golang-image/font/sfnt/sfnt.go
Nigel Tao 993cf229e6 font/sfnt: fix proprietary fonts and cmap format 12.
Two recent commits ("proprietary fonts" and "cmap format 12") each
passed all of its own tests, but the combination wasn't tested until
both were submitted.

Change-Id: Ic4c2ae8deb1e4623ca5543672dc46d55bfce91a4
Reviewed-on: https://go-review.googlesource.com/36372
Reviewed-by: David Crawshaw <crawshaw@golang.org>
2017-02-07 21:42:49 +00:00

733 lines
21 KiB
Go

// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package sfnt implements a decoder for SFNT font file formats, including
// TrueType and OpenType.
package sfnt // import "golang.org/x/image/font/sfnt"
// This implementation was written primarily to the
// https://www.microsoft.com/en-us/Typography/OpenTypeSpecification.aspx
// specification. Additional documentation is at
// http://developer.apple.com/fonts/TTRefMan/
//
// The pyftinspect tool from https://github.com/fonttools/fonttools is useful
// for inspecting SFNT fonts.
//
// The ttfdump tool is also useful. For example:
// ttfdump -t cmap ../testdata/CFFTest.otf dump.txt
import (
"errors"
"io"
"golang.org/x/image/math/fixed"
"golang.org/x/text/encoding/charmap"
)
// These constants are not part of the specifications, but are limitations used
// by this implementation.
const (
// This value is arbitrary, but defends against parsing malicious font
// files causing excessive memory allocations. For reference, Adobe's
// SourceHanSansSC-Regular.otf has 65535 glyphs and:
// - its format-4 cmap table has 1581 segments.
// - its format-12 cmap table has 16498 segments.
//
// TODO: eliminate this constraint? If the cmap table is very large, load
// some or all of it lazily (at the time Font.GlyphIndex is called) instead
// of all of it eagerly (at the time Font.initialize is called), while
// keeping an upper bound on the memory used? This will make the code in
// cmap.go more complicated, considering that all of the Font methods are
// safe to call concurrently, as long as each call has a different *Buffer.
maxCmapSegments = 20000
maxGlyphDataLength = 64 * 1024
maxHintBits = 256
maxNumTables = 256
maxRealNumberStrLen = 64 // Maximum length in bytes of the "-123.456E-7" representation.
// (maxTableOffset + maxTableLength) will not overflow an int32.
maxTableLength = 1 << 29
maxTableOffset = 1 << 29
)
var (
// ErrNotFound indicates that the requested value was not found.
ErrNotFound = errors.New("sfnt: not found")
errInvalidBounds = errors.New("sfnt: invalid bounds")
errInvalidCFFTable = errors.New("sfnt: invalid CFF table")
errInvalidCmapTable = errors.New("sfnt: invalid cmap table")
errInvalidGlyphData = errors.New("sfnt: invalid glyph data")
errInvalidHeadTable = errors.New("sfnt: invalid head table")
errInvalidLocaTable = errors.New("sfnt: invalid loca table")
errInvalidLocationData = errors.New("sfnt: invalid location data")
errInvalidMaxpTable = errors.New("sfnt: invalid maxp table")
errInvalidNameTable = errors.New("sfnt: invalid name table")
errInvalidSourceData = errors.New("sfnt: invalid source data")
errInvalidTableOffset = errors.New("sfnt: invalid table offset")
errInvalidTableTagOrder = errors.New("sfnt: invalid table tag order")
errInvalidUCS2String = errors.New("sfnt: invalid UCS-2 string")
errInvalidVersion = errors.New("sfnt: invalid version")
errUnsupportedCFFVersion = errors.New("sfnt: unsupported CFF version")
errUnsupportedCmapEncodings = errors.New("sfnt: unsupported cmap encodings")
errUnsupportedCmapFormat = errors.New("sfnt: unsupported cmap format")
errUnsupportedCompoundGlyph = errors.New("sfnt: unsupported compound glyph")
errUnsupportedGlyphDataLength = errors.New("sfnt: unsupported glyph data length")
errUnsupportedRealNumberEncoding = errors.New("sfnt: unsupported real number encoding")
errUnsupportedNumberOfCmapSegments = errors.New("sfnt: unsupported number of cmap segments")
errUnsupportedNumberOfHints = errors.New("sfnt: unsupported number of hints")
errUnsupportedNumberOfTables = errors.New("sfnt: unsupported number of tables")
errUnsupportedPlatformEncoding = errors.New("sfnt: unsupported platform encoding")
errUnsupportedTableOffsetLength = errors.New("sfnt: unsupported table offset or length")
errUnsupportedType2Charstring = errors.New("sfnt: unsupported Type 2 Charstring")
)
// GlyphIndex is a glyph index in a Font.
