575b100276
benchmark old ns/op new ns/op delta BenchmarkTformNNSrcRGBA 524533 293230 -44.10% BenchmarkTformNNSrcUniform 362974 149389 -58.84% BenchmarkTformABSrcGray 827461 427720 -48.31% BenchmarkTformABSrcNRGBA 1286930 919391 -28.56% BenchmarkTformABSrcRGBA 1115444 794334 -28.79% BenchmarkTformABSrcYCbCr 1732420 1379846 -20.35% BenchmarkTformCRSrcGray 3629048 3467404 -4.45% BenchmarkTformCRSrcNRGBA 7569407 7418874 -1.99% BenchmarkTformCRSrcRGBA 7552459 7432745 -1.59% BenchmarkTformCRSrcYCbCr 8072351 7854715 -2.70% Change-Id: I6c01e631d9f88c36ae99d0cd181104ad5ac48db0 Reviewed-on: https://go-review.googlesource.com/7926 Reviewed-by: Rob Pike <r@golang.org>
457 lines
14 KiB
Go
457 lines
14 KiB
Go
// Copyright 2015 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package draw
|
|
|
|
import (
|
|
"bytes"
|
|
"flag"
|
|
"fmt"
|
|
"image"
|
|
"image/color"
|
|
"image/png"
|
|
"math/rand"
|
|
"os"
|
|
"reflect"
|
|
"testing"
|
|
|
|
"golang.org/x/image/math/f64"
|
|
|
|
_ "image/jpeg"
|
|
)
|
|
|
|
var genGoldenFiles = flag.Bool("gen_golden_files", false, "whether to generate the TestXxx golden files.")
|
|
|
|
var transformMatrix = func(tx, ty float64) *f64.Aff3 {
|
|
const scale, cos30, sin30 = 3.75, 0.866025404, 0.5
|
|
return &f64.Aff3{
|
|
+scale * cos30, -scale * sin30, tx,
|
|
+scale * sin30, +scale * cos30, ty,
|
|
}
|
|
}
|
|
|
|
func encode(filename string, m image.Image) error {
|
|
f, err := os.Create(filename)
|
|
if err != nil {
|
|
return fmt.Errorf("Create: %v", err)
|
|
}
|
|
defer f.Close()
|
|
if err := png.Encode(f, m); err != nil {
|
|
return fmt.Errorf("Encode: %v", err)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// testInterp tests that interpolating the source image gives the exact
|
|
// destination image. This is to ensure that any refactoring or optimization of
|
|
// the interpolation code doesn't change the behavior. Changing the actual
|
|
// algorithm or kernel used by any particular quality setting will obviously
|
|
// change the resultant pixels. In such a case, use the gen_golden_files flag
|
|
// to regenerate the golden files.
|
|
func testInterp(t *testing.T, w int, h int, direction, srcFilename string) {
|
|
f, err := os.Open("../testdata/go-turns-two-" + srcFilename)
|
|
if err != nil {
|
|
t.Fatalf("Open: %v", err)
|
|
}
|
|
defer f.Close()
|
|
src, _, err := image.Decode(f)
|
|
if err != nil {
|
|
t.Fatalf("Decode: %v", err)
|
|
}
|
|
testCases := map[string]Interpolator{
|
|
"nn": NearestNeighbor,
|
|
"ab": ApproxBiLinear,
|
|
"bl": BiLinear,
|
|
"cr": CatmullRom,
|
|
}
|
|
for name, q := range testCases {
|
|
goldenFilename := fmt.Sprintf("../testdata/go-turns-two-%s-%s.png", direction, name)
|
|
|
|
got := image.NewRGBA(image.Rect(0, 0, w, h))
|
|
if direction == "rotate" {
|
|
q.Transform(got, transformMatrix(40, 10), src, src.Bounds(), nil)
|
|
} else {
|
|
q.Scale(got, got.Bounds(), src, src.Bounds(), nil)
|
|
}
|
|
|
|
if *genGoldenFiles {
|
|
if err := encode(goldenFilename, got); err != nil {
|
|
t.Error(err)
|
|
}
|
|
continue
|
|
}
|
|
|
|
g, err := os.Open(goldenFilename)
|
|
if err != nil {
|
|
t.Errorf("Open: %v", err)
|
|
continue
|
|
}
|
|
defer g.Close()
|
|
wantRaw, err := png.Decode(g)
|
|
if err != nil {
|
|
t.Errorf("Decode: %v", err)
|
|
continue
|
|
}
|
|
// convert wantRaw to RGBA.
