else
{
Fast_Two_Sum(fnow, Q, Qnew, hh);
fnow = f[++findex];
}
Q = Qnew;
if (hh != 0.0)
{
h[hindex++] = hh;
}
while ((eindex < elen) && (findex < flen))
{
if ((fnow > enow) == (fnow > -enow))
{
Two_Sum(Q, enow, Qnew, hh);
enow = e[++eindex];
}
else
{
Two_Sum(Q, fnow, Qnew, hh);
fnow = f[++findex];
}
Q = Qnew;
if (hh != 0.0)
{
h[hindex++] = hh;
}
}
}
while (eindex < elen)
{
Two_Sum(Q, enow, Qnew, hh);
enow = e[++eindex];
Q = Qnew;
if (hh != 0.0)
{
h[hindex++] = hh;
}
}
while (findex < flen)
{
Two_Sum(Q, fnow, Qnew, hh);
fnow = f[++findex];
Q = Qnew;
if (hh != 0.0)
{
h[hindex++] = hh;
}
}
if ((Q != 0.0) || (hindex == 0))
{
h[hindex++] = Q;
}
return hindex;
}
/*****************************************************************************/
/* */
/* scale_expansion_zeroelim() Multiply an expansion by a scalar, */
/* eliminating zero components from the */
/* output expansion. */
/* */
/* Sets h = be. See either version of my paper for details. */
/* */
/* Maintains the nonoverlapping property. If round-to-even is used (as */
/* with IEEE 754), maintains the strongly nonoverlapping and nonadjacent */
/* properties as well. (That is, if e has one of these properties, so */
/* will h.) */
/* */
/*****************************************************************************/
int scale_expansion_zeroelim(int elen, qreal *e, qreal b, qreal *h) /* e and h cannot be the same. */
{
INEXACT qreal Q, sum;
qreal hh;
INEXACT qreal product1;
qreal product0;
int eindex, hindex;
qreal enow;
INEXACT qreal bvirt;
qreal avirt, bround, around;
INEXACT qreal c;
INEXACT qreal abig;
qreal ahi, alo, bhi, blo;
qreal err1, err2, err3;
Split(b, bhi, blo);
Two_Product_Presplit(e[0], b, bhi, blo, Q, hh);
hindex = 0;
if (hh != 0) {
h[hindex++] = hh;
}
for (eindex = 1; eindex < elen; eindex++)
{
enow = e[eindex];
Two_Product_Presplit(enow, b, bhi, blo, product1, product0);
Two_Sum(Q, product0, sum, hh);
if (hh != 0)
{
h[hindex++] = hh;
}
Fast_Two_Sum(product1, sum, Q, hh);
if (hh != 0)
{
h[hindex++] = hh;
}
}
if ((Q != 0.0) || (hindex == 0))
{
h[hindex++] = Q;
}
return hindex;
}
/*****************************************************************************/
/* */
/* estimate() Produce a one-word estimate of an expansion's value. */
/* */
/* See either version of my paper for details. */
/* */
/*****************************************************************************/
qreal estimate(int elen, qreal *e)
{
qreal Q;
int eindex;
Q = e[0];
for (eindex = 1; eindex < elen; eindex++)
{
Q += e[eindex];
}
return Q;
}
qreal incircleadapt(qreal *pa, qreal *pb, qreal *pc, qreal *pd, qreal permanent)
{
INEXACT qreal adx, bdx, cdx, ady, bdy, cdy;
qreal det, errbound;
INEXACT qreal bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
qreal bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
qreal bc[4], ca[4], ab[4];
INEXACT qreal bc3, ca3, ab3;
qreal axbc[8], axxbc[16], aybc[8], ayybc[16], adet[32];
int axbclen, axxbclen, aybclen, ayybclen, alen;
qreal bxca[8], bxxca[16], byca[8], byyca[16], bdet[32];
int bxcalen, bxxcalen, bycalen, byycalen, blen;
qreal cxab[8], cxxab[16], cyab[8], cyyab[16], cdet[32];
int cxablen, cxxablen, cyablen, cyyablen, clen;
qreal abdet[64];
int ablen;
qreal fin1[1152], fin2[1152];
qreal *finnow, *finother, *finswap;
int finlength;
qreal adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail;
INEXACT qreal adxadx1, adyady1, bdxbdx1, bdybdy1, cdxcdx1, cdycdy1;
qreal adxadx0, adyady0, bdxbdx0, bdybdy0, cdxcdx0, cdycdy0;