type GlyphIndex uint16
// NameID identifies a name table entry.
//
// See the "Name IDs" section of
// https://www.microsoft.com/typography/otspec/name.htm
type NameID uint16
const (
NameIDCopyright NameID = 0
NameIDFamily = 1
NameIDSubfamily = 2
NameIDUniqueIdentifier = 3
NameIDFull = 4
NameIDVersion = 5
NameIDPostScript = 6
NameIDTrademark = 7
NameIDManufacturer = 8
NameIDDesigner = 9
NameIDDescription = 10
NameIDVendorURL = 11
NameIDDesignerURL = 12
NameIDLicense = 13
NameIDLicenseURL = 14
NameIDTypographicFamily = 16
NameIDTypographicSubfamily = 17
NameIDCompatibleFull = 18
NameIDSampleText = 19
NameIDPostScriptCID = 20
NameIDWWSFamily = 21
NameIDWWSSubfamily = 22
NameIDLightBackgroundPalette = 23
NameIDDarkBackgroundPalette = 24
NameIDVariationsPostScriptPrefix = 25
)
// Units are an integral number of abstract, scalable "font units". The em
// square is typically 1000 or 2048 "font units". This would map to a certain
// number (e.g. 30 pixels) of physical pixels, depending on things like the
// display resolution (DPI) and font size (e.g. a 12 point font).
type Units int32
func u16(b []byte) uint16 {
_ = b[1] // Bounds check hint to compiler.
return uint16(b[0])<<8 | uint16(b[1])<<0
}
func u32(b []byte) uint32 {
_ = b[3] // Bounds check hint to compiler.
return uint32(b[0])<<24 | uint32(b[1])<<16 | uint32(b[2])<<8 | uint32(b[3])<<0
}
// source is a source of byte data. Conceptually, it is like an io.ReaderAt,
// except that a common source of SFNT font data is in-memory instead of
// on-disk: a []byte containing the entire data, either as a global variable
// (e.g. "goregular.TTF") or the result of an ioutil.ReadFile call. In such
// cases, as an optimization, we skip the io.Reader / io.ReaderAt model of
// copying from the source to a caller-supplied buffer, and instead provide
// direct access to the underlying []byte data.
type source struct {
b []byte
r io.ReaderAt
// TODO: add a caching layer, if we're using the io.ReaderAt? Note that
// this might make a source no longer safe to use concurrently.
}
// valid returns whether exactly one of s.b and s.r is nil.
func (s *source) valid() bool {
return (s.b == nil) != (s.r == nil)
}
// viewBufferWritable returns whether the []byte returned by source.view can be
// written to by the caller, including by passing it to the same method
// (source.view) on other receivers (i.e. different sources).
