746988e7a2
name old time/op new time/op delta GlyphAlpha16Src-8 3.37µs ± 0% 3.07µs ± 1% -8.86% (p=0.000 n=9+9) GlyphAlpha32Src-8 6.01µs ± 1% 4.55µs ± 0% -24.28% (p=0.000 n=10+9) GlyphAlpha64Src-8 13.2µs ± 0% 8.1µs ± 0% -38.69% (p=0.000 n=10+9) GlyphAlpha128Src-8 32.9µs ± 0% 16.9µs ± 0% -48.85% (p=0.000 n=10+9) GlyphAlpha256Src-8 98.0µs ± 0% 43.6µs ± 1% -55.50% (p=0.000 n=10+10) A comparison of the non-SIMD and SIMD versions: name time/op FixedAccumulateOpSrc16-8 368ns ± 0% FixedAccumulateOpSrcSIMD16-8 86.8ns ± 1% FloatingAccumulateOpSrc16-8 434ns ± 0% FloatingAccumulateOpSrcSIMD16-8 119ns ± 0% FixedAccumulateOpSrc64-8 6.12µs ± 0% FixedAccumulateOpSrcSIMD64-8 1.17µs ± 0% FloatingAccumulateOpSrc64-8 7.15µs ± 0% FloatingAccumulateOpSrcSIMD64-8 1.68µs ± 1% Change-Id: I58e5c7a3ecd12e536aab8e765e94275453d0eac8 Reviewed-on: https://go-review.googlesource.com/30431 Reviewed-by: David Crawshaw <crawshaw@golang.org>
201 lines
4.5 KiB
Go
201 lines
4.5 KiB
Go
// Copyright 2016 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package vector
|
|
|
|
// This file contains a floating point math implementation of the vector
|
|
// graphics rasterizer.
|
|
|
|
import (
|
|
"math"
|
|
|
|
"golang.org/x/image/math/f32"
|
|
)
|
|
|
|
func floatingMax(x, y float32) float32 {
|
|
if x > y {
|
|
return x
|
|
}
|
|
return y
|
|
}
|
|
|
|
func floatingMin(x, y float32) float32 {
|
|
if x < y {
|
|
return x
|
|
}
|
|
return y
|
|
}
|
|
|
|
func floatingFloor(x float32) int32 { return int32(math.Floor(float64(x))) }
|
|
func floatingCeil(x float32) int32 { return int32(math.Ceil(float64(x))) }
|
|
|
|
func (z *Rasterizer) floatingLineTo(b f32.Vec2) {
|
|
a := z.pen
|
|
z.pen = b
|
|
dir := float32(1)
|
|
if a[1] > b[1] {
|
|
dir, a, b = -1, b, a
|
|
}
|
|
// Horizontal line segments yield no change in coverage. Almost horizontal
|
|
// segments would yield some change, in ideal math, but the computation
|
|
// further below, involving 1 / (b[1] - a[1]), is unstable in floating
|
|
// point math, so we treat the segment as if it was perfectly horizontal.
|
|
if b[1]-a[1] <= 0.000001 {
|
|
return
|
|
}
|
|
dxdy := (b[0] - a[0]) / (b[1] - a[1])
|
|
|
|
x := a[0]
|
|
y := floatingFloor(a[1])
|
|
yMax := floatingCeil(b[1])
|
|
if yMax > int32(z.size.Y) {
|
|
yMax = int32(z.size.Y)
|
|
}
|
|
width := int32(z.size.X)
|
|
|
|
for ; y < yMax; y++ {
|
|
dy := floatingMin(float32(y+1), b[1]) - floatingMax(float32(y), a[1])
|
|
xNext := x + dy*dxdy
|
|
if y < 0 {
|
|
x = xNext
|
|
continue
|
|
}
|
|
buf := z.bufF32[y*width:]
|
|
d := dy * dir
|
|
x0, x1 := x, xNext
|
|
if x > xNext {
|
|
x0, x1 = x1, x0
|
|
}
|
|
x0i := floatingFloor(x0)
|
|
x0Floor := float32(x0i)
|
|
x1i := floatingCeil(x1)
|
|
x1Ceil := float32(x1i)
|
|
|
|
if x1i <= x0i+1 {
|
|
xmf := 0.5*(x+xNext) - x0Floor
|
|
if i := clamp(x0i+0, width); i < uint(len(buf)) {
|
|
buf[i] += d - d*xmf
|
|
}
|
|
if i := clamp(x0i+1, width); i < uint(len(buf)) {
|
|