qreal aa[4], bb[4], cc[4];
INEXACT qreal aa3, bb3, cc3;
INEXACT qreal ti1, tj1;
qreal ti0, tj0;
qreal u[4], v[4];
INEXACT qreal u3, v3;
qreal temp8[8], temp16a[16], temp16b[16], temp16c[16];
qreal temp32a[32], temp32b[32], temp48[48], temp64[64];
int temp8len, temp16alen, temp16blen, temp16clen;
int temp32alen, temp32blen, temp48len, temp64len;
qreal axtbb[8], axtcc[8], aytbb[8], aytcc[8];
2015-04-15 14:44:57 +02:00
// cppcheck-suppress variableScope
int axtbblen, axtcclen, aytbblen, aytcclen;
qreal bxtaa[8], bxtcc[8], bytaa[8], bytcc[8];
2015-04-15 14:44:57 +02:00
// cppcheck-suppress variableScope
int bxtaalen, bxtcclen, bytaalen, bytcclen;
qreal cxtaa[8], cxtbb[8], cytaa[8], cytbb[8];
2015-04-15 14:44:57 +02:00
// cppcheck-suppress variableScope
int cxtaalen, cxtbblen, cytaalen, cytbblen;
qreal axtbc[8], aytbc[8], bxtca[8], bytca[8], cxtab[8], cytab[8];
int axtbclen, aytbclen, bxtcalen, bytcalen, cxtablen, cytablen;
qreal axtbct[16], aytbct[16], bxtcat[16], bytcat[16], cxtabt[16], cytabt[16];
2015-04-15 14:44:57 +02:00
// cppcheck-suppress variableScope
int axtbctlen, aytbctlen, bxtcatlen, bytcatlen, cxtabtlen, cytabtlen;
qreal axtbctt[8], aytbctt[8], bxtcatt[8];
qreal bytcatt[8], cxtabtt[8], cytabtt[8];
2015-04-15 14:44:57 +02:00
// cppcheck-suppress variableScope
int axtbcttlen, aytbcttlen, bxtcattlen, bytcattlen, cxtabttlen, cytabttlen;
qreal abt[8], bct[8], cat[8];
2015-04-15 14:44:57 +02:00
// cppcheck-suppress variableScope
int abtlen, bctlen, catlen;
qreal abtt[4], bctt[4], catt[4];
2015-04-15 14:44:57 +02:00
// cppcheck-suppress variableScope
int abttlen, bcttlen, cattlen;
INEXACT qreal abtt3, bctt3, catt3;
qreal negate;
INEXACT qreal bvirt;
qreal avirt, bround, around;
INEXACT qreal c;
INEXACT qreal abig;
qreal ahi, alo, bhi, blo;
qreal err1, err2, err3;
INEXACT qreal _i, _j;
qreal _0;
adx = (qreal) (pa[0] - pd[0]);
bdx = (qreal) (pb[0] - pd[0]);
cdx = (qreal) (pc[0] - pd[0]);
ady = (qreal) (pa[1] - pd[1]);
bdy = (qreal) (pb[1] - pd[1]);
cdy = (qreal) (pc[1] - pd[1]);
Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
bc[3] = bc3;
axbclen = scale_expansion_zeroelim(4, bc, adx, axbc);
axxbclen = scale_expansion_zeroelim(axbclen, axbc, adx, axxbc);
aybclen = scale_expansion_zeroelim(4, bc, ady, aybc);
ayybclen = scale_expansion_zeroelim(aybclen, aybc, ady, ayybc);
alen = fast_expansion_sum_zeroelim(axxbclen, axxbc, ayybclen, ayybc, adet);
Two_Product(cdx, ady, cdxady1, cdxady0);
Two_Product(adx, cdy, adxcdy1, adxcdy0);
Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
ca[3] = ca3;
bxcalen = scale_expansion_zeroelim(4, ca, bdx, bxca);
bxxcalen = scale_expansion_zeroelim(bxcalen, bxca, bdx, bxxca);
bycalen = scale_expansion_zeroelim(4, ca, bdy, byca);
byycalen = scale_expansion_zeroelim(bycalen, byca, bdy, byyca);
blen = fast_expansion_sum_zeroelim(bxxcalen, bxxca, byycalen, byyca, bdet);
Two_Product(adx, bdy, adxbdy1, adxbdy0);
Two_Product(bdx, ady, bdxady1, bdxady0);
Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
ab[3] = ab3;
cxablen = scale_expansion_zeroelim(4, ab, cdx, cxab);
cxxablen = scale_expansion_zeroelim(cxablen, cxab, cdx, cxxab);
cyablen = scale_expansion_zeroelim(4, ab, cdy, cyab);
cyyablen = scale_expansion_zeroelim(cyablen, cyab, cdy, cyyab);
clen = fast_expansion_sum_zeroelim(cxxablen, cxxab, cyyablen, cyyab, cdet);
ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
det = estimate(finlength, fin1);
