8642173156
Change-Id: Ibf710521f466847afaf2d005dc8a2bb817169298 Reviewed-on: https://go-review.googlesource.com/9276 Reviewed-by: Rob Pike <r@golang.org>
715 lines
22 KiB
Go
715 lines
22 KiB
Go
// Copyright 2015 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package draw
|
|
|
|
import (
|
|
"bytes"
|
|
"flag"
|
|
"fmt"
|
|
"image"
|
|
"image/color"
|
|
"image/png"
|
|
"math/rand"
|
|
"os"
|
|
"reflect"
|
|
"testing"
|
|
|
|
"golang.org/x/image/math/f64"
|
|
|
|
_ "image/jpeg"
|
|
)
|
|
|
|
var genGoldenFiles = flag.Bool("gen_golden_files", false, "whether to generate the TestXxx golden files.")
|
|
|
|
var transformMatrix = func(scale, tx, ty float64) *f64.Aff3 {
|
|
const cos30, sin30 = 0.866025404, 0.5
|
|
return &f64.Aff3{
|
|
+scale * cos30, -scale * sin30, tx,
|
|
+scale * sin30, +scale * cos30, ty,
|
|
}
|
|
}
|
|
|
|
func encode(filename string, m image.Image) error {
|
|
f, err := os.Create(filename)
|
|
if err != nil {
|
|
return fmt.Errorf("Create: %v", err)
|
|
}
|
|
defer f.Close()
|
|
if err := png.Encode(f, m); err != nil {
|
|
return fmt.Errorf("Encode: %v", err)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// testInterp tests that interpolating the source image gives the exact
|
|
// destination image. This is to ensure that any refactoring or optimization of
|
|
// the interpolation code doesn't change the behavior. Changing the actual
|
|
// algorithm or kernel used by any particular quality setting will obviously
|
|
// change the resultant pixels. In such a case, use the gen_golden_files flag
|
|
// to regenerate the golden files.
|
|
func testInterp(t *testing.T, w int, h int, direction, prefix, suffix string) {
|
|
f, err := os.Open("../testdata/" + prefix + suffix)
|
|
if err != nil {
|
|
t.Fatalf("Open: %v", err)
|
|
}
|
|
defer f.Close()
|
|
src, _, err := image.Decode(f)
|
|
if err != nil {
|
|
t.Fatalf("Decode: %v", err)
|
|
}
|
|
|
|
op, scale := Src, 3.75
|
|
if prefix == "tux" {
|
|
op, scale = Over, 0.125
|
|
}
|
|
opts := &Options{
|
|
Op: op,
|
|
}
|
|
green := image.NewUniform(color.RGBA{0x00, 0x22, 0x11, 0xff})
|
|
|
|
testCases := map[string]Interpolator{
|
|
"nn": NearestNeighbor,
|
|
"ab": ApproxBiLinear,
|
|
"bl": BiLinear,
|
|
"cr": CatmullRom,
|
|
}
|
|
for name, q := range testCases {
|
|
goldenFilename := fmt.Sprintf("../testdata/%s-%s-%s.png", prefix, direction, name)
|
|
|
|
got := image.NewRGBA(image.Rect(0, 0, w, h))
|
|
Copy(got, image.Point{}, green, got.Bounds(), nil)
|
|
if direction == "rotate" {
|
|
q.Transform(got, transformMatrix(scale, 40, 10), src, src.Bounds(), opts)
|
|
} else {
|
|
q.Scale(got, got.Bounds(), src, src.Bounds(), opts)
|
|
}
|
|
|
|
if *genGoldenFiles {
|
|
if err := encode(goldenFilename, got); err != nil {
|
|
t.Error(err)
|
|
}
|
|
continue
|
|
}
|
|
|
|
g, err := os.Open(goldenFilename)
|
|
if err != nil {
|
|
t.Errorf("Open: %v", err)
|
|
continue
|
|
}
|
|
defer g.Close()
|
|
wantRaw, err := png.Decode(g)
|
|
if err != nil {
|
|
t.Errorf("Decode: %v", err)
|
|
continue
|
|
}
|
|
// convert wantRaw to RGBA.
