golang-image/draw/scale_test.go
Nigel Tao 70cb8023e6 draw: make op a mandatory argument, not optional.
Change-Id: Ic08ce587cf458444b098b752f0fa7ab16d43c914
Reviewed-on: https://go-review.googlesource.com/9468
Reviewed-by: Rob Pike <r@golang.org>
2015-05-04 06:41:52 +00:00

720 lines
23 KiB
Go

// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package draw
import (
"bytes"
"flag"
"fmt"
"image"
"image/color"
"image/png"
"math/rand"
"os"
"reflect"
"testing"
"golang.org/x/image/math/f64"
_ "image/jpeg"
)
var genGoldenFiles = flag.Bool("gen_golden_files", false, "whether to generate the TestXxx golden files.")
var transformMatrix = func(scale, tx, ty float64) *f64.Aff3 {
const cos30, sin30 = 0.866025404, 0.5
return &f64.Aff3{
+scale * cos30, -scale * sin30, tx,
+scale * sin30, +scale * cos30, ty,
}
}
func encode(filename string, m image.Image) error {
f, err := os.Create(filename)
if err != nil {
return fmt.Errorf("Create: %v", err)
}
defer f.Close()
if err := png.Encode(f, m); err != nil {
return fmt.Errorf("Encode: %v", err)
}
return nil
}
// testInterp tests that interpolating the source image gives the exact
// destination image. This is to ensure that any refactoring or optimization of
// the interpolation code doesn't change the behavior. Changing the actual
// algorithm or kernel used by any particular quality setting will obviously
// change the resultant pixels. In such a case, use the gen_golden_files flag
// to regenerate the golden files.
func testInterp(t *testing.T, w int, h int, direction, prefix, suffix string) {
f, err := os.Open("../testdata/" + prefix + suffix)
if err != nil {
t.Fatalf("Open: %v", err)
}
defer f.Close()
src, _, err := image.Decode(f)
if err != nil {
t.Fatalf("Decode: %v", err)
}
op, scale := Src, 3.75
if prefix == "tux" {
op, scale = Over, 0.125
}
green := image.NewUniform(color.RGBA{0x00, 0x22, 0x11, 0xff})
testCases := map[string]Interpolator{
"nn": NearestNeighbor,
"ab": ApproxBiLinear,
"bl": BiLinear,
"cr": CatmullRom,
}
for name, q := range testCases {
goldenFilename := fmt.Sprintf("../testdata/%s-%s-%s.png", prefix, direction, name)
got := image.NewRGBA(image.Rect(0, 0, w, h))
Copy(got, image.Point{}, green, got.Bounds(), Src, nil)
if direction == "rotate" {
q.Transform(got, transformMatrix(scale, 40, 10), src, src.Bounds(), op, nil)
} else {
q.Scale(got, got.Bounds(), src, src.Bounds(), op, nil)
}
if *genGoldenFiles {
if err := encode(goldenFilename, got); err != nil {
t.Error(err)
}
continue
}
g, err := os.Open(goldenFilename)
if err != nil {
t.Errorf("Open: %v", err)
continue
}
defer g.Close()
wantRaw, err := png.Decode(g)
if err != nil {
t.Errorf("Decode: %v", err)
continue
}
// convert wantRaw to RGBA.