|
|
want, ok := wantRaw.(*image.RGBA)
|
|
if !ok {
|
|
b := wantRaw.Bounds()
|
|
want = image.NewRGBA(b)
|
|
Draw(want, b, wantRaw, b.Min, Src)
|
|
}
|
|
|
|
if !reflect.DeepEqual(got, want) {
|
|
t.Errorf("%s: actual image differs from golden image", goldenFilename)
|
|
continue
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestScaleDown(t *testing.T) { testInterp(t, 100, 100, "down", "280x360.jpeg") }
|
|
func TestScaleUp(t *testing.T) { testInterp(t, 75, 100, "up", "14x18.png") }
|
|
func TestTransform(t *testing.T) { testInterp(t, 100, 100, "rotate", "14x18.png") }
|
|
|
|
func fillPix(r *rand.Rand, pixs ...[]byte) {
|
|
for _, pix := range pixs {
|
|
for i := range pix {
|
|
pix[i] = uint8(r.Intn(256))
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestInterpClipCommute(t *testing.T) {
|
|
src := image.NewNRGBA(image.Rect(0, 0, 20, 20))
|
|
fillPix(rand.New(rand.NewSource(0)), src.Pix)
|
|
|
|
outer := image.Rect(1, 1, 8, 5)
|
|
inner := image.Rect(2, 3, 6, 5)
|
|
qs := []Interpolator{
|
|
NearestNeighbor,
|
|
ApproxBiLinear,
|
|
CatmullRom,
|
|
}
|
|
for _, transform := range []bool{false, true} {
|
|
for _, q := range qs {
|
|
dst0 := image.NewRGBA(image.Rect(1, 1, 10, 10))
|
|
dst1 := image.NewRGBA(image.Rect(1, 1, 10, 10))
|
|
for i := range dst0.Pix {
|
|
dst0.Pix[i] = uint8(i / 4)
|
|
dst1.Pix[i] = uint8(i / 4)
|
|
}
|
|
|
|
var interp func(dst *image.RGBA)
|
|
if transform {
|
|
interp = func(dst *image.RGBA) {
|
|
q.Transform(dst, transformMatrix(2, 1), src, src.Bounds(), nil)
|
|
}
|
|
} else {
|
|
interp = func(dst *image.RGBA) {
|
|
q.Scale(dst, outer, src, src.Bounds(), nil)
|
|
}
|
|
}
|
|
|
|
// Interpolate then clip.
|
|
interp(dst0)
|
|
dst0 = dst0.SubImage(inner).(*image.RGBA)
|
|
|
|
// Clip then interpolate.
|
|
dst1 = dst1.SubImage(inner).(*image.RGBA)
|
|
interp(dst1)
|
|
|
|
loop:
|
|
for y := inner.Min.Y; y < inner.Max.Y; y++ {
|
|
for x := inner.Min.X; x < inner.Max.X; x++ {
|
|
if c0, c1 := dst0.RGBAAt(x, y), dst1.RGBAAt(x, y); c0 != c1 {
|
|
t.Errorf("q=%T: at (%d, %d): c0=%v, c1=%v", q, x, y, c0, c1)
|
|
break loop
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// translatedImage is an image m translated by t.
