442 lines
14 KiB
C++
442 lines
14 KiB
C++
|
/************************************************************************
|
|||
|
**
|
|||
|
** @file vabstractcubicbezier.cpp
|
|||
|
** @author Roman Telezhynskyi <dismine(at)gmail.com>
|
|||
|
** @date 8 3, 2016
|
|||
|
**
|
|||
|
** @brief
|
|||
|
** @copyright
|
|||
|
** This source code is part of the Valentine project, a pattern making
|
|||
|
** program, whose allow create and modeling patterns of clothing.
|
|||
|
** Copyright (C) 2016 Valentina project
|
|||
|
** <https://bitbucket.org/dismine/valentina> All Rights Reserved.
|
|||
|
**
|
|||
|
** Valentina is free software: you can redistribute it and/or modify
|
|||
|
** it under the terms of the GNU General Public License as published by
|
|||
|
** the Free Software Foundation, either version 3 of the License, or
|
|||
|
** (at your option) any later version.
|
|||
|
**
|
|||
|
** Valentina is distributed in the hope that it will be useful,
|
|||
|
** but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
|
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|||
|
** GNU General Public License for more details.
|
|||
|
**
|
|||
|
** You should have received a copy of the GNU General Public License
|
|||
|
** along with Valentina. If not, see <http://www.gnu.org/licenses/>.
|
|||
|
**
|
|||
|
*************************************************************************/
|
|||
|
|
|||
|
#include "vabstractcubicbezier.h"
|
|||
|
#include "../vgeometry/vpointf.h"
|
|||
|
|
|||
|
#include <QPainterPath>
|
|||
|
|
|||
|
//---------------------------------------------------------------------------------------------------------------------
|
|||
|
VAbstractCubicBezier::VAbstractCubicBezier(const GOType &type, const quint32 &idObject, const Draw &mode)
|
|||
|
: VAbstractCurve(type, idObject, mode)
|
|||
|
{
|
|||
|
}
|
|||
|
|
|||
|
//---------------------------------------------------------------------------------------------------------------------
|
|||
|
VAbstractCubicBezier::VAbstractCubicBezier(const VAbstractCubicBezier &curve)
|
|||
|
: VAbstractCurve(curve)
|
|||
|
{
|
|||
|
}
|
|||
|
|
|||
|
//---------------------------------------------------------------------------------------------------------------------
|
|||
|
VAbstractCubicBezier &VAbstractCubicBezier::operator=(const VAbstractCubicBezier &curve)
|
|||
|
{
|
|||
|
if ( &curve == this )
|
|||
|
{
|
|||
|
return *this;
|
|||
|
}
|
|||
|
VAbstractCurve::operator=(curve);
|
|||
|
return *this;
|
|||
|
}
|
|||
|
|
|||
|
//---------------------------------------------------------------------------------------------------------------------
|
|||
|
VAbstractCubicBezier::~VAbstractCubicBezier()
|
|||
|
{
|
|||
|
}
|
|||
|
|
|||
|
//---------------------------------------------------------------------------------------------------------------------
|
|||
|
void VAbstractCubicBezier::CreateName()
|
|||
|
{
|
|||
|
QString name = SPL_ + QString("%1_%2").arg(GetP1().name()).arg(GetP4().name());
|
|||
|
if (GetDuplicate() > 0)
|
|||
|
{
|
|||
|
name += QString("_%1").arg(GetDuplicate());
|
|||
|
}
|
|||
|
|
|||
|
setName(name);
|
|||
|
}
|
|||
|
|
|||
|
//---------------------------------------------------------------------------------------------------------------------
|
|||
|
/**
|
|||
|
* @brief CalcSqDistance calculate squared distance.
|
|||
|
* @param x1 х coordinate first point.
|
|||
|
* @param y1 у coordinate first point.
|
|||
|
* @param x2 х coordinate second point.
|
|||
|
* @param y2 у coordinate second point.
|
|||
|
* @return squared length.
|
|||
|
*/
|
|||
|
qreal VAbstractCubicBezier::CalcSqDistance(qreal x1, qreal y1, qreal x2, qreal y2)
|
|||
|
{
|
|||
|
const qreal dx = x2 - x1;
|
|||
|
const qreal dy = y2 - y1;
|
|||
|
return dx * dx + dy * dy;
|
|||
|
}
|
|||
|
|
|||
|
//---------------------------------------------------------------------------------------------------------------------
|
|||
|
/**
|
|||
|
* @brief PointBezier_r find spline point using four point of spline.
|
|||
|
* @param x1 х coordinate first point.
|
|||
|
* @param y1 у coordinate first point.
|
|||
|
* @param x2 х coordinate first control point.