want, ok := wantRaw.(*image.RGBA)
if !ok {
b := wantRaw.Bounds()
want = image.NewRGBA(b)
Draw(want, b, wantRaw, b.Min, Src)
}
if !reflect.DeepEqual(got, want) {
t.Errorf("%s: actual image differs from golden image", goldenFilename)
continue
}
}
}
func TestScaleDown(t *testing.T) { testInterp(t, 100, 100, "down", "go-turns-two", "-280x360.jpeg") }
func TestScaleUp(t *testing.T) { testInterp(t, 75, 100, "up", "go-turns-two", "-14x18.png") }
func TestTformSrc(t *testing.T) { testInterp(t, 100, 100, "rotate", "go-turns-two", "-14x18.png") }
func TestTformOver(t *testing.T) { testInterp(t, 100, 100, "rotate", "tux", ".png") }
func TestOps(t *testing.T) {
blue := image.NewUniform(color.RGBA{0x00, 0x00, 0xff, 0xff})
testCases := map[Op]color.RGBA{
Over: color.RGBA{0x7f, 0x00, 0x80, 0xff},
Src: color.RGBA{0x7f, 0x00, 0x00, 0x7f},
}
for op, want := range testCases {
dst := image.NewRGBA(image.Rect(0, 0, 2, 2))
Copy(dst, image.Point{}, blue, dst.Bounds(), Src, nil)
src := image.NewRGBA(image.Rect(0, 0, 1, 1))
src.SetRGBA(0, 0, color.RGBA{0x7f, 0x00, 0x00, 0x7f})
NearestNeighbor.Scale(dst, dst.Bounds(), src, src.Bounds(), op, nil)
if got := dst.RGBAAt(0, 0); got != want {
t.Errorf("op=%v: got %v, want %v", op, got, want)
}
}
}
// TestNegativeWeights tests that scaling by a kernel that produces negative
// weights, such as the Catmull-Rom kernel, doesn't produce an invalid color
// according to Go's alpha-premultiplied model.
func TestNegativeWeights(t *testing.T) {
check := func(m *image.RGBA) error {
b := m.Bounds()
for y := b.Min.Y; y < b.Max.Y; y++ {
for x := b.Min.X; x < b.Max.X; x++ {
if c := m.RGBAAt(x, y); c.R > c.A || c.G > c.A || c.B > c.A {
return fmt.Errorf("invalid color.RGBA at (%d, %d): %v", x, y, c)
}
}
}
return nil
}
src := image.NewRGBA(image.Rect(0, 0, 16, 16))
for y := 0; y < 16; y++ {
for x := 0; x < 16; x++ {
a := y * 0x11
src.Set(x, y, color.RGBA{
R: uint8(x * 0x11 * a / 0xff),
A: uint8(a),
})
}
}
if err := check(src); err != nil {
t.Fatalf("src image: %v", err)
}
dst := image.NewRGBA(image.Rect(0, 0, 32, 32))
CatmullRom.Scale(dst, dst.Bounds(), src, src.Bounds(), Over, nil)
if err := check(dst); err != nil {
t.Fatalf("dst image: %v", err)
}
}
func fillPix(r *rand.Rand, pixs ...[]byte) {
for _, pix := range pixs {
for i := range pix {
pix[i] = uint8(r.Intn(256))
}
}
}
func TestInterpClipCommute(t *testing.T) {
src := image.NewNRGBA(image.Rect(0, 0, 20, 20))
fillPix(rand.New(rand.NewSource(0)), src.Pix)
outer := image.Rect(1, 1, 8, 5)
inner := image.Rect(2, 3, 6, 5)
qs := []Interpolator{
NearestNeighbor,
ApproxBiLinear,
CatmullRom,
}
for _, transform := range []bool{false, true} {
for _, q := range qs {
dst0 := image.NewRGBA(image.Rect(1, 1, 10, 10))
dst1 := image.NewRGBA(image.Rect(1, 1, 10, 10))
for i := range dst0.Pix {
dst0.Pix[i] = uint8(i / 4)
dst1.Pix[i] = uint8(i / 4)
}
var interp func(dst *image.RGBA)
if transform {
interp = func(dst *image.RGBA) {
q.Transform(dst, transformMatrix(3.75, 2, 1), src, src.Bounds(), Over, nil)
}
} else {
interp = func(dst *image.RGBA) {
q.Scale(dst, outer, src, src.Bounds(), Over, nil)
}
}
// Interpolate then clip.
interp(dst0)
dst0 = dst0.SubImage(inner).(*image.RGBA)
// Clip then interpolate.