|
|
want, ok := wantRaw.(*image.RGBA)
|
|
if !ok {
|
|
b := wantRaw.Bounds()
|
|
want = image.NewRGBA(b)
|
|
Draw(want, b, wantRaw, b.Min, Src)
|
|
}
|
|
|
|
if !reflect.DeepEqual(got, want) {
|
|
t.Errorf("%s: actual image differs from golden image", goldenFilename)
|
|
continue
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestScaleDown(t *testing.T) { testInterp(t, 100, 100, "down", "go-turns-two", "-280x360.jpeg") }
|
|
func TestScaleUp(t *testing.T) { testInterp(t, 75, 100, "up", "go-turns-two", "-14x18.png") }
|
|
func TestTformSrc(t *testing.T) { testInterp(t, 100, 100, "rotate", "go-turns-two", "-14x18.png") }
|
|
func TestTformOver(t *testing.T) { testInterp(t, 100, 100, "rotate", "tux", ".png") }
|
|
|
|
func TestOps(t *testing.T) {
|
|
blue := image.NewUniform(color.RGBA{0x00, 0x00, 0xff, 0xff})
|
|
testCases := map[Op]color.RGBA{
|
|
Over: color.RGBA{0x7f, 0x00, 0x80, 0xff},
|
|
Src: color.RGBA{0x7f, 0x00, 0x00, 0x7f},
|
|
}
|
|
for op, want := range testCases {
|
|
dst := image.NewRGBA(image.Rect(0, 0, 2, 2))
|
|
Copy(dst, image.Point{}, blue, dst.Bounds(), nil)
|
|
|
|
src := image.NewRGBA(image.Rect(0, 0, 1, 1))
|
|
src.SetRGBA(0, 0, color.RGBA{0x7f, 0x00, 0x00, 0x7f})
|
|
|
|
NearestNeighbor.Scale(dst, dst.Bounds(), src, src.Bounds(), &Options{Op: op})
|
|
|
|
if got := dst.RGBAAt(0, 0); got != want {
|
|
t.Errorf("op=%v: got %v, want %v", op, got, want)
|
|
}
|
|
}
|
|
}
|
|
|
|
// TestNegativeWeights tests that scaling by a kernel that produces negative
|
|
// weights, such as the Catmull-Rom kernel, doesn't produce an invalid color
|
|
// according to Go's alpha-premultiplied model.
|
|
func TestNegativeWeights(t *testing.T) {
|
|
check := func(m *image.RGBA) error {
|
|
b := m.Bounds()
|
|
for y := b.Min.Y; y < b.Max.Y; y++ {
|
|
for x := b.Min.X; x < b.Max.X; x++ {
|
|
if c := m.RGBAAt(x, y); c.R > c.A || c.G > c.A || c.B > c.A {
|
|
return fmt.Errorf("invalid color.RGBA at (%d, %d): %v", x, y, c)
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
src := image.NewRGBA(image.Rect(0, 0, 16, 16))
|
|
for y := 0; y < 16; y++ {
|
|
for x := 0; x < 16; x++ {
|
|
a := y * 0x11
|
|
src.Set(x, y, color.RGBA{
|
|
R: uint8(x * 0x11 * a / 0xff),
|
|
A: uint8(a),
|
|
})
|
|
}
|
|
}
|
|
if err := check(src); err != nil {
|
|
t.Fatalf("src image: %v", err)
|
|
}
|
|
|
|
dst := image.NewRGBA(image.Rect(0, 0, 32, 32))
|
|
CatmullRom.Scale(dst, dst.Bounds(), src, src.Bounds(), nil)
|
|
if err := check(dst); err != nil {
|
|
t.Fatalf("dst image: %v", err)
|
|
}
|
|
}
|
|
|
|
func fillPix(r *rand.Rand, pixs ...[]byte) {
|
|
for _, pix := range pixs {
|
|
for i := range pix {
|
|
pix[i] = uint8(r.Intn(256))
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestInterpClipCommute(t *testing.T) {
|
|
src := image.NewNRGBA(image.Rect(0, 0, 20, 20))
|
|
fillPix(rand.New(rand.NewSource(0)), src.Pix)
|
|
|
|
outer := image.Rect(1, 1, 8, 5)
|
|
inner := image.Rect(2, 3, 6, 5)
|
|
qs := []Interpolator{
|
|
NearestNeighbor,
|
|
ApproxBiLinear,
|
|
CatmullRom,
|
|
}
|
|
for _, transform := range []bool{false, true} {
|
|
for _, q := range qs {
|
|
dst0 := image.NewRGBA(image.Rect(1, 1, 10, 10))
|
|
dst1 := image.NewRGBA(image.Rect(1, 1, 10, 10))
|
|
for i := range dst0.Pix {
|
|
dst0.Pix[i] = uint8(i / 4)
|
|
dst1.Pix[i] = uint8(i / 4)
|
|
}
|
|
|
|
var interp func(dst *image.RGBA)
|
|
if transform {
|
|
interp = func(dst *image.RGBA) {
|
|
q.Transform(dst, transformMatrix(3.75, 2, 1), src, src.Bounds(), nil)
|
|
}
|
|
} else {
|
|
interp = func(dst *image.RGBA) {
|
|
q.Scale(dst, outer, src, src.Bounds(), nil)
|
|
}
|
|
}
|
|
|
|
// Interpolate then clip.