|
|||
|
* @param y2 у coordinate first control point.
|
|||
|
* @param x3 х coordinate second control point.
|
|||
|
* @param y3 у coordinate second control point.
|
|||
|
* @param x4 х coordinate last point.
|
|||
|
* @param y4 у coordinate last point.
|
|||
|
* @param level level of recursion. In the begin 0.
|
|||
|
* @param px list х coordinat spline points.
|
|||
|
* @param py list у coordinat spline points.
|
|||
|
*/
|
|||
|
void VAbstractCubicBezier::PointBezier_r(qreal x1, qreal y1, qreal x2, qreal y2, qreal x3, qreal y3, qreal x4, qreal y4,
|
|||
|
qint16 level, QVector<qreal> &px, QVector<qreal> &py)
|
|||
|
{
|
|||
|
if (px.size() >= 2)
|
|||
|
{
|
|||
|
for (int i=1; i < px.size(); ++i)
|
|||
|
{
|
|||
|
if (QPointF(px.at(i-1), py.at(i-1)) == QPointF(px.at(i), py.at(i)))
|
|||
|
{
|
|||
|
qDebug("All neighbors points in path must be unique.");
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
const double curve_collinearity_epsilon = 1e-30;
|
|||
|
const double curve_angle_tolerance_epsilon = 0.01;
|
|||
|
const double m_angle_tolerance = 0.0;
|
|||
|
enum curve_recursion_limit_e { curve_recursion_limit = 32 };
|
|||
|
const double m_cusp_limit = 0.0;
|
|||
|
double m_approximation_scale = 1.0;
|
|||
|
double m_distance_tolerance_square;
|
|||
|
|
|||
|
m_distance_tolerance_square = 0.5 / m_approximation_scale;
|
|||
|
m_distance_tolerance_square *= m_distance_tolerance_square;
|
|||
|
|
|||
|
if (level > curve_recursion_limit)
|
|||
|
{
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
// Calculate all the mid-points of the line segments
|
|||
|
//----------------------
|
|||
|
const double x12 = (x1 + x2) / 2;
|
|||
|
const double y12 = (y1 + y2) / 2;
|
|||
|
const double x23 = (x2 + x3) / 2;
|
|||
|
const double y23 = (y2 + y3) / 2;
|
|||
|
const double x34 = (x3 + x4) / 2;
|
|||
|
const double y34 = (y3 + y4) / 2;
|
|||
|
const double x123 = (x12 + x23) / 2;
|
|||
|
const double y123 = (y12 + y23) / 2;
|
|||
|
const double x234 = (x23 + x34) / 2;
|
|||
|
const double y234 = (y23 + y34) / 2;
|
|||
|
const double x1234 = (x123 + x234) / 2;
|
|||
|
const double y1234 = (y123 + y234) / 2;
|
|||
|
|
|||
|
|
|||
|
// Try to approximate the full cubic curve by a single straight line
|
|||
|
//------------------
|
|||
|
const double dx = x4-x1;
|
|||
|
const double dy = y4-y1;
|
|||
|
|
|||
|
double d2 = fabs((x2 - x4) * dy - (y2 - y4) * dx);
|
|||
|
double d3 = fabs((x3 - x4) * dy - (y3 - y4) * dx);
|
|||
|
|
|||
|
switch ((static_cast<int>(d2 > curve_collinearity_epsilon) << 1) +
|
|||
|
static_cast<int>(d3 > curve_collinearity_epsilon))
|
|||
|
{
|
|||
|
case 0:
|
|||
|
{
|
|||
|
// All collinear OR p1==p4
|
|||
|
//----------------------
|
|||
|
double k = dx*dx + dy*dy;
|
|||
|
if (k < 0.000000001)
|
|||
|
{
|
|||
|
d2 = CalcSqDistance(x1, y1, x2, y2);
|
|||
|
d3 = CalcSqDistance(x4, y4, x3, y3);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
k = 1 / k;
|
|||
|
{
|
|||
|
const double da1 = x2 - x1;
|
|||
|
const double da2 = y2 - y1;
|
|||
|
d2 = k * (da1*dx + da2*dy);
|
|||
|
}
|
|||
|
{
|
|||
|
const double da1 = x3 - x1;
|
|||
|
const double da2 = y3 - y1;
|
|||
|
d3 = k * (da1*dx + da2*dy);
|
|||
|
}
|
|||
|
if (d2 > 0 && d2 < 1 && d3 > 0 && d3 < 1)
|
|||
|
{
|
|||
|
// Simple collinear case, 1---2---3---4
|
|||