errbound = iccerrboundB * permanent;
if ((det >= errbound) || (-det >= errbound))
{
return det;
}
Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
Two_Diff_Tail(pa[1], pd[1], ady, adytail);
Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0)
&& (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0))
{
return det;
}
errbound = iccerrboundC * permanent + resulterrbound * Absolute(det);
det += ((adx * adx + ady * ady) * ((bdx * cdytail + cdy * bdxtail) - (bdy * cdxtail + cdx * bdytail))
+ 2.0 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx))
+ ((bdx * bdx + bdy * bdy) * ((cdx * adytail + ady * cdxtail) - (cdy * adxtail + adx * cdytail))
+ 2.0 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx))
+ ((cdx * cdx + cdy * cdy) * ((adx * bdytail + bdy * adxtail) - (ady * bdxtail + bdx * adytail))
+ 2.0 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx));
if ((det >= errbound) || (-det >= errbound))
{
return det;
}
finnow = fin1;
finother = fin2;
if ((bdxtail != 0.0) || (bdytail != 0.0) || (cdxtail != 0.0) || (cdytail != 0.0))
{
Square(adx, adxadx1, adxadx0);
Square(ady, adyady1, adyady0);
Two_Two_Sum(adxadx1, adxadx0, adyady1, adyady0, aa3, aa[2], aa[1], aa[0]);
aa[3] = aa3;
}
if ((cdxtail != 0.0) || (cdytail != 0.0) || (adxtail != 0.0) || (adytail != 0.0))
{
Square(bdx, bdxbdx1, bdxbdx0);
Square(bdy, bdybdy1, bdybdy0);
Two_Two_Sum(bdxbdx1, bdxbdx0, bdybdy1, bdybdy0, bb3, bb[2], bb[1], bb[0]);
bb[3] = bb3;
}
if ((adxtail != 0.0) || (adytail != 0.0) || (bdxtail != 0.0) || (bdytail != 0.0))
{
Square(cdx, cdxcdx1, cdxcdx0);
Square(cdy, cdycdy1, cdycdy0);
Two_Two_Sum(cdxcdx1, cdxcdx0, cdycdy1, cdycdy0, cc3, cc[2], cc[1], cc[0]);
cc[3] = cc3;
}
if (adxtail != 0.0)
{
axtbclen = scale_expansion_zeroelim(4, bc, adxtail, axtbc);
temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, 2.0 * adx, temp16a);
axtcclen = scale_expansion_zeroelim(4, cc, adxtail, axtcc);
temp16blen = scale_expansion_zeroelim(axtcclen, axtcc, bdy, temp16b);
axtbblen = scale_expansion_zeroelim(4, bb, adxtail, axtbb);
temp16clen = scale_expansion_zeroelim(axtbblen, axtbb, -cdy, temp16c);
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
if (adytail != 0.0)
{
aytbclen = scale_expansion_zeroelim(4, bc, adytail, aytbc);
temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, 2.0 * ady, temp16a);
aytbblen = scale_expansion_zeroelim(4, bb, adytail, aytbb);
temp16blen = scale_expansion_zeroelim(aytbblen, aytbb, cdx, temp16b);
aytcclen = scale_expansion_zeroelim(4, cc, adytail, aytcc);
temp16clen = scale_expansion_zeroelim(aytcclen, aytcc, -bdx, temp16c);
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
if (bdxtail != 0.0)
{
bxtcalen = scale_expansion_zeroelim(4, ca, bdxtail, bxtca);
temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, 2.0 * bdx, temp16a);
bxtaalen = scale_expansion_zeroelim(4, aa, bdxtail, bxtaa);
temp16blen = scale_expansion_zeroelim(bxtaalen, bxtaa, cdy, temp16b);
bxtcclen = scale_expansion_zeroelim(4, cc, bdxtail, bxtcc);
temp16clen = scale_expansion_zeroelim(bxtcclen, bxtcc, -ady, temp16c);
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
if (bdytail != 0.0)
{
bytcalen = scale_expansion_zeroelim(4, ca, bdytail, bytca);
temp16alen = scale_expansion_zeroelim(bytcalen, bytca, 2.0 * bdy, temp16a);
bytcclen = scale_expansion_zeroelim(4, cc, bdytail, bytcc);
temp16blen = scale_expansion_zeroelim(bytcclen, bytcc, adx, temp16b);
bytaalen = scale_expansion_zeroelim(4, aa, bdytail, bytaa);