|
|
interp(dst0)
|
|
dst0 = dst0.SubImage(inner).(*image.RGBA)
|
|
|
|
// Clip then interpolate.
|
|
dst1 = dst1.SubImage(inner).(*image.RGBA)
|
|
interp(dst1)
|
|
|
|
loop:
|
|
for y := inner.Min.Y; y < inner.Max.Y; y++ {
|
|
for x := inner.Min.X; x < inner.Max.X; x++ {
|
|
if c0, c1 := dst0.RGBAAt(x, y), dst1.RGBAAt(x, y); c0 != c1 {
|
|
t.Errorf("q=%T: at (%d, %d): c0=%v, c1=%v", q, x, y, c0, c1)
|
|
break loop
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// translatedImage is an image m translated by t.
|
|
type translatedImage struct {
|
|
m image.Image
|
|
t image.Point
|
|
}
|
|
|
|
func (t *translatedImage) At(x, y int) color.Color { return t.m.At(x-t.t.X, y-t.t.Y) }
|
|
func (t *translatedImage) Bounds() image.Rectangle { return t.m.Bounds().Add(t.t) }
|
|
func (t *translatedImage) ColorModel() color.Model { return t.m.ColorModel() }
|
|
|
|
// TestSrcTranslationInvariance tests that Scale and Transform are invariant
|
|
// under src translations. Specifically, when some source pixels are not in the
|
|
// bottom-right quadrant of src coordinate space, we consistently round down,
|
|
// not round towards zero.
|
|
func TestSrcTranslationInvariance(t *testing.T) {
|
|
f, err := os.Open("../testdata/testpattern.png")
|
|
if err != nil {
|
|
t.Fatalf("Open: %v", err)
|
|
}
|
|
defer f.Close()
|
|
src, _, err := image.Decode(f)
|
|
if err != nil {
|
|
t.Fatalf("Decode: %v", err)
|
|
}
|
|
sr := image.Rect(2, 3, 16, 12)
|
|
if !sr.In(src.Bounds()) {
|
|
t.Fatalf("src bounds too small: got %v", src.Bounds())
|
|
}
|
|
qs := []Interpolator{
|
|
NearestNeighbor,
|
|
ApproxBiLinear,
|
|
CatmullRom,
|
|
}
|
|
deltas := []image.Point{
|
|
{+0, +0},
|
|
{+0, +5},
|
|
{+0, -5},
|
|
{+5, +0},
|
|
{-5, +0},
|
|
{+8, +8},
|
|
{+8, -8},
|
|
{-8, +8},
|
|
{-8, -8},
|
|
}
|
|
m00 := transformMatrix(3.75, 0, 0)
|
|
|
|
for _, transform := range []bool{false, true} {
|
|
for _, q := range qs {
|
|
want := image.NewRGBA(image.Rect(0, 0, 20, 20))
|
|
if transform {
|
|
q.Transform(want, m00, src, sr, nil)
|
|
} else {
|
|
q.Scale(want, want.Bounds(), src, sr, nil)
|
|
}
|
|
for _, delta := range deltas {
|
|
tsrc := &translatedImage{src, delta}
|
|
got := image.NewRGBA(image.Rect(0, 0, 20, 20))
|
|
if transform {
|
|
m := matMul(m00, &f64.Aff3{
|
|
1, 0, -float64(delta.X),
|
|
0, 1, -float64(delta.Y),
|
|
})
|
|
q.Transform(got, &m, tsrc, sr.Add(delta), nil)
|
|
} else {
|
|
q.Scale(got, got.Bounds(), tsrc, sr.Add(delta), nil)
|
|
}
|
|
if !bytes.Equal(got.Pix, want.Pix) {
|
|
t.Errorf("pix differ for delta=%v, transform=%t, q=%T", delta, transform, q)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestSrcMask(t *testing.T) {
|
|