|
// We can leave just two endpoints
|
|||
|
return;
|
|||
|
}
|
|||
|
if (d2 <= 0)
|
|||
|
{
|
|||
|
d2 = CalcSqDistance(x2, y2, x1, y1);
|
|||
|
}
|
|||
|
else if (d2 >= 1)
|
|||
|
{
|
|||
|
d2 = CalcSqDistance(x2, y2, x4, y4);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
d2 = CalcSqDistance(x2, y2, x1 + d2*dx, y1 + d2*dy);
|
|||
|
}
|
|||
|
|
|||
|
if (d3 <= 0)
|
|||
|
{
|
|||
|
d3 = CalcSqDistance(x3, y3, x1, y1);
|
|||
|
}
|
|||
|
else if (d3 >= 1)
|
|||
|
{
|
|||
|
d3 = CalcSqDistance(x3, y3, x4, y4);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
d3 = CalcSqDistance(x3, y3, x1 + d3*dx, y1 + d3*dy);
|
|||
|
}
|
|||
|
}
|
|||
|
if (d2 > d3)
|
|||
|
{
|
|||
|
if (d2 < m_distance_tolerance_square)
|
|||
|
{
|
|||
|
px.append(x2);
|
|||
|
py.append(y2);
|
|||
|
return;
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
if (d3 < m_distance_tolerance_square)
|
|||
|
{
|
|||
|
px.append(x3);
|
|||
|
py.append(y3);
|
|||
|
return;
|
|||
|
}
|
|||
|
}
|
|||
|
break;
|
|||
|
}
|
|||
|
case 1:
|
|||
|
{
|
|||
|
// p1,p2,p4 are collinear, p3 is significant
|
|||
|
//----------------------
|
|||
|
if (d3 * d3 <= m_distance_tolerance_square * (dx*dx + dy*dy))
|
|||
|
{
|
|||
|
if (m_angle_tolerance < curve_angle_tolerance_epsilon)
|
|||
|
{
|
|||
|
px.append(x23);
|
|||
|
py.append(y23);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
// Angle Condition
|
|||
|
//----------------------
|
|||
|
double da1 = fabs(atan2(y4 - y3, x4 - x3) - atan2(y3 - y2, x3 - x2));
|
|||
|
if (da1 >= M_PI)
|
|||
|
{
|
|||
|
da1 = 2*M_PI - da1;
|
|||
|
}
|
|||
|
|
|||
|
if (da1 < m_angle_tolerance)
|
|||
|
{
|
|||
|
px.append(x2);
|
|||
|
py.append(y2);
|
|||
|
|
|||
|
px.append(x3);
|
|||
|
py.append(y3);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
if (m_cusp_limit > 0.0 || m_cusp_limit < 0.0)
|
|||
|
{
|
|||
|
if (da1 > m_cusp_limit)
|
|||
|
{
|
|||
|
px.append(x3);
|
|||
|
py.append(y3);
|
|||
|
return;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
break;
|
|||
|
}
|
|||
|
case 2:
|
|||
|
{
|
|||
|
// p1,p3,p4 are collinear, p2 is significant
|
|||
|
//----------------------
|
|||
|
if (d2 * d2 <= m_distance_tolerance_square * (dx*dx + dy*dy))
|
|||
|
{
|
|||
|
if (m_angle_tolerance < curve_angle_tolerance_epsilon)
|
|||
|
{
|
|||
|
px.append(x23);
|
|||
|
py.append(y23);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
// Angle Condition
|
|||
|
//----------------------
|
|||
|
double da1 = fabs(atan2(y3 - y2, x3 - x2) - atan2(y2 - y1, x2 - x1));
|
|||
|
if (da1 >= M_PI)
|
|||
|
{
|
|||
|
da1 = 2*M_PI - da1;
|
|||
|
}
|
|||
|
|
|||
|
if (da1 < m_angle_tolerance)
|
|||
|
{
|
|||
|
px.append(x2);
|
|||
|
py.append(y2);
|
|||
|
|
|||
|
px.append(x3);
|
|||
|
py.append(y3);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
if (m_cusp_limit > 0.0 || m_cusp_limit < 0.0)
|
|||
|
{
|
|||
|
if (da1 > m_cusp_limit)
|
|||
|
{
|
|||
|
px.append(x2);
|
|||
|
py.append(y2);
|
|||
|
return;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
break;
|
|||
|
}
|
|||
|
case 3:
|
|||
|
{
|
|||
|
// Regular case
|
|||
|
//-----------------
|
|||
|
if ((d2 + d3)*(d2 + d3) <= m_distance_tolerance_square * (dx*dx + dy*dy))
|
|||
|
{
|
|||
|
// If the curvature doesn't exceed the distance_tolerance value
|
|||
|
// we tend to finish subdivisions.