//
// In other words, it returns whether the source's underlying data is an
// io.ReaderAt, not a []byte.
func (s *source) viewBufferWritable() bool {
return s.b == nil
}
// view returns the length bytes at the given offset. buf is an optional
// scratch buffer to reduce allocations when calling view multiple times. A nil
// buf is valid. The []byte returned may be a sub-slice of buf[:cap(buf)], or
// it may be an unrelated slice. In any case, the caller should not modify the
// contents of the returned []byte, other than passing that []byte back to this
// method on the same source s.
func (s *source) view(buf []byte, offset, length int) ([]byte, error) {
if 0 > offset || offset > offset+length {
return nil, errInvalidBounds
}
// Try reading from the []byte.
if s.b != nil {
if offset+length > len(s.b) {
return nil, errInvalidBounds
}
return s.b[offset : offset+length], nil
}
// Read from the io.ReaderAt.
if length <= cap(buf) {
buf = buf[:length]
} else {
// Round length up to the nearest KiB. The slack can lead to fewer
// allocations if the buffer is re-used for multiple source.view calls.
n := length
n += 1023
n &^= 1023
buf = make([]byte, length, n)
}
if n, err := s.r.ReadAt(buf, int64(offset)); n != length {
return nil, err
}
return buf, nil
}
// u16 returns the uint16 in the table t at the relative offset i.
//
// buf is an optional scratch buffer as per the source.view method.
func (s *source) u16(buf []byte, t table, i int) (uint16, error) {
if i < 0 || uint(t.length) < uint(i+2) {
return 0, errInvalidBounds
}
buf, err := s.view(buf, int(t.offset)+i, 2)
if err != nil {
return 0, err
}
return u16(buf), nil
}
// table is a section of the font data.
type table struct {
offset, length uint32
}
// Parse parses an SFNT font from a []byte data source.
func Parse(src []byte) (*Font, error) {
f := &Font{src: source{b: src}}
if err := f.initialize(); err != nil {
return nil, err
}
return f, nil
}
// ParseReaderAt parses an SFNT font from an io.ReaderAt data source.
func ParseReaderAt(src io.ReaderAt) (*Font, error) {
f := &Font{src: source{r: src}}
if err := f.initialize(); err != nil {
return nil, err
}
return f, nil
}
// Font is an SFNT font.
//
// Many of its methods take a *Buffer argument, as re-using buffers can reduce
// the total memory allocation of repeated Font method calls, such as measuring
// and rasterizing every unique glyph in a string of text. If efficiency is not
// a concern, passing a nil *Buffer is valid, and implies using a temporary
// buffer for a single call.
//
// It is valid to re-use a *Buffer with multiple Font method calls, even with
// different *Font receivers, as long as they are not concurrent calls.
//
// All of the Font methods are safe to call concurrently, as long as each call
// has a different *Buffer (or nil).
//
// The Font methods that don't take a *Buffer argument are always safe to call
// concurrently.
type Font struct {
src source
// https://www.microsoft.com/typography/otspec/otff.htm#otttables
// "Required Tables".
cmap table
head table
hhea table
hmtx table
maxp table
name table
os2 table
post table
// https://www.microsoft.com/typography/otspec/otff.htm#otttables
// "Tables Related to TrueType Outlines".
//
// This implementation does not support hinting, so it does not read the
// cvt, fpgm gasp or prep tables.
glyf table
loca table
// https://www.microsoft.com/typography/otspec/otff.htm#otttables
// "Tables Related to PostScript Outlines".
//
// TODO: cff2, vorg?
cff table
// https://www.microsoft.com/typography/otspec/otff.htm#otttables
// "Advanced Typographic Tables".
//
// TODO: base, gdef, gpos, gsub, jstf, math?
// https://www.microsoft.com/typography/otspec/otff.htm#otttables
// "Other OpenType Tables".