srcMask := image.NewRGBA(image.Rect(0, 0, 23, 1))
|
|
srcMask.SetRGBA(19, 0, color.RGBA{0x00, 0x00, 0x00, 0x7f})
|
|
srcMask.SetRGBA(20, 0, color.RGBA{0x00, 0x00, 0x00, 0xff})
|
|
srcMask.SetRGBA(21, 0, color.RGBA{0x00, 0x00, 0x00, 0x3f})
|
|
srcMask.SetRGBA(22, 0, color.RGBA{0x00, 0x00, 0x00, 0x00})
|
|
red := image.NewUniform(color.RGBA{0xff, 0x00, 0x00, 0xff})
|
|
blue := image.NewUniform(color.RGBA{0x00, 0x00, 0xff, 0xff})
|
|
dst := image.NewRGBA(image.Rect(0, 0, 6, 1))
|
|
Copy(dst, image.Point{}, blue, dst.Bounds(), nil)
|
|
NearestNeighbor.Scale(dst, dst.Bounds(), red, image.Rect(0, 0, 3, 1), &Options{
|
|
SrcMask: srcMask,
|
|
SrcMaskP: image.Point{20, 0},
|
|
})
|
|
got := [6]color.RGBA{
|
|
dst.RGBAAt(0, 0),
|
|
dst.RGBAAt(1, 0),
|
|
dst.RGBAAt(2, 0),
|
|
dst.RGBAAt(3, 0),
|
|
dst.RGBAAt(4, 0),
|
|
dst.RGBAAt(5, 0),
|
|
}
|
|
want := [6]color.RGBA{
|
|
{0xff, 0x00, 0x00, 0xff},
|
|
{0xff, 0x00, 0x00, 0xff},
|
|
{0x3f, 0x00, 0xc0, 0xff},
|
|
{0x3f, 0x00, 0xc0, 0xff},
|
|
{0x00, 0x00, 0xff, 0xff},
|
|
{0x00, 0x00, 0xff, 0xff},
|
|
}
|
|
if got != want {
|
|
t.Errorf("\ngot %v\nwant %v", got, want)
|
|
}
|
|
}
|
|
|
|
func TestDstMask(t *testing.T) {
|
|
dstMask := image.NewRGBA(image.Rect(0, 0, 23, 1))
|
|
dstMask.SetRGBA(19, 0, color.RGBA{0x00, 0x00, 0x00, 0x7f})
|
|
dstMask.SetRGBA(20, 0, color.RGBA{0x00, 0x00, 0x00, 0xff})
|
|
dstMask.SetRGBA(21, 0, color.RGBA{0x00, 0x00, 0x00, 0x3f})
|
|
dstMask.SetRGBA(22, 0, color.RGBA{0x00, 0x00, 0x00, 0x00})
|
|
red := image.NewRGBA(image.Rect(0, 0, 1, 1))
|
|
red.SetRGBA(0, 0, color.RGBA{0xff, 0x00, 0x00, 0xff})
|
|
blue := image.NewUniform(color.RGBA{0x00, 0x00, 0xff, 0xff})
|
|
qs := []Interpolator{
|
|
NearestNeighbor,
|
|
ApproxBiLinear,
|
|
CatmullRom,
|
|
}
|
|
for _, q := range qs {
|
|
dst := image.NewRGBA(image.Rect(0, 0, 3, 1))
|
|
Copy(dst, image.Point{}, blue, dst.Bounds(), nil)
|
|
q.Scale(dst, dst.Bounds(), red, red.Bounds(), &Options{
|
|
DstMask: dstMask,
|
|
DstMaskP: image.Point{20, 0},
|
|
})
|
|
got := [3]color.RGBA{
|
|
dst.RGBAAt(0, 0),
|
|
dst.RGBAAt(1, 0),
|
|
dst.RGBAAt(2, 0),
|
|
}
|
|
want := [3]color.RGBA{
|
|
{0xff, 0x00, 0x00, 0xff},
|
|
{0x3f, 0x00, 0xc0, 0xff},
|
|
{0x00, 0x00, 0xff, 0xff},
|
|
}
|
|
if got != want {
|
|
t.Errorf("q=%T:\ngot %v\nwant %v", q, got, want)
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestRectDstMask(t *testing.T) {
|
|
f, err := os.Open("../testdata/testpattern.png")
|
|
if err != nil {
|
|
t.Fatalf("Open: %v", err)
|
|
}
|
|
defer f.Close()
|
|
src, _, err := image.Decode(f)
|
|
if err != nil {
|
|
t.Fatalf("Decode: %v", err)
|
|
}
|
|
m00 := transformMatrix(1, 0, 0)
|
|
|
|
bounds := image.Rect(0, 0, 50, 50)
|
|
dstOutside := image.NewRGBA(bounds)