|
|||
|
//----------------------
|
|||
|
if (m_angle_tolerance < curve_angle_tolerance_epsilon)
|
|||
|
{
|
|||
|
px.append(x23);
|
|||
|
py.append(y23);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
// Angle & Cusp Condition
|
|||
|
//----------------------
|
|||
|
const double k = atan2(y3 - y2, x3 - x2);
|
|||
|
double da1 = fabs(k - atan2(y2 - y1, x2 - x1));
|
|||
|
double da2 = fabs(atan2(y4 - y3, x4 - x3) - k);
|
|||
|
if (da1 >= M_PI)
|
|||
|
{
|
|||
|
da1 = 2*M_PI - da1;
|
|||
|
}
|
|||
|
if (da2 >= M_PI)
|
|||
|
{
|
|||
|
da2 = 2*M_PI - da2;
|
|||
|
}
|
|||
|
|
|||
|
if (da1 + da2 < m_angle_tolerance)
|
|||
|
{
|
|||
|
// Finally we can stop the recursion
|
|||
|
//----------------------
|
|||
|
|
|||
|
px.append(x23);
|
|||
|
py.append(y23);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
if (m_cusp_limit > 0.0 || m_cusp_limit < 0.0)
|
|||
|
{
|
|||
|
if (da1 > m_cusp_limit)
|
|||
|
{
|
|||
|
px.append(x2);
|
|||
|
py.append(y2);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
if (da2 > m_cusp_limit)
|
|||
|
{
|
|||
|
px.append(x3);
|
|||
|
py.append(y3);
|
|||
|
return;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
break;
|
|||
|
}
|
|||
|
default:
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
// Continue subdivision
|
|||
|
//----------------------
|
|||
|
PointBezier_r(x1, y1, x12, y12, x123, y123, x1234, y1234, static_cast<qint16>(level + 1), px, py);
|
|||
|
PointBezier_r(x1234, y1234, x234, y234, x34, y34, x4, y4, static_cast<qint16>(level + 1), px, py);
|
|||
|
}
|
|||
|
|
|||
|
//---------------------------------------------------------------------------------------------------------------------
|
|||
|
/**
|
|||
|
* @brief GetCubicBezierPoints return list with cubic bezier curve points.
|
|||
|
* @param p1 first spline point.
|
|||
|
* @param p2 first control point.
|
|||
|
* @param p3 second control point.
|
|||
|
* @param p4 last spline point.
|
|||
|
* @return list of points.
|
|||
|
*/
|
|||
|
QVector<QPointF> VAbstractCubicBezier::GetCubicBezierPoints(const QPointF &p1, const QPointF &p2, const QPointF &p3,
|
|||
|
const QPointF &p4)
|
|||
|
{
|
|||
|
QVector<QPointF> pvector;
|
|||
|
QVector<qreal> x;
|
|||
|
QVector<qreal> y;
|
|||
|
QVector<qreal>& wx = x;
|
|||
|
QVector<qreal>& wy = y;
|
|||
|
x.append ( p1.x () );
|
|||
|
y.append ( p1.y () );
|
|||
|
PointBezier_r ( p1.x (), p1.y (), p2.x (), p2.y (),
|
|||
|
p3.x (), p3.y (), p4.x (), p4.y (), 0, wx, wy );
|
|||
|
x.append ( p4.x () );
|
|||
|
y.append ( p4.y () );
|
|||
|
for ( qint32 i = 0; i < x.count(); ++i )
|
|||
|
{
|
|||
|
pvector.append( QPointF ( x.at(i), y.at(i)) );
|
|||
|
}
|
|||
|
return pvector;
|
|||
|
}
|
|||
|
|
|||
|
//---------------------------------------------------------------------------------------------------------------------
|
|||
|
/**
|
|||
|
* @brief LengthBezier return spline length using 4 spline point.
|
|||
|
* @param p1 first spline point
|
|||
|
* @param p2 first control point.
|
|||
|
* @param p3 second control point.
|
|||
|
* @param p4 last spline point.
|
|||
|
* @return length.
|
|||
|
*/
|
|||
|
qreal VAbstractCubicBezier::LengthBezier(const QPointF &p1, const QPointF &p2, const QPointF &p3, const QPointF &p4)
|
|||
|
{
|
|||
|
QPainterPath splinePath;
|
|||
|
QVector<QPointF> points = GetCubicBezierPoints(p1, p2, p3, p4);
|
|||
|
splinePath.moveTo(points.at(0));
|
|||
|
for (qint32 i = 1; i < points.count(); ++i)
|
|||
|
{
|
|||
|
splinePath.lineTo(points.at(i));
|
|||
|
}
|
|||
|
return splinePath.length();
|
|||
|
}
|