|
|
type translatedImage struct {
|
|
m image.Image
|
|
t image.Point
|
|
}
|
|
|
|
func (t *translatedImage) At(x, y int) color.Color { return t.m.At(x-t.t.X, y-t.t.Y) }
|
|
func (t *translatedImage) Bounds() image.Rectangle { return t.m.Bounds().Add(t.t) }
|
|
func (t *translatedImage) ColorModel() color.Model { return t.m.ColorModel() }
|
|
|
|
// TestSrcTranslationInvariance tests that Scale and Transform are invariant
|
|
// under src translations. Specifically, when some source pixels are not in the
|
|
// bottom-right quadrant of src coordinate space, we consistently round down,
|
|
// not round towards zero.
|
|
func TestSrcTranslationInvariance(t *testing.T) {
|
|
f, err := os.Open("../testdata/testpattern.png")
|
|
if err != nil {
|
|
t.Fatalf("Open: %v", err)
|
|
}
|
|
defer f.Close()
|
|
src, _, err := image.Decode(f)
|
|
if err != nil {
|
|
t.Fatalf("Decode: %v", err)
|
|
}
|
|
sr := image.Rect(2, 3, 16, 12)
|
|
if !sr.In(src.Bounds()) {
|
|
t.Fatalf("src bounds too small: got %v", src.Bounds())
|
|
}
|
|
qs := []Interpolator{
|
|
NearestNeighbor,
|
|
ApproxBiLinear,
|
|
CatmullRom,
|
|
}
|
|
deltas := []image.Point{
|
|
{+0, +0},
|
|
{+0, +5},
|
|
{+0, -5},
|
|
{+5, +0},
|
|
{-5, +0},
|
|
{+8, +8},
|
|
{+8, -8},
|
|
{-8, +8},
|
|
{-8, -8},
|
|
}
|
|
m00 := transformMatrix(0, 0)
|
|
|
|
for _, transform := range []bool{false, true} {
|
|
for _, q := range qs {
|
|
want := image.NewRGBA(image.Rect(0, 0, 20, 20))
|
|
if transform {
|
|
q.Transform(want, m00, src, sr, nil)
|
|
} else {
|
|
q.Scale(want, want.Bounds(), src, sr, nil)
|
|
}
|
|
for _, delta := range deltas {
|
|
tsrc := &translatedImage{src, delta}
|
|
got := image.NewRGBA(image.Rect(0, 0, 20, 20))
|
|
if transform {
|
|
m := matMul(m00, &f64.Aff3{
|
|
1, 0, -float64(delta.X),
|
|
0, 1, -float64(delta.Y),
|
|
})
|
|
q.Transform(got, &m, tsrc, sr.Add(delta), nil)
|
|
} else {
|
|
q.Scale(got, got.Bounds(), tsrc, sr.Add(delta), nil)
|
|
}
|
|
if !bytes.Equal(got.Pix, want.Pix) {
|
|
t.Errorf("pix differ for delta=%v, transform=%t, q=%T", delta, transform, q)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// The fooWrapper types wrap the dst or src image to avoid triggering the
|
|
// type-specific fast path implementations.
|
|
type (
|
|
dstWrapper struct{ Image }
|
|
srcWrapper struct{ image.Image }
|
|
)
|
|
|
|
// TestFastPaths tests that the fast path implementations produce identical
|
|
// results to the generic implementation.
|
|
func TestFastPaths(t *testing.T) {
|
|
drs := []image.Rectangle{
|
|
image.Rect(0, 0, 10, 10), // The dst bounds.
|
|
image.Rect(3, 4, 8, 6), // A strict subset of the dst bounds.
|
|
image.Rect(-3, -5, 2, 4), // Partial out-of-bounds #0.
|
|
image.Rect(4, -2, 6, 12), // Partial out-of-bounds #1.
|
|
image.Rect(12, 14, 23, 45), // Complete out-of-bounds.
|
|
image.Rect(5, 5, 5, 5), // Empty.