dst1 = dst1.SubImage(inner).(*image.RGBA)
interp(dst1)
loop:
for y := inner.Min.Y; y < inner.Max.Y; y++ {
for x := inner.Min.X; x < inner.Max.X; x++ {
if c0, c1 := dst0.RGBAAt(x, y), dst1.RGBAAt(x, y); c0 != c1 {
t.Errorf("q=%T: at (%d, %d): c0=%v, c1=%v", q, x, y, c0, c1)
break loop
}
}
}
}
}
}
// translatedImage is an image m translated by t.
type translatedImage struct {
m image.Image
t image.Point
}
func (t *translatedImage) At(x, y int) color.Color { return t.m.At(x-t.t.X, y-t.t.Y) }
func (t *translatedImage) Bounds() image.Rectangle { return t.m.Bounds().Add(t.t) }
func (t *translatedImage) ColorModel() color.Model { return t.m.ColorModel() }
// TestSrcTranslationInvariance tests that Scale and Transform are invariant
// under src translations. Specifically, when some source pixels are not in the
// bottom-right quadrant of src coordinate space, we consistently round down,
// not round towards zero.
func TestSrcTranslationInvariance(t *testing.T) {
f, err := os.Open("../testdata/testpattern.png")
if err != nil {
t.Fatalf("Open: %v", err)
}
defer f.Close()
src, _, err := image.Decode(f)
if err != nil {
t.Fatalf("Decode: %v", err)
}
sr := image.Rect(2, 3, 16, 12)
if !sr.In(src.Bounds()) {
t.Fatalf("src bounds too small: got %v", src.Bounds())
}
qs := []Interpolator{
NearestNeighbor,
ApproxBiLinear,
CatmullRom,
}
deltas := []image.Point{
{+0, +0},
{+0, +5},
{+0, -5},
{+5, +0},
{-5, +0},
{+8, +8},
{+8, -8},
{-8, +8},
{-8, -8},
}
m00 := transformMatrix(3.75, 0, 0)
for _, transform := range []bool{false, true} {
for _, q := range qs {
want := image.NewRGBA(image.Rect(0, 0, 20, 20))
if transform {
q.Transform(want, m00, src, sr, Over, nil)
} else {
q.Scale(want, want.Bounds(), src, sr, Over, nil)
}
for _, delta := range deltas {
tsrc := &translatedImage{src, delta}
got := image.NewRGBA(image.Rect(0, 0, 20, 20))
if transform {
m := matMul(m00, &f64.Aff3{
1, 0, -float64(delta.X),
0, 1, -float64(delta.Y),
})
q.Transform(got, &m, tsrc, sr.Add(delta), Over, nil)
} else {
q.Scale(got, got.Bounds(), tsrc, sr.Add(delta), Over, nil)
}
if !bytes.Equal(got.Pix, want.Pix) {
t.Errorf("pix differ for delta=%v, transform=%t, q=%T", delta, transform, q)
}
}
}
}
}
func TestSrcMask(t *testing.T) {
srcMask := image.NewRGBA(image.Rect(0, 0, 23, 1))
srcMask.SetRGBA(19, 0, color.RGBA{0x00, 0x00, 0x00, 0x7f})
srcMask.SetRGBA(20, 0, color.RGBA{0x00, 0x00, 0x00, 0xff})
srcMask.SetRGBA(21, 0, color.RGBA{0x00, 0x00, 0x00, 0x3f})
srcMask.SetRGBA(22, 0, color.RGBA{0x00, 0x00, 0x00, 0x00})
red := image.NewUniform(color.RGBA{0xff, 0x00, 0x00, 0xff})
blue := image.NewUniform(color.RGBA{0x00, 0x00, 0xff, 0xff})
dst := image.NewRGBA(image.Rect(0, 0, 6, 1))
Copy(dst, image.Point{}, blue, dst.Bounds(), Src, nil)