//
// TODO: hdmx, kern, vmtx? Others?
cached struct {
glyphIndex func(f *Font, b *Buffer, r rune) (GlyphIndex, error)
indexToLocFormat bool // false means short, true means long.
isPostScript bool
unitsPerEm Units
// The glyph data for the glyph index i is in
// src[locations[i+0]:locations[i+1]].
locations []uint32
}
}
// NumGlyphs returns the number of glyphs in f.
func (f *Font) NumGlyphs() int { return len(f.cached.locations) - 1 }
// UnitsPerEm returns the number of units per em for f.
func (f *Font) UnitsPerEm() Units { return f.cached.unitsPerEm }
func (f *Font) initialize() error {
if !f.src.valid() {
return errInvalidSourceData
}
buf, err := f.initializeTables(nil)
if err != nil {
return err
}
buf, err = f.parseHead(buf)
if err != nil {
return err
}
buf, err = f.parseMaxp(buf)
if err != nil {
return err
}
buf, err = f.parseCmap(buf)
if err != nil {
return err
}
return nil
}
func (f *Font) initializeTables(buf []byte) ([]byte, error) {
// https://www.microsoft.com/typography/otspec/otff.htm "Organization of an
// OpenType Font" says that "The OpenType font starts with the Offset
// Table", which is 12 bytes.
buf, err := f.src.view(buf, 0, 12)
if err != nil {
return nil, err
}
switch u32(buf) {
default:
return nil, errInvalidVersion
case 0x00010000:
// No-op.
case 0x4f54544f: // "OTTO".
f.cached.isPostScript = true
}
numTables := int(u16(buf[4:]))
if numTables > maxNumTables {
return nil, errUnsupportedNumberOfTables
}
// "The Offset Table is followed immediately by the Table Record entries...
// sorted in ascending order by tag", 16 bytes each.
buf, err = f.src.view(buf, 12, 16*numTables)
if err != nil {
return nil, err
}
for b, first, prevTag := buf, true, uint32(0); len(b) > 0; b = b[16:] {
tag := u32(b)
if first {
first = false
} else if tag <= prevTag {
return nil, errInvalidTableTagOrder
}
prevTag = tag
o, n := u32(b[8:12]), u32(b[12:16])
if o > maxTableOffset || n > maxTableLength {
return nil, errUnsupportedTableOffsetLength
}
// We ignore the checksums, but "all tables must begin on four byte
// boundries [sic]".
if o&3 != 0 {
return nil, errInvalidTableOffset
}
// Match the 4-byte tag as a uint32. For example, "OS/2" is 0x4f532f32.
switch tag {
case 0x43464620:
f.cff = table{o, n}
case 0x4f532f32:
f.os2 = table{o, n}
case 0x636d6170:
f.cmap = table{o, n}
case 0x676c7966:
f.glyf = table{o, n}
case 0x68656164:
f.head = table{o, n}
case 0x68686561:
f.hhea = table{o, n}
case 0x686d7478:
f.hmtx = table{o, n}
case 0x6c6f6361:
f.loca = table{o, n}
case 0x6d617870:
f.maxp = table{o, n}
case 0x6e616d65:
f.name = table{o, n}
case 0x706f7374:
f.post = table{o, n}
}
}
return buf, nil
}
func (f *Font) parseCmap(buf []byte) ([]byte, error) {
// https://www.microsoft.com/typography/OTSPEC/cmap.htm
const headerSize, entrySize = 4, 8
if f.cmap.length < headerSize {
return nil, errInvalidCmapTable
}
u, err := f.src.u16(buf, f.cmap, 2)
if err != nil {
return nil, err
}
numSubtables := int(u)
if f.cmap.length < headerSize+entrySize*uint32(numSubtables) {
return nil, errInvalidCmapTable
}
var (
bestWidth int
bestOffset uint32
bestLength uint32
bestFormat uint16
)
// Scan all of the subtables, picking the widest supported one. See the
// platformEncodingWidth comment for more discussion of width.