|
|
}
|
|
srs := []image.Rectangle{
|
|
image.Rect(0, 0, 12, 9), // The src bounds.
|
|
image.Rect(2, 2, 10, 8), // A strict subset of the src bounds.
|
|
image.Rect(10, 5, 20, 20), // Partial out-of-bounds #0.
|
|
image.Rect(-40, 0, 40, 8), // Partial out-of-bounds #1.
|
|
image.Rect(-8, -8, -4, -4), // Complete out-of-bounds.
|
|
image.Rect(5, 5, 5, 5), // Empty.
|
|
}
|
|
srcfs := []func(image.Rectangle) (image.Image, error){
|
|
srcGray,
|
|
srcNRGBA,
|
|
srcRGBA,
|
|
srcUniform,
|
|
srcYCbCr,
|
|
}
|
|
var srcs []image.Image
|
|
for _, srcf := range srcfs {
|
|
src, err := srcf(srs[0])
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
srcs = append(srcs, src)
|
|
}
|
|
qs := []Interpolator{
|
|
NearestNeighbor,
|
|
ApproxBiLinear,
|
|
CatmullRom,
|
|
}
|
|
blue := image.NewUniform(color.RGBA{0x11, 0x22, 0x44, 0x7f})
|
|
|
|
for _, dr := range drs {
|
|
for _, src := range srcs {
|
|
for _, sr := range srs {
|
|
for _, transform := range []bool{false, true} {
|
|
for _, q := range qs {
|
|
dst0 := image.NewRGBA(drs[0])
|
|
dst1 := image.NewRGBA(drs[0])
|
|
Draw(dst0, dst0.Bounds(), blue, image.Point{}, Src)
|
|
Draw(dstWrapper{dst1}, dst1.Bounds(), srcWrapper{blue}, image.Point{}, Src)
|
|
|
|
if transform {
|
|
m := transformMatrix(2, 1)
|
|
q.Transform(dst0, m, src, sr, nil)
|
|
q.Transform(dstWrapper{dst1}, m, srcWrapper{src}, sr, nil)
|
|
} else {
|
|
q.Scale(dst0, dr, src, sr, nil)
|
|
q.Scale(dstWrapper{dst1}, dr, srcWrapper{src}, sr, nil)
|
|
}
|
|
|
|
if !bytes.Equal(dst0.Pix, dst1.Pix) {
|
|
t.Errorf("pix differ for dr=%v, src=%T, sr=%v, transform=%t, q=%T",
|
|
dr, src, sr, transform, q)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func srcGray(boundsHint image.Rectangle) (image.Image, error) {
|
|
m := image.NewGray(boundsHint)
|
|
fillPix(rand.New(rand.NewSource(0)), m.Pix)
|
|
return m, nil
|
|
}
|
|
|
|
func srcNRGBA(boundsHint image.Rectangle) (image.Image, error) {
|
|
m := image.NewNRGBA(boundsHint)
|
|
fillPix(rand.New(rand.NewSource(1)), m.Pix)
|
|
return m, nil
|
|
}
|
|
|
|
func srcRGBA(boundsHint image.Rectangle) (image.Image, error) {
|
|
m := image.NewRGBA(boundsHint)
|
|
fillPix(rand.New(rand.NewSource(2)), m.Pix)
|
|
// RGBA is alpha-premultiplied, so the R, G and B values should
|
|
// be <= the A values.