NearestNeighbor.Scale(dst, dst.Bounds(), red, image.Rect(0, 0, 3, 1), Over, &Options{
SrcMask: srcMask,
SrcMaskP: image.Point{20, 0},
})
got := [6]color.RGBA{
dst.RGBAAt(0, 0),
dst.RGBAAt(1, 0),
dst.RGBAAt(2, 0),
dst.RGBAAt(3, 0),
dst.RGBAAt(4, 0),
dst.RGBAAt(5, 0),
}
want := [6]color.RGBA{
{0xff, 0x00, 0x00, 0xff},
{0xff, 0x00, 0x00, 0xff},
{0x3f, 0x00, 0xc0, 0xff},
{0x3f, 0x00, 0xc0, 0xff},
{0x00, 0x00, 0xff, 0xff},
{0x00, 0x00, 0xff, 0xff},
}
if got != want {
t.Errorf("\ngot %v\nwant %v", got, want)
}
}
func TestDstMask(t *testing.T) {
dstMask := image.NewRGBA(image.Rect(0, 0, 23, 1))
dstMask.SetRGBA(19, 0, color.RGBA{0x00, 0x00, 0x00, 0x7f})
dstMask.SetRGBA(20, 0, color.RGBA{0x00, 0x00, 0x00, 0xff})
dstMask.SetRGBA(21, 0, color.RGBA{0x00, 0x00, 0x00, 0x3f})
dstMask.SetRGBA(22, 0, color.RGBA{0x00, 0x00, 0x00, 0x00})
red := image.NewRGBA(image.Rect(0, 0, 1, 1))
red.SetRGBA(0, 0, color.RGBA{0xff, 0x00, 0x00, 0xff})
blue := image.NewUniform(color.RGBA{0x00, 0x00, 0xff, 0xff})
qs := []Interpolator{
NearestNeighbor,
ApproxBiLinear,
CatmullRom,
}
for _, q := range qs {
dst := image.NewRGBA(image.Rect(0, 0, 3, 1))
Copy(dst, image.Point{}, blue, dst.Bounds(), Src, nil)
q.Scale(dst, dst.Bounds(), red, red.Bounds(), Over, &Options{
DstMask: dstMask,
DstMaskP: image.Point{20, 0},
})
got := [3]color.RGBA{
dst.RGBAAt(0, 0),
dst.RGBAAt(1, 0),
dst.RGBAAt(2, 0),
}
want := [3]color.RGBA{
{0xff, 0x00, 0x00, 0xff},
{0x3f, 0x00, 0xc0, 0xff},
{0x00, 0x00, 0xff, 0xff},
}
if got != want {
t.Errorf("q=%T:\ngot %v\nwant %v", q, got, want)
}
}
}
func TestRectDstMask(t *testing.T) {
f, err := os.Open("../testdata/testpattern.png")
if err != nil {
t.Fatalf("Open: %v", err)
}
defer f.Close()
src, _, err := image.Decode(f)
if err != nil {
t.Fatalf("Decode: %v", err)
}
m00 := transformMatrix(1, 0, 0)
bounds := image.Rect(0, 0, 50, 50)
dstOutside := image.NewRGBA(bounds)
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
for x := bounds.Min.X; x < bounds.Max.X; x++ {
dstOutside.SetRGBA(x, y, color.RGBA{uint8(5 * x), uint8(5 * y), 0x00, 0xff})
}
}
mk := func(q Transformer, dstMask image.Image, dstMaskP image.Point) *image.RGBA {
m := image.NewRGBA(bounds)
Copy(m, bounds.Min, dstOutside, bounds, Src, nil)
q.Transform(m, m00, src, src.Bounds(), Over, &Options{
DstMask: dstMask,
DstMaskP: dstMaskP,
})
return m
}
qs := []Interpolator{
NearestNeighbor,
ApproxBiLinear,
CatmullRom,
}
dstMaskPs := []image.Point{
{0, 0},
{5, 7},
{-3, 0},
}
rect := image.Rect(10, 10, 30, 40)
for _, q := range qs {
for _, dstMaskP := range dstMaskPs {
dstInside := mk(q, nil, image.Point{})
for _, wrap := range []bool{false, true} {
// TODO: replace "rectImage(rect)" with "rect" once Go 1.5 is
// released, where an image.Rectangle implements image.Image.