buf[i] += d * xmf
|
|
}
|
|
} else {
|
|
s := 1 / (x1 - x0)
|
|
x0f := x0 - x0Floor
|
|
oneMinusX0f := 1 - x0f
|
|
a0 := 0.5 * s * oneMinusX0f * oneMinusX0f
|
|
x1f := x1 - x1Ceil + 1
|
|
am := 0.5 * s * x1f * x1f
|
|
|
|
if i := clamp(x0i, width); i < uint(len(buf)) {
|
|
buf[i] += d * a0
|
|
}
|
|
|
|
if x1i == x0i+2 {
|
|
if i := clamp(x0i+1, width); i < uint(len(buf)) {
|
|
buf[i] += d * (1 - a0 - am)
|
|
}
|
|
} else {
|
|
a1 := s * (1.5 - x0f)
|
|
if i := clamp(x0i+1, width); i < uint(len(buf)) {
|
|
buf[i] += d * (a1 - a0)
|
|
}
|
|
dTimesS := d * s
|
|
for xi := x0i + 2; xi < x1i-1; xi++ {
|
|
if i := clamp(xi, width); i < uint(len(buf)) {
|
|
buf[i] += dTimesS
|
|
}
|
|
}
|
|
a2 := a1 + s*float32(x1i-x0i-3)
|
|
if i := clamp(x1i-1, width); i < uint(len(buf)) {
|
|
buf[i] += d * (1 - a2 - am)
|
|
}
|
|
}
|
|
|
|
if i := clamp(x1i, width); i < uint(len(buf)) {
|
|
buf[i] += d * am
|
|
}
|
|
}
|
|
|
|
x = xNext
|
|
}
|
|
}
|
|
|
|
const (
|
|
// almost256 scales a floating point value in the range [0, 1] to a uint8
|
|
// value in the range [0x00, 0xff].
|
|
//
|
|
// 255 is too small. Floating point math accumulates rounding errors, so a
|
|
// fully covered src value that would in ideal math be float32(1) might be
|
|
// float32(1-ε), and uint8(255 * (1-ε)) would be 0xfe instead of 0xff. The
|
|
// uint8 conversion rounds to zero, not to nearest.
|
|
//
|
|
// 256 is too big. If we multiplied by 256, below, then a fully covered src
|
|
// value of float32(1) would translate to uint8(256 * 1), which can be 0x00
|
|
// instead of the maximal value 0xff.
|
|
//
|
|
// math.Float32bits(almost256) is 0x437fffff.
|
|
almost256 = 255.99998
|
|
|
|
// almost65536 scales a floating point value in the range [0, 1] to a
|
|
// uint16 value in the range [0x0000, 0xffff].
|
|
//
|
|
// math.Float32bits(almost65536) is 0x477fffff.
|
|
almost65536 = almost256 * 256
|
|
)
|
|
|
|
func floatingAccumulateOpOver(dst []uint8, src []float32) {
|
|
acc := float32(0)
|
|
for i, v := range src {
|
|
acc += v
|
|
a := acc
|
|
if a < 0 {
|
|
a = -a
|
|
}
|
|
if a > 1 {
|
|
a = 1
|
|
}
|
|
// This algorithm comes from the standard library's image/draw package.
|
|
dstA := uint32(dst[i]) * 0x101
|
|
maskA := uint32(almost65536 * a)
|
|
outA := dstA*(0xffff-maskA)/0xffff + maskA
|
|
dst[i] = uint8(outA >> 8)
|
|
}
|
|
}
|
|
|
|
func floatingAccumulateOpSrc(dst []uint8, src []float32) {
|
|
// Sanity check that len(dst) >= len(src).
|
|
if len(dst) < len(src) {
|
|
return
|
|
}
|
|
|
|
acc := float32(0)
|
|
for i, v := range src {
|
|
acc += v
|
|
a := acc
|
|
if a < 0 {
|
|
a = -a
|
|
}
|
|
if a > 1 {
|
|
a = 1
|
|
}
|
|
dst[i] = uint8(almost256 * a)
|
|
}
|
|
}
|
|
|
|
func floatingAccumulateMask(dst []uint32, src []float32) {
|
|
acc := float32(0)
|
|
for i, v := range src {
|
|
acc += v
|
|
a := acc
|
|
if a < 0 {
|
|
a = -a
|
|
}
|
|
if a > 1 {
|
|
a = 1
|
|
}
|
|
dst[i] = uint32(almost65536 * a)
|
|
}
|
|
}
|