temp16clen = scale_expansion_zeroelim(bytaalen, bytaa, -cdx, temp16c);
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
if (cdxtail != 0.0)
{
cxtablen = scale_expansion_zeroelim(4, ab, cdxtail, cxtab);
temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, 2.0 * cdx, temp16a);
cxtbblen = scale_expansion_zeroelim(4, bb, cdxtail, cxtbb);
temp16blen = scale_expansion_zeroelim(cxtbblen, cxtbb, ady, temp16b);
cxtaalen = scale_expansion_zeroelim(4, aa, cdxtail, cxtaa);
temp16clen = scale_expansion_zeroelim(cxtaalen, cxtaa, -bdy, temp16c);
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
temp16blen, temp16b, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
temp48, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
if (cdytail != 0.0)
{
cytablen = scale_expansion_zeroelim(4, ab, cdytail, cytab);
temp16alen = scale_expansion_zeroelim(cytablen, cytab, 2.0 * cdy, temp16a);
cytaalen = scale_expansion_zeroelim(4, aa, cdytail, cytaa);
temp16blen = scale_expansion_zeroelim(cytaalen, cytaa, bdx, temp16b);
cytbblen = scale_expansion_zeroelim(4, bb, cdytail, cytbb);
temp16clen = scale_expansion_zeroelim(cytbblen, cytbb, -adx, temp16c);
temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
if ((adxtail != 0.0) || (adytail != 0.0))
{
if ((bdxtail != 0.0) || (bdytail != 0.0) || (cdxtail != 0.0) || (cdytail != 0.0))
{
Two_Product(bdxtail, cdy, ti1, ti0);
Two_Product(bdx, cdytail, tj1, tj0);
Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
u[3] = u3;
negate = -bdy;
Two_Product(cdxtail, negate, ti1, ti0);
negate = -bdytail;
Two_Product(cdx, negate, tj1, tj0);
Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
v[3] = v3;
bctlen = fast_expansion_sum_zeroelim(4, u, 4, v, bct);
Two_Product(bdxtail, cdytail, ti1, ti0);
Two_Product(cdxtail, bdytail, tj1, tj0);
Two_Two_Diff(ti1, ti0, tj1, tj0, bctt3, bctt[2], bctt[1], bctt[0]);
bctt[3] = bctt3;
bcttlen = 4;
}
else
{
bct[0] = 0.0;
bctlen = 1;
bctt[0] = 0.0;
bcttlen = 1;
}
if (adxtail != 0.0)
{
temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, adxtail, temp16a);
axtbctlen = scale_expansion_zeroelim(bctlen, bct, adxtail, axtbct);
temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, 2.0 * adx, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
finswap = finnow; finnow = finother; finother = finswap;
if (bdytail != 0.0)
{
temp8len = scale_expansion_zeroelim(4, cc, adxtail, temp8);
temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail, temp16a);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
if (cdytail != 0.0)
{
temp8len = scale_expansion_zeroelim(4, bb, -adxtail, temp8);
temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail, temp16a);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, adxtail, temp32a);
axtbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adxtail, axtbctt);
temp16alen = scale_expansion_zeroelim(axtbcttlen, axtbctt, 2.0 * adx, temp16a);
temp16blen = scale_expansion_zeroelim(axtbcttlen, axtbctt, adxtail, temp16b);
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32b);
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
if (adytail != 0.0)
{
temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, adytail, temp16a);
aytbctlen = scale_expansion_zeroelim(bctlen, bct, adytail, aytbct);
temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, 2.0 * ady, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
finswap = finnow; finnow = finother; finother = finswap;
temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, adytail, temp32a);
aytbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adytail, aytbctt);
temp16alen = scale_expansion_zeroelim(aytbcttlen, aytbctt, 2.0 * ady, temp16a);
temp16blen = scale_expansion_zeroelim(aytbcttlen, aytbctt, adytail, temp16b);
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32b);
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
}
if ((bdxtail != 0.0) || (bdytail != 0.0))
{
if ((cdxtail != 0.0) || (cdytail != 0.0) || (adxtail != 0.0) || (adytail != 0.0))
{
Two_Product(cdxtail, ady, ti1, ti0);
Two_Product(cdx, adytail, tj1, tj0);
Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
u[3] = u3;
negate = -cdy;
Two_Product(adxtail, negate, ti1, ti0);
negate = -cdytail;
Two_Product(adx, negate, tj1, tj0);
Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
v[3] = v3;
catlen = fast_expansion_sum_zeroelim(4, u, 4, v, cat);
Two_Product(cdxtail, adytail, ti1, ti0);
Two_Product(adxtail, cdytail, tj1, tj0);
Two_Two_Diff(ti1, ti0, tj1, tj0, catt3, catt[2], catt[1], catt[0]);
catt[3] = catt3;
cattlen = 4;
}
else
{
cat[0] = 0.0;
catlen = 1;
catt[0] = 0.0;
cattlen = 1;
}
if (bdxtail != 0.0)
{
temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, bdxtail, temp16a);
bxtcatlen = scale_expansion_zeroelim(catlen, cat, bdxtail, bxtcat);
temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, 2.0 * bdx, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
if (cdytail != 0.0)
{
temp8len = scale_expansion_zeroelim(4, aa, bdxtail, temp8);
temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail, temp16a);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
if (adytail != 0.0)
{
temp8len = scale_expansion_zeroelim(4, cc, -bdxtail, temp8);
temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail, temp16a);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, bdxtail, temp32a);
bxtcattlen = scale_expansion_zeroelim(cattlen, catt, bdxtail, bxtcatt);
temp16alen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, 2.0 * bdx, temp16a);
temp16blen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, bdxtail, temp16b);
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32b);
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
if (bdytail != 0.0)
{
temp16alen = scale_expansion_zeroelim(bytcalen, bytca, bdytail, temp16a);
bytcatlen = scale_expansion_zeroelim(catlen, cat, bdytail, bytcat);
temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, 2.0 * bdy, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, bdytail, temp32a);
bytcattlen = scale_expansion_zeroelim(cattlen, catt, bdytail, bytcatt);
temp16alen = scale_expansion_zeroelim(bytcattlen, bytcatt, 2.0 * bdy, temp16a);
temp16blen = scale_expansion_zeroelim(bytcattlen, bytcatt, bdytail, temp16b);
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32b);
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
}
if ((cdxtail != 0.0) || (cdytail != 0.0))
{
if ((adxtail != 0.0) || (adytail != 0.0) || (bdxtail != 0.0) || (bdytail != 0.0))
{
Two_Product(adxtail, bdy, ti1, ti0);
Two_Product(adx, bdytail, tj1, tj0);
Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
u[3] = u3;
negate = -ady;
Two_Product(bdxtail, negate, ti1, ti0);
negate = -adytail;
Two_Product(bdx, negate, tj1, tj0);
Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
v[3] = v3;
abtlen = fast_expansion_sum_zeroelim(4, u, 4, v, abt);
Two_Product(adxtail, bdytail, ti1, ti0);
Two_Product(bdxtail, adytail, tj1, tj0);