dstMask := image.Image(rectImage(rect))
if wrap {
dstMask = srcWrapper{dstMask}
}
dst := mk(q, dstMask, dstMaskP)
nError := 0
loop:
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
for x := bounds.Min.X; x < bounds.Max.X; x++ {
which := dstOutside
if (image.Point{x, y}).Add(dstMaskP).In(rect) {
which = dstInside
}
if got, want := dst.RGBAAt(x, y), which.RGBAAt(x, y); got != want {
if nError == 10 {
t.Errorf("q=%T dmp=%v wrap=%v: ...and more errors", q, dstMaskP, wrap)
break loop
}
nError++
t.Errorf("q=%T dmp=%v wrap=%v: x=%3d y=%3d: got %v, want %v",
q, dstMaskP, wrap, x, y, got, want)
}
}
}
}
}
}
}
// TODO: delete this wrapper type once Go 1.5 is released, where an
// image.Rectangle implements image.Image.
type rectImage image.Rectangle
func (r rectImage) ColorModel() color.Model { return color.Alpha16Model }
func (r rectImage) Bounds() image.Rectangle { return image.Rectangle(r) }
func (r rectImage) At(x, y int) color.Color {
if (image.Point{x, y}).In(image.Rectangle(r)) {
return color.Opaque
}
return color.Transparent
}
// The fooWrapper types wrap the dst or src image to avoid triggering the
// type-specific fast path implementations.
type (
dstWrapper struct{ Image }
srcWrapper struct{ image.Image }
)
// TestFastPaths tests that the fast path implementations produce identical
// results to the generic implementation.
func TestFastPaths(t *testing.T) {
drs := []image.Rectangle{
image.Rect(0, 0, 10, 10), // The dst bounds.
image.Rect(3, 4, 8, 6), // A strict subset of the dst bounds.
image.Rect(-3, -5, 2, 4), // Partial out-of-bounds #0.
image.Rect(4, -2, 6, 12), // Partial out-of-bounds #1.
image.Rect(12, 14, 23, 45), // Complete out-of-bounds.
image.Rect(5, 5, 5, 5), // Empty.
}
srs := []image.Rectangle{
image.Rect(0, 0, 12, 9), // The src bounds.
image.Rect(2, 2, 10, 8), // A strict subset of the src bounds.
image.Rect(10, 5, 20, 20), // Partial out-of-bounds #0.
image.Rect(-40, 0, 40, 8), // Partial out-of-bounds #1.
image.Rect(-8, -8, -4, -4), // Complete out-of-bounds.
image.Rect(5, 5, 5, 5), // Empty.
