pentabug/firmware/synth.c

327 lines
5.4 KiB
C

#include <inttypes.h>
#include "synth.h"
#include "freq_table.h"
#include <avr/pgmspace.h>
#include <avr/interrupt.h>
// sample rate is 8M / (3 * 64)
enum {
channel_count = 3,
tick_length = 400,
row_length = 4,
pattern_length = 16
};
static const synth_instrument_t instruments[] = {
{ 1<<15, 100, 12 },
{ 0, 100, 12 },
{ 0, 200, 10 },
{ 1<<13, 0, 0, 2 },
{ 1<<13, 0, 5, 2 },
};
static const uint8_t wave_table[][2] = {
{ 0, WAVE_PULSE },
{ 3, WAVE_PULSE },
{ 7, WAVE_PULSE },
{ 12, WAVE_PULSE },
{ 256 - 4, 0xff },
{ 0, WAVE_PULSE },
{ 2, WAVE_PULSE },
{ 7, WAVE_PULSE },
{ 10, WAVE_PULSE },
{ 256 - 4, 0xff },
{ 0, WAVE_NOISE },
{ 0, WAVE_PULSE },
{ 0xff, 0xff },
{ 0, WAVE_PULSE },
{ 0xff, 0xff },
};
static const uint8_t patterns[][pattern_length][2] PROGMEM = {
{},
{
{ 33 - 12, 0 },
{ 0, 0 },
{ 0xff, 1 },
{ 0, 0 },
{ 33, 1 },
{ 0xff, 1 },
{ 33, 1 },
{ 0xff, 1 },
{ 33, 1 },
{ 0xff, 1 },
{ 33 - 12, 1 },
{ 0xff, 1 },
{ 33 - 12, 1 },
{ 0xff, 1 },
{ 33, 1 },
{ 0xff, 1 },
},
{
{ 28 - 12, 0 },
{ 0, 0 },
{ 0xff, 1 },
{ 0, 0 },
{ 28, 1 },
{ 0xff, 1 },
{ 28, 1 },
{ 0xff, 1 },
{ 28, 1 },
{ 0xff, 1 },
{ 28 - 12, 1 },
{ 0xff, 1 },
{ 28 - 12, 1 },
{ 0xff, 1 },
{ 28, 1 },
{ 0xff, 1 },
},
{
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 57, 3 },
},
{
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 57, 4 },
},
{
{ 60, 2 },
},
{
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 57, 2 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 55, 2 },
{ 0, 0 },
{ 57, 2 },
{ 0, 0 },
},
{
{ 55, 2 },
},
{
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 0, 0 },
{ 57, 2 },
},
{
{ 55-3, 2 },
},
};
static const uint8_t pattern_table[][channel_count] = {
{ 1, 0, 5 },
{ 1, 3, 0 },
{ 1, 0, 7 },
{ 1, 3, 6 },
{ 2, 0, 7 },
{ 2, 4, 8 },
{ 2, 0, 9 },
{ 2, 4, 0 },
};
enum {
pattern_table_length = sizeof(pattern_table) / sizeof(pattern_table[0])
};
static synth_channel_t channels[channel_count];
static int16_t sample;
static int8_t tick;
static int8_t row;
static int8_t seq;
/* PROTOTYPES */
uint16_t synth_mix(void);
static uint16_t timeslots[SYNTH_BUFSIZE];
static uint8_t timeslots_write; // current write head
static uint8_t timeslots_read; // current read head
void enqueue_timeslot(uint16_t synthval);
uint16_t dequeue_timeslot(void);
uint8_t timeslots_fill(void);
void synth_init(void)
{
sample = 0;
tick = 0;
row = 0;
seq = 0;
//prefill timeslot buffer
enqueue_timeslot(synth_mix());
enqueue_timeslot(synth_mix());
}
uint16_t synth_mix(void)
{
if(sample == 0) { // new tick
for(int i = 0; i < channel_count; i++) {
synth_channel_t* chan = &channels[i];
const synth_instrument_t* inst = &instruments[chan->inst_nr];
if(chan->level > inst->decay) chan->level -= inst->decay;
else chan->level = 0;
chan->pulse_width += inst->pulse_sweep;
chan->pos++;
if(wave_table[chan->pos][1] == 0xff) chan->pos += wave_table[chan->pos][0];
// enter new row
if(tick == 0) {
uint8_t pattern_nr = pattern_table[seq][i];
uint8_t note = pgm_read_byte(&patterns[pattern_nr][row][0]);
if(note) { // new note, maybe?
if(note == 0xff) {
chan->level = 0;
} else {
chan->level = 80; // TODO: less?
chan->note = note;
chan->inst_nr = pgm_read_byte(&patterns[pattern_nr][row][1]);
inst = &instruments[chan->inst_nr];
chan->pos = inst->wave_table_pos;
if(inst->pulse_width) chan->pulse_width = inst->pulse_width;
}
}
}
}
}
if(++sample == tick_length) {
sample = 0;
if(++tick == row_length) {
tick = 0;
if(++row == pattern_length) {
row = 0;
if(++seq == pattern_table_length) {
seq = 0;
}
}
}
}
uint16_t output = 0;
for(int i = 0; i < channel_count; i++) {
synth_channel_t* chan = &channels[i];
const synth_instrument_t* inst = &instruments[chan->inst_nr];
chan->phase += pgm_read_word(&freq_table[(uint8_t)(chan->note + wave_table[chan->pos][0])]);
uint8_t amp;
switch(wave_table[chan->pos][1]) {
case WAVE_PULSE:
amp = -(chan->phase < chan->pulse_width);
break;
case WAVE_SAW:
amp = (chan->phase >> 8);
break;
case WAVE_NOISE: // shitty noise
chan->phase = (chan->phase >> 1) ^ (-(chan->phase & 1) & 0xb400);
amp = (chan->phase >> 8);
break;
default:
amp = 0;
break;
}
output += ((amp & 0xff) * chan->level) >> 8;
}
return output;
}
/* fill all the timeslots */
void synth_poll(void) {
/* refill timeslots queue */
while (timeslots_fill() < (SYNTH_BUFSIZE-1))
enqueue_timeslot(synth_mix());
}
/* timeslot queue handling */
void enqueue_timeslot(uint16_t synthval) {
timeslots[timeslots_write] = synthval;
timeslots_write++;
if (timeslots_write >= SYNTH_BUFSIZE)
timeslots_write = 0;
}
uint16_t dequeue_timeslot() {
uint16_t t = timeslots[timeslots_read];
timeslots_read++;
if (timeslots_read >= SYNTH_BUFSIZE) timeslots_read =0;
return t;
}
uint8_t timeslots_fill() {
if (timeslots_write >= timeslots_read)
return timeslots_write - timeslots_read;
else
return SYNTH_BUFSIZE - (timeslots_read - timeslots_write);
}
ISR(TIMER0_COMPA_vect)
{
/* calculate next analog sample value in synth mixer:*/
OCR1B = dequeue_timeslot();
}