|
|
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
|
|
for x := bounds.Min.X; x < bounds.Max.X; x++ {
|
|
dstOutside.SetRGBA(x, y, color.RGBA{uint8(5 * x), uint8(5 * y), 0x00, 0xff})
|
|
}
|
|
}
|
|
|
|
mk := func(q Transformer, dstMask image.Image, dstMaskP image.Point) *image.RGBA {
|
|
m := image.NewRGBA(bounds)
|
|
Copy(m, bounds.Min, dstOutside, bounds, nil)
|
|
q.Transform(m, m00, src, src.Bounds(), &Options{
|
|
DstMask: dstMask,
|
|
DstMaskP: dstMaskP,
|
|
})
|
|
return m
|
|
}
|
|
|
|
qs := []Interpolator{
|
|
NearestNeighbor,
|
|
ApproxBiLinear,
|
|
CatmullRom,
|
|
}
|
|
dstMaskPs := []image.Point{
|
|
{0, 0},
|
|
{5, 7},
|
|
{-3, 0},
|
|
}
|
|
rect := image.Rect(10, 10, 30, 40)
|
|
for _, q := range qs {
|
|
for _, dstMaskP := range dstMaskPs {
|
|
dstInside := mk(q, nil, image.Point{})
|
|
for _, wrap := range []bool{false, true} {
|
|
dstMask := image.Image(rect)
|
|
if wrap {
|
|
dstMask = srcWrapper{dstMask}
|
|
}
|
|
dst := mk(q, dstMask, dstMaskP)
|
|
|
|
nError := 0
|
|
loop:
|
|
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
|
|
for x := bounds.Min.X; x < bounds.Max.X; x++ {
|
|
which := dstOutside
|
|
if (image.Point{x, y}).Add(dstMaskP).In(rect) {
|
|
which = dstInside
|
|
}
|
|
if got, want := dst.RGBAAt(x, y), which.RGBAAt(x, y); got != want {
|
|
if nError == 10 {
|
|
t.Errorf("q=%T dmp=%v wrap=%v: ...and more errors", q, dstMaskP, wrap)
|
|
break loop
|
|
}
|
|
nError++
|
|
t.Errorf("q=%T dmp=%v wrap=%v: x=%3d y=%3d: got %v, want %v",
|
|
q, dstMaskP, wrap, x, y, got, want)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// The fooWrapper types wrap the dst or src image to avoid triggering the
|
|
// type-specific fast path implementations.
|
|
type (
|
|
dstWrapper struct{ Image }
|
|
srcWrapper struct{ image.Image }
|
|
)
|
|
|
|
// TestFastPaths tests that the fast path implementations produce identical
|
|
// results to the generic implementation.
|
|
func TestFastPaths(t *testing.T) {
|
|
drs := []image.Rectangle{
|
|
image.Rect(0, 0, 10, 10), // The dst bounds.
|
|
image.Rect(3, 4, 8, 6), // A strict subset of the dst bounds.
|
|
image.Rect(-3, -5, 2, 4), // Partial out-of-bounds #0.
|
|
image.Rect(4, -2, 6, 12), // Partial out-of-bounds #1.
|
|
image.Rect(12, 14, 23, 45), // Complete out-of-bounds.
|
|
image.Rect(5, 5, 5, 5), // Empty.
|
|
}
|
|
srs := []image.Rectangle{
|
|
image.Rect(0, 0, 12, 9), // The src bounds.
|
|
image.Rect(2, 2, 10, 8), // A strict subset of the src bounds.
|
|
image.Rect(10, 5, 20, 20), // Partial out-of-bounds #0.
|
|
image.Rect(-40, 0, 40, 8), // Partial out-of-bounds #1.
|
|
image.Rect(-8, -8, -4, -4), // Complete out-of-bounds.
|
|
image.Rect(5, 5, 5, 5), // Empty.