}
srcfs := []func(image.Rectangle) (image.Image, error){
srcGray,
srcNRGBA,
srcRGBA,
srcUnif,
srcYCbCr,
}
var srcs []image.Image
for _, srcf := range srcfs {
src, err := srcf(srs[0])
if err != nil {
t.Fatal(err)
}
srcs = append(srcs, src)
}
qs := []Interpolator{
NearestNeighbor,
ApproxBiLinear,
CatmullRom,
}
ops := []Op{
Over,
Src,
}
blue := image.NewUniform(color.RGBA{0x11, 0x22, 0x44, 0x7f})
for _, dr := range drs {
for _, src := range srcs {
for _, sr := range srs {
for _, transform := range []bool{false, true} {
for _, q := range qs {
for _, op := range ops {
dst0 := image.NewRGBA(drs[0])
dst1 := image.NewRGBA(drs[0])
Draw(dst0, dst0.Bounds(), blue, image.Point{}, Src)
Draw(dstWrapper{dst1}, dst1.Bounds(), srcWrapper{blue}, image.Point{}, Src)
if transform {
m := transformMatrix(3.75, 2, 1)
q.Transform(dst0, m, src, sr, op, nil)
q.Transform(dstWrapper{dst1}, m, srcWrapper{src}, sr, op, nil)
} else {
q.Scale(dst0, dr, src, sr, op, nil)
q.Scale(dstWrapper{dst1}, dr, srcWrapper{src}, sr, op, nil)
}
if !bytes.Equal(dst0.Pix, dst1.Pix) {
t.Errorf("pix differ for dr=%v, src=%T, sr=%v, transform=%t, q=%T",
dr, src, sr, transform, q)
}
}
}
}
}
}
}
}
func srcGray(boundsHint image.Rectangle) (image.Image, error) {
m := image.NewGray(boundsHint)
fillPix(rand.New(rand.NewSource(0)), m.Pix)
return m, nil
}
func srcNRGBA(boundsHint image.Rectangle) (image.Image, error) {
m := image.NewNRGBA(boundsHint)
fillPix(rand.New(rand.NewSource(1)), m.Pix)
return m, nil
}
func srcRGBA(boundsHint image.Rectangle) (image.Image, error) {
m := image.NewRGBA(boundsHint)
fillPix(rand.New(rand.NewSource(2)), m.Pix)
// RGBA is alpha-premultiplied, so the R, G and B values should
// be <= the A values.
for i := 0; i < len(m.Pix); i += 4 {
m.Pix[i+0] = uint8(uint32(m.Pix[i+0]) * uint32(m.Pix[i+3]) / 0xff)
m.Pix[i+1] = uint8(uint32(m.Pix[i+1]) * uint32(m.Pix[i+3]) / 0xff)
m.Pix[i+2] = uint8(uint32(m.Pix[i+2]) * uint32(m.Pix[i+3]) / 0xff)
}
return m, nil
}
func srcUnif(boundsHint image.Rectangle) (image.Image, error) {
return image.NewUniform(color.RGBA64{0x1234, 0x5555, 0x9181, 0xbeef}), nil
}
func srcYCbCr(boundsHint image.Rectangle) (image.Image, error) {
m := image.NewYCbCr(boundsHint, image.YCbCrSubsampleRatio420)
fillPix(rand.New(rand.NewSource(3)), m.Y, m.Cb, m.Cr)
return m, nil
}
func srcLarge(boundsHint image.Rectangle) (image.Image, error) {
// 3072 x 2304 is over 7 million pixels at 4:3, comparable to a
// 2015 smart-phone camera's output.
return srcYCbCr(image.Rect(0, 0, 3072, 2304))
}
func srcTux(boundsHint image.Rectangle) (image.Image, error) {
// tux.png is a 386 x 395 image.
f, err := os.Open("../testdata/tux.png")
if err != nil {
return nil, fmt.Errorf("Open: %v", err)
}
defer f.Close()
src, err := png.Decode(f)
if err != nil {
return nil, fmt.Errorf("Decode: %v", err)
}
return src, nil
}
func benchScale(b *testing.B, w int, h int, op Op, srcf func(image.Rectangle) (image.Image, error), q Interpolator) {
dst := image.NewRGBA(image.Rect(0, 0, w, h))