for i := 0; i < numSubtables; i++ {
buf, err = f.src.view(buf, int(f.cmap.offset)+headerSize+entrySize*i, entrySize)
if err != nil {
return nil, err
}
pid := u16(buf)
psid := u16(buf[2:])
width := platformEncodingWidth(pid, psid)
if width <= bestWidth {
continue
}
offset := u32(buf[4:])
if offset > f.cmap.length-4 {
return nil, errInvalidCmapTable
}
buf, err = f.src.view(buf, int(f.cmap.offset+offset), 4)
if err != nil {
return nil, err
}
format := u16(buf)
if !supportedCmapFormat(format, pid, psid) {
continue
}
length := uint32(u16(buf[2:]))
bestWidth = width
bestOffset = offset
bestLength = length
bestFormat = format
}
if bestWidth == 0 {
return nil, errUnsupportedCmapEncodings
}
return f.makeCachedGlyphIndex(buf, bestOffset, bestLength, bestFormat)
}
func (f *Font) parseHead(buf []byte) ([]byte, error) {
// https://www.microsoft.com/typography/otspec/head.htm
if f.head.length != 54 {
return nil, errInvalidHeadTable
}
u, err := f.src.u16(buf, f.head, 18)
if err != nil {
return nil, err
}
if u == 0 {
return nil, errInvalidHeadTable
}
f.cached.unitsPerEm = Units(u)
u, err = f.src.u16(buf, f.head, 50)
if err != nil {
return nil, err
}
f.cached.indexToLocFormat = u != 0
return buf, nil
}
func (f *Font) parseMaxp(buf []byte) ([]byte, error) {
// https://www.microsoft.com/typography/otspec/maxp.htm
if f.cached.isPostScript {
if f.maxp.length != 6 {
return nil, errInvalidMaxpTable
}
} else {
if f.maxp.length != 32 {
return nil, errInvalidMaxpTable
}
}
u, err := f.src.u16(buf, f.maxp, 4)
if err != nil {
return nil, err
}
numGlyphs := int(u)
if f.cached.isPostScript {
p := cffParser{
src: &f.src,
base: int(f.cff.offset),
offset: int(f.cff.offset),
end: int(f.cff.offset + f.cff.length),
}
f.cached.locations, err = p.parse()
if err != nil {
return nil, err
}
} else {
f.cached.locations, err = parseLoca(
&f.src, f.loca, f.glyf.offset, f.cached.indexToLocFormat, numGlyphs)
if err != nil {
return nil, err
}
}
if len(f.cached.locations) != numGlyphs+1 {
return nil, errInvalidLocationData
}
return buf, nil
}
// TODO: API for looking up glyph variants?? For example, some fonts may
// provide both slashed and dotted zero glyphs ('0'), or regular and 'old
// style' numerals, and users can direct software to choose a variant.
// GlyphIndex returns the glyph index for the given rune.
//
// It returns (0, nil) if there is no glyph for r.
// https://www.microsoft.com/typography/OTSPEC/cmap.htm says that "Character
// codes that do not correspond to any glyph in the font should be mapped to
// glyph index 0. The glyph at this location must be a special glyph
// representing a missing character, commonly known as .notdef."
func (f *Font) GlyphIndex(b *Buffer, r rune) (GlyphIndex, error) {
return f.cached.glyphIndex(f, b, r)
}
func (f *Font) viewGlyphData(b *Buffer, x GlyphIndex) ([]byte, error) {
xx := int(x)
if f.NumGlyphs() <= xx {
return nil, ErrNotFound
}
i := f.cached.locations[xx+0]
j := f.cached.locations[xx+1]
if j-i > maxGlyphDataLength {
return nil, errUnsupportedGlyphDataLength
}
return b.view(&f.src, int(i), int(j-i))
}
// LoadGlyphOptions are the options to the Font.LoadGlyph method.
type LoadGlyphOptions struct {
// TODO: scale / transform / hinting.
}
// LoadGlyph returns the vector segments for the x'th glyph.
//
// If b is non-nil, the segments become invalid to use once b is re-used.