|
|
}
|
|
srcfs := []func(image.Rectangle) (image.Image, error){
|
|
srcGray,
|
|
srcNRGBA,
|
|
srcRGBA,
|
|
srcUnif,
|
|
srcYCbCr,
|
|
}
|
|
var srcs []image.Image
|
|
for _, srcf := range srcfs {
|
|
src, err := srcf(srs[0])
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
srcs = append(srcs, src)
|
|
}
|
|
qs := []Interpolator{
|
|
NearestNeighbor,
|
|
ApproxBiLinear,
|
|
CatmullRom,
|
|
}
|
|
ops := []Op{
|
|
Over,
|
|
Src,
|
|
}
|
|
blue := image.NewUniform(color.RGBA{0x11, 0x22, 0x44, 0x7f})
|
|
|
|
for _, dr := range drs {
|
|
for _, src := range srcs {
|
|
for _, sr := range srs {
|
|
for _, transform := range []bool{false, true} {
|
|
for _, q := range qs {
|
|
for _, op := range ops {
|
|
opts := &Options{Op: op}
|
|
dst0 := image.NewRGBA(drs[0])
|
|
dst1 := image.NewRGBA(drs[0])
|
|
Draw(dst0, dst0.Bounds(), blue, image.Point{}, Src)
|
|
Draw(dstWrapper{dst1}, dst1.Bounds(), srcWrapper{blue}, image.Point{}, Src)
|
|
|
|
if transform {
|
|
m := transformMatrix(3.75, 2, 1)
|
|
q.Transform(dst0, m, src, sr, opts)
|
|
q.Transform(dstWrapper{dst1}, m, srcWrapper{src}, sr, opts)
|
|
} else {
|
|
q.Scale(dst0, dr, src, sr, opts)
|
|
q.Scale(dstWrapper{dst1}, dr, srcWrapper{src}, sr, opts)
|
|
}
|
|
|
|
if !bytes.Equal(dst0.Pix, dst1.Pix) {
|
|
t.Errorf("pix differ for dr=%v, src=%T, sr=%v, transform=%t, q=%T",
|
|
dr, src, sr, transform, q)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func srcGray(boundsHint image.Rectangle) (image.Image, error) {
|
|
m := image.NewGray(boundsHint)
|
|
fillPix(rand.New(rand.NewSource(0)), m.Pix)
|
|
return m, nil
|
|
}
|
|
|
|
func srcNRGBA(boundsHint image.Rectangle) (image.Image, error) {
|
|
m := image.NewNRGBA(boundsHint)
|
|
fillPix(rand.New(rand.NewSource(1)), m.Pix)
|
|
return m, nil
|
|
}
|
|
|
|
func srcRGBA(boundsHint image.Rectangle) (image.Image, error) {
|
|
m := image.NewRGBA(boundsHint)
|
|
fillPix(rand.New(rand.NewSource(2)), m.Pix)
|
|
// RGBA is alpha-premultiplied, so the R, G and B values should
|
|
// be <= the A values.
|
|
for i := 0; i < len(m.Pix); i += 4 {
|
|
m.Pix[i+0] = uint8(uint32(m.Pix[i+0]) * uint32(m.Pix[i+3]) / 0xff)
|
|
m.Pix[i+1] = uint8(uint32(m.Pix[i+1]) * uint32(m.Pix[i+3]) / 0xff)
|
|
m.Pix[i+2] = uint8(uint32(m.Pix[i+2]) * uint32(m.Pix[i+3]) / 0xff)
|
|
}
|
|
return m, nil
|
|
}
|
|
|
|
func srcUnif(boundsHint image.Rectangle) (image.Image, error) {
|
|
return image.NewUniform(color.RGBA64{0x1234, 0x5555, 0x9181, 0xbeef}), nil
|
|
}
|
|
|
|
func srcYCbCr(boundsHint image.Rectangle) (image.Image, error) {
|
|
m := image.NewYCbCr(boundsHint, image.YCbCrSubsampleRatio420)
|
|
fillPix(rand.New(rand.NewSource(3)), m.Y, m.Cb, m.Cr)
|
|
return m, nil
|
|
}
|
|
|
|
func srcLarge(boundsHint image.Rectangle) (image.Image, error) {
|
|
// 3072 x 2304 is over 7 million pixels at 4:3, comparable to a
|
|
// 2015 smart-phone camera's output.
|
|
return srcYCbCr(image.Rect(0, 0, 3072, 2304))
|
|
}
|
|
|
|
func srcTux(boundsHint image.Rectangle) (image.Image, error) {
|
|
// tux.png is a 386 x 395 image.