src, err := srcf(image.Rect(0, 0, 1024, 768))
if err != nil {
b.Fatal(err)
}
dr, sr := dst.Bounds(), src.Bounds()
scaler := Scaler(q)
if n, ok := q.(interface {
NewScaler(int, int, int, int) Scaler
}); ok {
scaler = n.NewScaler(dr.Dx(), dr.Dy(), sr.Dx(), sr.Dy())
}
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
scaler.Scale(dst, dr, src, sr, op, nil)
}
}
func benchTform(b *testing.B, w int, h int, op Op, srcf func(image.Rectangle) (image.Image, error), q Interpolator) {
dst := image.NewRGBA(image.Rect(0, 0, w, h))
src, err := srcf(image.Rect(0, 0, 1024, 768))
if err != nil {
b.Fatal(err)
}
sr := src.Bounds()
m := transformMatrix(3.75, 40, 10)
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
q.Transform(dst, m, src, sr, op, nil)
}
}
func BenchmarkScaleNNLargeDown(b *testing.B) { benchScale(b, 200, 150, Src, srcLarge, NearestNeighbor) }
func BenchmarkScaleABLargeDown(b *testing.B) { benchScale(b, 200, 150, Src, srcLarge, ApproxBiLinear) }
func BenchmarkScaleBLLargeDown(b *testing.B) { benchScale(b, 200, 150, Src, srcLarge, BiLinear) }
func BenchmarkScaleCRLargeDown(b *testing.B) { benchScale(b, 200, 150, Src, srcLarge, CatmullRom) }
func BenchmarkScaleNNDown(b *testing.B) { benchScale(b, 120, 80, Src, srcTux, NearestNeighbor) }
func BenchmarkScaleABDown(b *testing.B) { benchScale(b, 120, 80, Src, srcTux, ApproxBiLinear) }
func BenchmarkScaleBLDown(b *testing.B) { benchScale(b, 120, 80, Src, srcTux, BiLinear) }
func BenchmarkScaleCRDown(b *testing.B) { benchScale(b, 120, 80, Src, srcTux, CatmullRom) }
func BenchmarkScaleNNUp(b *testing.B) { benchScale(b, 800, 600, Src, srcTux, NearestNeighbor) }
func BenchmarkScaleABUp(b *testing.B) { benchScale(b, 800, 600, Src, srcTux, ApproxBiLinear) }
func BenchmarkScaleBLUp(b *testing.B) { benchScale(b, 800, 600, Src, srcTux, BiLinear) }
func BenchmarkScaleCRUp(b *testing.B) { benchScale(b, 800, 600, Src, srcTux, CatmullRom) }
func BenchmarkScaleNNSrcRGBA(b *testing.B) { benchScale(b, 200, 150, Src, srcRGBA, NearestNeighbor) }
func BenchmarkScaleNNSrcUnif(b *testing.B) { benchScale(b, 200, 150, Src, srcUnif, NearestNeighbor) }
func BenchmarkScaleNNOverRGBA(b *testing.B) { benchScale(b, 200, 150, Over, srcRGBA, NearestNeighbor) }
func BenchmarkScaleNNOverUnif(b *testing.B) { benchScale(b, 200, 150, Over, srcUnif, NearestNeighbor) }
func BenchmarkTformNNSrcRGBA(b *testing.B) { benchTform(b, 200, 150, Src, srcRGBA, NearestNeighbor) }
func BenchmarkTformNNSrcUnif(b *testing.B) { benchTform(b, 200, 150, Src, srcUnif, NearestNeighbor) }
func BenchmarkTformNNOverRGBA(b *testing.B) { benchTform(b, 200, 150, Over, srcRGBA, NearestNeighbor) }
func BenchmarkTformNNOverUnif(b *testing.B) { benchTform(b, 200, 150, Over, srcUnif, NearestNeighbor) }
func BenchmarkScaleABSrcGray(b *testing.B) { benchScale(b, 200, 150, Src, srcGray, ApproxBiLinear) }
func BenchmarkScaleABSrcNRGBA(b *testing.B) { benchScale(b, 200, 150, Src, srcNRGBA, ApproxBiLinear) }