Two_Two_Diff(ti1, ti0, tj1, tj0, abtt3, abtt[2], abtt[1], abtt[0]);
abtt[3] = abtt3;
abttlen = 4;
}
else
{
abt[0] = 0.0;
abtlen = 1;
abtt[0] = 0.0;
abttlen = 1;
}
if (cdxtail != 0.0)
{
temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, cdxtail, temp16a);
cxtabtlen = scale_expansion_zeroelim(abtlen, abt, cdxtail, cxtabt);
temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, 2.0 * cdx, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
if (adytail != 0.0)
{
temp8len = scale_expansion_zeroelim(4, bb, cdxtail, temp8);
temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail, temp16a);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
if (bdytail != 0.0)
{
temp8len = scale_expansion_zeroelim(4, aa, -cdxtail, temp8);
temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail, temp16a);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, temp16a, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, cdxtail, temp32a);
cxtabttlen = scale_expansion_zeroelim(abttlen, abtt, cdxtail, cxtabtt);
temp16alen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, 2.0 * cdx, temp16a);
temp16blen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, cdxtail, temp16b);
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32b);
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
}
if (cdytail != 0.0)
{
temp16alen = scale_expansion_zeroelim(cytablen, cytab, cdytail, temp16a);
cytabtlen = scale_expansion_zeroelim(abtlen, abt, cdytail, cytabt);
temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, 2.0 * cdy, temp32a);
temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp32alen, temp32a, temp48);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, temp48, finother);
finswap = finnow;
finnow = finother;
finother = finswap;
temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, cdytail, temp32a);
cytabttlen = scale_expansion_zeroelim(abttlen, abtt, cdytail, cytabtt);
temp16alen = scale_expansion_zeroelim(cytabttlen, cytabtt, 2.0 * cdy, temp16a);
temp16blen = scale_expansion_zeroelim(cytabttlen, cytabtt, cdytail, temp16b);
temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, temp16blen, temp16b, temp32b);
temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, temp32blen, temp32b, temp64);
finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, temp64, finother);
finswap = finnow; finnow = finother; finother = finswap;
}
}
return finnow[finlength - 1];
}
qreal incircle(qreal *pa, qreal *pb, qreal *pc, qreal *pd)
{
qreal adx, bdx, cdx, ady, bdy, cdy;
qreal bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
qreal alift, blift, clift;
qreal det;
qreal permanent, errbound;
adx = pa[0] - pd[0];
bdx = pb[0] - pd[0];
cdx = pc[0] - pd[0];
ady = pa[1] - pd[1];
bdy = pb[1] - pd[1];
cdy = pc[1] - pd[1];
bdxcdy = bdx * cdy;
cdxbdy = cdx * bdy;
alift = adx * adx + ady * ady;
cdxady = cdx * ady;
adxcdy = adx * cdy;
blift = bdx * bdx + bdy * bdy;
adxbdy = adx * bdy;
bdxady = bdx * ady;
clift = cdx * cdx + cdy * cdy;
det = alift * (bdxcdy - cdxbdy)
+ blift * (cdxady - adxcdy)
+ clift * (adxbdy - bdxady);
permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * alift
+ (Absolute(cdxady) + Absolute(adxcdy)) * blift
+ (Absolute(adxbdy) + Absolute(bdxady)) * clift;
errbound = iccerrboundA * permanent;
if ((det > errbound) || (-det > errbound))
{
return det;
}
return incircleadapt(pa, pb, pc, pd, permanent);
}
#ifdef Q_CC_GNU
#pragma GCC diagnostic pop
#endif