|
|
f, err := os.Open("../testdata/tux.png")
|
|
if err != nil {
|
|
return nil, fmt.Errorf("Open: %v", err)
|
|
}
|
|
defer f.Close()
|
|
src, err := png.Decode(f)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("Decode: %v", err)
|
|
}
|
|
return src, nil
|
|
}
|
|
|
|
func benchScale(b *testing.B, w int, h int, op Op, srcf func(image.Rectangle) (image.Image, error), q Interpolator) {
|
|
dst := image.NewRGBA(image.Rect(0, 0, w, h))
|
|
src, err := srcf(image.Rect(0, 0, 1024, 768))
|
|
if err != nil {
|
|
b.Fatal(err)
|
|
}
|
|
dr, sr := dst.Bounds(), src.Bounds()
|
|
scaler := Scaler(q)
|
|
if n, ok := q.(interface {
|
|
NewScaler(int, int, int, int) Scaler
|
|
}); ok {
|
|
scaler = n.NewScaler(dr.Dx(), dr.Dy(), sr.Dx(), sr.Dy())
|
|
}
|
|
opts := &Options{
|
|
Op: op,
|
|
}
|
|
|
|
b.ReportAllocs()
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
scaler.Scale(dst, dr, src, sr, opts)
|
|
}
|
|
}
|
|
|
|
func benchTform(b *testing.B, w int, h int, op Op, srcf func(image.Rectangle) (image.Image, error), q Interpolator) {
|
|
dst := image.NewRGBA(image.Rect(0, 0, w, h))
|
|
src, err := srcf(image.Rect(0, 0, 1024, 768))
|
|
if err != nil {
|
|
b.Fatal(err)
|
|
}
|
|
sr := src.Bounds()
|
|
m := transformMatrix(3.75, 40, 10)
|
|
opts := &Options{
|
|
Op: op,
|
|
}
|
|
|
|
b.ReportAllocs()
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
q.Transform(dst, m, src, sr, opts)
|
|
}
|
|
}
|
|
|
|
func BenchmarkScaleNNLargeDown(b *testing.B) { benchScale(b, 200, 150, Src, srcLarge, NearestNeighbor) }
|
|
func BenchmarkScaleABLargeDown(b *testing.B) { benchScale(b, 200, 150, Src, srcLarge, ApproxBiLinear) }
|
|
func BenchmarkScaleBLLargeDown(b *testing.B) { benchScale(b, 200, 150, Src, srcLarge, BiLinear) }
|
|
func BenchmarkScaleCRLargeDown(b *testing.B) { benchScale(b, 200, 150, Src, srcLarge, CatmullRom) }
|
|
|
|
func BenchmarkScaleNNDown(b *testing.B) { benchScale(b, 120, 80, Src, srcTux, NearestNeighbor) }
|
|
func BenchmarkScaleABDown(b *testing.B) { benchScale(b, 120, 80, Src, srcTux, ApproxBiLinear) }
|
|
func BenchmarkScaleBLDown(b *testing.B) { benchScale(b, 120, 80, Src, srcTux, BiLinear) }
|
|
func BenchmarkScaleCRDown(b *testing.B) { benchScale(b, 120, 80, Src, srcTux, CatmullRom) }
|
|
|
|
func BenchmarkScaleNNUp(b *testing.B) { benchScale(b, 800, 600, Src, srcTux, NearestNeighbor) }
|
|
func BenchmarkScaleABUp(b *testing.B) { benchScale(b, 800, 600, Src, srcTux, ApproxBiLinear) }
|
|
func BenchmarkScaleBLUp(b *testing.B) { benchScale(b, 800, 600, Src, srcTux, BiLinear) }
|
|
func BenchmarkScaleCRUp(b *testing.B) { benchScale(b, 800, 600, Src, srcTux, CatmullRom) }
|
|
|
|
func BenchmarkScaleNNSrcRGBA(b *testing.B) { benchScale(b, 200, 150, Src, srcRGBA, NearestNeighbor) }
|
|
func BenchmarkScaleNNSrcUnif(b *testing.B) { benchScale(b, 200, 150, Src, srcUnif, NearestNeighbor) }
|
|
|
|
func BenchmarkScaleNNOverRGBA(b *testing.B) { benchScale(b, 200, 150, Over, srcRGBA, NearestNeighbor) }
|
|
func BenchmarkScaleNNOverUnif(b *testing.B) { benchScale(b, 200, 150, Over, srcUnif, NearestNeighbor) }
|
|
|
|
func BenchmarkTformNNSrcRGBA(b *testing.B) { benchTform(b, 200, 150, Src, srcRGBA, NearestNeighbor) }
|
|
func BenchmarkTformNNSrcUnif(b *testing.B) { benchTform(b, 200, 150, Src, srcUnif, NearestNeighbor) }
|
|
|
|
func BenchmarkTformNNOverRGBA(b *testing.B) { benchTform(b, 200, 150, Over, srcRGBA, NearestNeighbor) }
|
|