func BenchmarkScaleABSrcRGBA(b *testing.B) { benchScale(b, 200, 150, Src, srcRGBA, ApproxBiLinear) }
func BenchmarkScaleABSrcYCbCr(b *testing.B) { benchScale(b, 200, 150, Src, srcYCbCr, ApproxBiLinear) }
func BenchmarkScaleABOverGray(b *testing.B) { benchScale(b, 200, 150, Over, srcGray, ApproxBiLinear) }
func BenchmarkScaleABOverNRGBA(b *testing.B) { benchScale(b, 200, 150, Over, srcNRGBA, ApproxBiLinear) }
func BenchmarkScaleABOverRGBA(b *testing.B) { benchScale(b, 200, 150, Over, srcRGBA, ApproxBiLinear) }
func BenchmarkScaleABOverYCbCr(b *testing.B) { benchScale(b, 200, 150, Over, srcYCbCr, ApproxBiLinear) }
func BenchmarkTformABSrcGray(b *testing.B) { benchTform(b, 200, 150, Src, srcGray, ApproxBiLinear) }
func BenchmarkTformABSrcNRGBA(b *testing.B) { benchTform(b, 200, 150, Src, srcNRGBA, ApproxBiLinear) }
func BenchmarkTformABSrcRGBA(b *testing.B) { benchTform(b, 200, 150, Src, srcRGBA, ApproxBiLinear) }
func BenchmarkTformABSrcYCbCr(b *testing.B) { benchTform(b, 200, 150, Src, srcYCbCr, ApproxBiLinear) }
func BenchmarkTformABOverGray(b *testing.B) { benchTform(b, 200, 150, Over, srcGray, ApproxBiLinear) }
func BenchmarkTformABOverNRGBA(b *testing.B) { benchTform(b, 200, 150, Over, srcNRGBA, ApproxBiLinear) }
func BenchmarkTformABOverRGBA(b *testing.B) { benchTform(b, 200, 150, Over, srcRGBA, ApproxBiLinear) }
func BenchmarkTformABOverYCbCr(b *testing.B) { benchTform(b, 200, 150, Over, srcYCbCr, ApproxBiLinear) }
func BenchmarkScaleCRSrcGray(b *testing.B) { benchScale(b, 200, 150, Src, srcGray, CatmullRom) }
func BenchmarkScaleCRSrcNRGBA(b *testing.B) { benchScale(b, 200, 150, Src, srcNRGBA, CatmullRom) }
func BenchmarkScaleCRSrcRGBA(b *testing.B) { benchScale(b, 200, 150, Src, srcRGBA, CatmullRom) }
func BenchmarkScaleCRSrcYCbCr(b *testing.B) { benchScale(b, 200, 150, Src, srcYCbCr, CatmullRom) }
func BenchmarkScaleCROverGray(b *testing.B) { benchScale(b, 200, 150, Over, srcGray, CatmullRom) }
func BenchmarkScaleCROverNRGBA(b *testing.B) { benchScale(b, 200, 150, Over, srcNRGBA, CatmullRom) }
func BenchmarkScaleCROverRGBA(b *testing.B) { benchScale(b, 200, 150, Over, srcRGBA, CatmullRom) }
func BenchmarkScaleCROverYCbCr(b *testing.B) { benchScale(b, 200, 150, Over, srcYCbCr, CatmullRom) }
func BenchmarkTformCRSrcGray(b *testing.B) { benchTform(b, 200, 150, Src, srcGray, CatmullRom) }
func BenchmarkTformCRSrcNRGBA(b *testing.B) { benchTform(b, 200, 150, Src, srcNRGBA, CatmullRom) }
func BenchmarkTformCRSrcRGBA(b *testing.B) { benchTform(b, 200, 150, Src, srcRGBA, CatmullRom) }
func BenchmarkTformCRSrcYCbCr(b *testing.B) { benchTform(b, 200, 150, Src, srcYCbCr, CatmullRom) }
func BenchmarkTformCROverGray(b *testing.B) { benchTform(b, 200, 150, Over, srcGray, CatmullRom) }
func BenchmarkTformCROverNRGBA(b *testing.B) { benchTform(b, 200, 150, Over, srcNRGBA, CatmullRom) }
func BenchmarkTformCROverRGBA(b *testing.B) { benchTform(b, 200, 150, Over, srcRGBA, CatmullRom) }
func BenchmarkTformCROverYCbCr(b *testing.B) { benchTform(b, 200, 150, Over, srcYCbCr, CatmullRom) }