|
|
for i := 0; i < len(m.Pix); i += 4 {
|
|
m.Pix[i+0] = uint8(uint32(m.Pix[i+0]) * uint32(m.Pix[i+3]) / 0xff)
|
|
m.Pix[i+1] = uint8(uint32(m.Pix[i+1]) * uint32(m.Pix[i+3]) / 0xff)
|
|
m.Pix[i+2] = uint8(uint32(m.Pix[i+2]) * uint32(m.Pix[i+3]) / 0xff)
|
|
}
|
|
return m, nil
|
|
}
|
|
|
|
func srcUniform(boundsHint image.Rectangle) (image.Image, error) {
|
|
return image.NewUniform(color.RGBA64{0x1234, 0x5555, 0x9181, 0xbeef}), nil
|
|
}
|
|
|
|
func srcYCbCr(boundsHint image.Rectangle) (image.Image, error) {
|
|
m := image.NewYCbCr(boundsHint, image.YCbCrSubsampleRatio420)
|
|
fillPix(rand.New(rand.NewSource(3)), m.Y, m.Cb, m.Cr)
|
|
return m, nil
|
|
}
|
|
|
|
func srcYCbCrLarge(boundsHint image.Rectangle) (image.Image, error) {
|
|
// 3072 x 2304 is over 7 million pixels at 4:3, comparable to a
|
|
// 2015 smart-phone camera's output.
|
|
return srcYCbCr(image.Rect(0, 0, 3072, 2304))
|
|
}
|
|
|
|
func srcTux(boundsHint image.Rectangle) (image.Image, error) {
|
|
// tux.png is a 386 x 395 image.
|
|
f, err := os.Open("../testdata/tux.png")
|
|
if err != nil {
|
|
return nil, fmt.Errorf("Open: %v", err)
|
|
}
|
|
defer f.Close()
|
|
src, err := png.Decode(f)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("Decode: %v", err)
|
|
}
|
|
return src, nil
|
|
}
|
|
|
|
func benchScale(b *testing.B, srcf func(image.Rectangle) (image.Image, error), w int, h int, q Interpolator) {
|
|
dst := image.NewRGBA(image.Rect(0, 0, w, h))
|
|
src, err := srcf(image.Rect(0, 0, 1024, 768))
|
|
if err != nil {
|
|
b.Fatal(err)
|
|
}
|
|
dr, sr := dst.Bounds(), src.Bounds()
|
|
scaler := Scaler(q)
|
|
if n, ok := q.(interface {
|
|
NewScaler(int, int, int, int) Scaler
|
|
}); ok {
|
|
scaler = n.NewScaler(dr.Dx(), dr.Dy(), sr.Dx(), sr.Dy())
|
|
}
|
|
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
scaler.Scale(dst, dr, src, sr, nil)
|
|
}
|
|
}
|
|
|
|
func benchTform(b *testing.B, srcf func(image.Rectangle) (image.Image, error), w int, h int, q Interpolator) {
|
|
dst := image.NewRGBA(image.Rect(0, 0, w, h))
|
|
src, err := srcf(image.Rect(0, 0, 1024, 768))
|
|
if err != nil {
|
|
b.Fatal(err)
|
|
}
|
|
sr := src.Bounds()
|
|
m := transformMatrix(40, 10)
|
|
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
q.Transform(dst, m, src, sr, nil)
|
|
}
|
|
}
|
|
|
|
func BenchmarkScaleNNLargeDown(b *testing.B) { benchScale(b, srcYCbCrLarge, 200, 150, NearestNeighbor) }
|
|
func BenchmarkScaleABLargeDown(b *testing.B) { benchScale(b, srcYCbCrLarge, 200, 150, ApproxBiLinear) }
|
|
func BenchmarkScaleBLLargeDown(b *testing.B) { benchScale(b, srcYCbCrLarge, 200, 150, BiLinear) }
|
|
func BenchmarkScaleCRLargeDown(b *testing.B) { benchScale(b, srcYCbCrLarge, 200, 150, CatmullRom) }
|
|
|
|