func BenchmarkTformNNOverUnif(b *testing.B) { benchTform(b, 200, 150, Over, srcUnif, NearestNeighbor) }
|
|
|
|
func BenchmarkScaleABSrcGray(b *testing.B) { benchScale(b, 200, 150, Src, srcGray, ApproxBiLinear) }
|
|
func BenchmarkScaleABSrcNRGBA(b *testing.B) { benchScale(b, 200, 150, Src, srcNRGBA, ApproxBiLinear) }
|
|
func BenchmarkScaleABSrcRGBA(b *testing.B) { benchScale(b, 200, 150, Src, srcRGBA, ApproxBiLinear) }
|
|
func BenchmarkScaleABSrcYCbCr(b *testing.B) { benchScale(b, 200, 150, Src, srcYCbCr, ApproxBiLinear) }
|
|
|
|
func BenchmarkScaleABOverGray(b *testing.B) { benchScale(b, 200, 150, Over, srcGray, ApproxBiLinear) }
|
|
func BenchmarkScaleABOverNRGBA(b *testing.B) { benchScale(b, 200, 150, Over, srcNRGBA, ApproxBiLinear) }
|
|
func BenchmarkScaleABOverRGBA(b *testing.B) { benchScale(b, 200, 150, Over, srcRGBA, ApproxBiLinear) }
|
|
func BenchmarkScaleABOverYCbCr(b *testing.B) { benchScale(b, 200, 150, Over, srcYCbCr, ApproxBiLinear) }
|
|
|
|
func BenchmarkTformABSrcGray(b *testing.B) { benchTform(b, 200, 150, Src, srcGray, ApproxBiLinear) }
|
|
func BenchmarkTformABSrcNRGBA(b *testing.B) { benchTform(b, 200, 150, Src, srcNRGBA, ApproxBiLinear) }
|
|
func BenchmarkTformABSrcRGBA(b *testing.B) { benchTform(b, 200, 150, Src, srcRGBA, ApproxBiLinear) }
|
|
func BenchmarkTformABSrcYCbCr(b *testing.B) { benchTform(b, 200, 150, Src, srcYCbCr, ApproxBiLinear) }
|
|
|
|
func BenchmarkTformABOverGray(b *testing.B) { benchTform(b, 200, 150, Over, srcGray, ApproxBiLinear) }
|
|
func BenchmarkTformABOverNRGBA(b *testing.B) { benchTform(b, 200, 150, Over, srcNRGBA, ApproxBiLinear) }
|
|
func BenchmarkTformABOverRGBA(b *testing.B) { benchTform(b, 200, 150, Over, srcRGBA, ApproxBiLinear) }
|
|
func BenchmarkTformABOverYCbCr(b *testing.B) { benchTform(b, 200, 150, Over, srcYCbCr, ApproxBiLinear) }
|
|
|
|
func BenchmarkScaleCRSrcGray(b *testing.B) { benchScale(b, 200, 150, Src, srcGray, CatmullRom) }
|
|
func BenchmarkScaleCRSrcNRGBA(b *testing.B) { benchScale(b, 200, 150, Src, srcNRGBA, CatmullRom) }
|
|
func BenchmarkScaleCRSrcRGBA(b *testing.B) { benchScale(b, 200, 150, Src, srcRGBA, CatmullRom) }
|
|
func BenchmarkScaleCRSrcYCbCr(b *testing.B) { benchScale(b, 200, 150, Src, srcYCbCr, CatmullRom) }
|
|
|
|
func BenchmarkScaleCROverGray(b *testing.B) { benchScale(b, 200, 150, Over, srcGray, CatmullRom) }
|
|
func BenchmarkScaleCROverNRGBA(b *testing.B) { benchScale(b, 200, 150, Over, srcNRGBA, CatmullRom) }
|
|
func BenchmarkScaleCROverRGBA(b *testing.B) { benchScale(b, 200, 150, Over, srcRGBA, CatmullRom) }
|
|
func BenchmarkScaleCROverYCbCr(b *testing.B) { benchScale(b, 200, 150, Over, srcYCbCr, CatmullRom) }
|
|
|
|
func BenchmarkTformCRSrcGray(b *testing.B) { benchTform(b, 200, 150, Src, srcGray, CatmullRom) }
|
|
func BenchmarkTformCRSrcNRGBA(b *testing.B) { benchTform(b, 200, 150, Src, srcNRGBA, CatmullRom) }
|
|
func BenchmarkTformCRSrcRGBA(b *testing.B) { benchTform(b, 200, 150, Src, srcRGBA, CatmullRom) }
|
|
func BenchmarkTformCRSrcYCbCr(b *testing.B) { benchTform(b, 200, 150, Src, srcYCbCr, CatmullRom) }
|
|
|
|
func BenchmarkTformCROverGray(b *testing.B) { benchTform(b, 200, 150, Over, srcGray, CatmullRom) }
|
|
func BenchmarkTformCROverNRGBA(b *testing.B) { benchTform(b, 200, 150, Over, srcNRGBA, CatmullRom) }
|
|
func BenchmarkTformCROverRGBA(b *testing.B) { benchTform(b, 200, 150, Over, srcRGBA, CatmullRom) }
|
|
func BenchmarkTformCROverYCbCr(b *testing.B) { benchTform(b, 200, 150, Over, srcYCbCr, CatmullRom) }
|