//
// It returns ErrNotFound if the glyph index is out of range.
func (f *Font) LoadGlyph(b *Buffer, x GlyphIndex, opts *LoadGlyphOptions) ([]Segment, error) {
if b == nil {
b = &Buffer{}
}
buf, err := f.viewGlyphData(b, x)
if err != nil {
return nil, err
}
b.segments = b.segments[:0]
if f.cached.isPostScript {
b.psi.type2Charstrings.initialize(b.segments)
if err := b.psi.run(psContextType2Charstring, buf); err != nil {
return nil, err
}
b.segments = b.psi.type2Charstrings.segments
} else {
segments, err := appendGlyfSegments(b.segments, buf)
if err != nil {
return nil, err
}
b.segments = segments
}
// TODO: look at opts to scale / transform / hint the Buffer.segments.
return b.segments, nil
}
// Name returns the name value keyed by the given NameID.
//
// It returns ErrNotFound if there is no value for that key.
func (f *Font) Name(b *Buffer, id NameID) (string, error) {
if b == nil {
b = &Buffer{}
}
const headerSize, entrySize = 6, 12
if f.name.length < headerSize {
return "", errInvalidNameTable
}
buf, err := b.view(&f.src, int(f.name.offset), headerSize)
if err != nil {
return "", err
}
numSubtables := u16(buf[2:])
if f.name.length < headerSize+entrySize*uint32(numSubtables) {
return "", errInvalidNameTable
}
stringOffset := u16(buf[4:])
seen := false
for i, n := 0, int(numSubtables); i < n; i++ {
buf, err := b.view(&f.src, int(f.name.offset)+headerSize+entrySize*i, entrySize)
if err != nil {
return "", err
}
if u16(buf[6:]) != uint16(id) {
continue
}
seen = true
var stringify func([]byte) (string, error)
switch u32(buf) {
default:
continue
case pidMacintosh<<16 | psidMacintoshRoman:
stringify = stringifyMacintosh
case pidWindows<<16 | psidWindowsUCS2:
stringify = stringifyUCS2
}
nameLength := u16(buf[8:])
nameOffset := u16(buf[10:])
buf, err = b.view(&f.src, int(f.name.offset)+int(nameOffset)+int(stringOffset), int(nameLength))
if err != nil {
return "", err
}
return stringify(buf)
}
if seen {
return "", errUnsupportedPlatformEncoding
}
return "", ErrNotFound
}
func stringifyMacintosh(b []byte) (string, error) {
for _, c := range b {
if c >= 0x80 {
// b contains some non-ASCII bytes.
s, _ := charmap.Macintosh.NewDecoder().Bytes(b)
return string(s), nil
}
}
// b contains only ASCII bytes.
return string(b), nil
}
func stringifyUCS2(b []byte) (string, error) {
if len(b)&1 != 0 {
return "", errInvalidUCS2String
}
r := make([]rune, len(b)/2)
for i := range r {
r[i] = rune(u16(b))
b = b[2:]
}
return string(r), nil
}
// Buffer holds re-usable buffers that can reduce the total memory allocation
// of repeated Font method calls.
//
// See the Font type's documentation comment for more details.
type Buffer struct {
// buf is a byte buffer for when a Font's source is an io.ReaderAt.
buf []byte
// segments holds glyph vector path segments.
segments []Segment
// psi is a PostScript interpreter for when the Font is an OpenType/CFF
// font.
psi psInterpreter
}
func (b *Buffer) view(src *source, offset, length int) ([]byte, error) {
buf, err := src.view(b.buf, offset, length)
if err != nil {
return nil, err
}
// Only update b.buf if it is safe to re-use buf.
if src.viewBufferWritable() {
b.buf = buf
}
return buf, nil
}
// Segment is a segment of a vector path.
type Segment struct {
Op SegmentOp
Args [6]fixed.Int26_6
}
// SegmentOp is a vector path segment's operator.
type SegmentOp uint32
const (
SegmentOpMoveTo SegmentOp = iota
SegmentOpLineTo
SegmentOpQuadTo
SegmentOpCubeTo
)