func BenchmarkScaleNNDown(b *testing.B) { benchScale(b, srcTux, 120, 80, NearestNeighbor) }
|
|
func BenchmarkScaleABDown(b *testing.B) { benchScale(b, srcTux, 120, 80, ApproxBiLinear) }
|
|
func BenchmarkScaleBLDown(b *testing.B) { benchScale(b, srcTux, 120, 80, BiLinear) }
|
|
func BenchmarkScaleCRDown(b *testing.B) { benchScale(b, srcTux, 120, 80, CatmullRom) }
|
|
|
|
func BenchmarkScaleNNUp(b *testing.B) { benchScale(b, srcTux, 800, 600, NearestNeighbor) }
|
|
func BenchmarkScaleABUp(b *testing.B) { benchScale(b, srcTux, 800, 600, ApproxBiLinear) }
|
|
func BenchmarkScaleBLUp(b *testing.B) { benchScale(b, srcTux, 800, 600, BiLinear) }
|
|
func BenchmarkScaleCRUp(b *testing.B) { benchScale(b, srcTux, 800, 600, CatmullRom) }
|
|
|
|
func BenchmarkScaleNNSrcRGBA(b *testing.B) { benchScale(b, srcRGBA, 200, 150, NearestNeighbor) }
|
|
func BenchmarkScaleNNSrcUniform(b *testing.B) { benchScale(b, srcUniform, 200, 150, NearestNeighbor) }
|
|
|
|
func BenchmarkTformNNSrcRGBA(b *testing.B) { benchTform(b, srcRGBA, 200, 150, NearestNeighbor) }
|
|
func BenchmarkTformNNSrcUniform(b *testing.B) { benchTform(b, srcUniform, 200, 150, NearestNeighbor) }
|
|
|
|
func BenchmarkScaleABSrcGray(b *testing.B) { benchScale(b, srcGray, 200, 150, ApproxBiLinear) }
|
|
func BenchmarkScaleABSrcNRGBA(b *testing.B) { benchScale(b, srcNRGBA, 200, 150, ApproxBiLinear) }
|
|
func BenchmarkScaleABSrcRGBA(b *testing.B) { benchScale(b, srcRGBA, 200, 150, ApproxBiLinear) }
|
|
func BenchmarkScaleABSrcYCbCr(b *testing.B) { benchScale(b, srcYCbCr, 200, 150, ApproxBiLinear) }
|
|
|
|
func BenchmarkTformABSrcGray(b *testing.B) { benchTform(b, srcGray, 200, 150, ApproxBiLinear) }
|
|
func BenchmarkTformABSrcNRGBA(b *testing.B) { benchTform(b, srcNRGBA, 200, 150, ApproxBiLinear) }
|
|
func BenchmarkTformABSrcRGBA(b *testing.B) { benchTform(b, srcRGBA, 200, 150, ApproxBiLinear) }
|
|
func BenchmarkTformABSrcYCbCr(b *testing.B) { benchTform(b, srcYCbCr, 200, 150, ApproxBiLinear) }
|
|
|
|
func BenchmarkScaleCRSrcGray(b *testing.B) { benchScale(b, srcGray, 200, 150, CatmullRom) }
|
|
func BenchmarkScaleCRSrcNRGBA(b *testing.B) { benchScale(b, srcNRGBA, 200, 150, CatmullRom) }
|
|
func BenchmarkScaleCRSrcRGBA(b *testing.B) { benchScale(b, srcRGBA, 200, 150, CatmullRom) }
|
|
func BenchmarkScaleCRSrcYCbCr(b *testing.B) { benchScale(b, srcYCbCr, 200, 150, CatmullRom) }
|
|
|
|
func BenchmarkTformCRSrcGray(b *testing.B) { benchTform(b, srcGray, 200, 150, CatmullRom) }
|
|
func BenchmarkTformCRSrcNRGBA(b *testing.B) { benchTform(b, srcNRGBA, 200, 150, CatmullRom) }
|
|
func BenchmarkTformCRSrcRGBA(b *testing.B) { benchTform(b, srcRGBA, 200, 150, CatmullRom) }
|
|
func BenchmarkTformCRSrcYCbCr(b *testing.B) { benchTform(b, srcYCbCr, 200, 150, CatmullRom) }
|