golang-image/draw/impl.go
Nigel Tao 500a27f912 draw: optimize some multiply-by-zeroes in Kernel.Transform.
benchmark                      old ns/op     new ns/op     delta
BenchmarkTformCRSrcGray        5096041       4820642       -5.40%
BenchmarkTformCRSrcNRGBA       10476578      8414331       -19.68%
BenchmarkTformCRSrcRGBA        10361135      7954413       -23.23%
BenchmarkTformCRSrcYCbCr       11952218      9824899       -17.80%

Change-Id: I8b4cfe68ecae85e447ae65ceecf185261445a8a2
Reviewed-on: https://go-review.googlesource.com/7991
Reviewed-by: Rob Pike <r@golang.org>
2015-03-25 21:02:11 +00:00

4645 lines
141 KiB
Go

// generated by "go run gen.go". DO NOT EDIT.
package draw
import (
"image"
"image/color"
"math"
"golang.org/x/image/math/f64"
)
func (z nnInterpolator) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
// adr is the affected destination pixels, relative to dr.Min.
adr := dst.Bounds().Intersect(dr).Sub(dr.Min)
if adr.Empty() || sr.Empty() {
return
}
// sr is the source pixels. If it extends beyond the src bounds,
// we cannot use the type-specific fast paths, as they access
// the Pix fields directly without bounds checking.
if !sr.In(src.Bounds()) {
z.scale_Image_Image(dst, dr, adr, src, sr)
} else if _, ok := src.(*image.Uniform); ok {
// TODO: get the Op from opts.
Draw(dst, dr, src, src.Bounds().Min, Src)
} else {
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.Gray:
z.scale_RGBA_Gray(dst, dr, adr, src, sr)
case *image.NRGBA:
z.scale_RGBA_NRGBA(dst, dr, adr, src, sr)
case *image.RGBA:
z.scale_RGBA_RGBA(dst, dr, adr, src, sr)
case *image.YCbCr:
switch src.SubsampleRatio {
default:
z.scale_RGBA_Image(dst, dr, adr, src, sr)
case image.YCbCrSubsampleRatio444:
z.scale_RGBA_YCbCr444(dst, dr, adr, src, sr)
case image.YCbCrSubsampleRatio422:
z.scale_RGBA_YCbCr422(dst, dr, adr, src, sr)
case image.YCbCrSubsampleRatio420:
z.scale_RGBA_YCbCr420(dst, dr, adr, src, sr)
case image.YCbCrSubsampleRatio440:
z.scale_RGBA_YCbCr440(dst, dr, adr, src, sr)
}
default:
z.scale_RGBA_Image(dst, dr, adr, src, sr)
}
default:
switch src := src.(type) {
default:
z.scale_Image_Image(dst, dr, adr, src, sr)
}
}
}
}
func (z nnInterpolator) Transform(dst Image, s2d *f64.Aff3, src image.Image, sr image.Rectangle, opts *Options) {
dr := transformRect(s2d, &sr)
// adr is the affected destination pixels.
adr := dst.Bounds().Intersect(dr)
if adr.Empty() || sr.Empty() {
return
}
d2s := invert(s2d)
// bias is a translation of the mapping from dst co-ordinates to
// src co-ordinates such that the latter temporarily have
// non-negative X and Y co-ordinates. This allows us to write
// int(f) instead of int(math.Floor(f)), since "round to zero" and
// "round down" are equivalent when f >= 0, but the former is much
// cheaper. The X-- and Y-- are because the TransformLeaf methods
// have a "sx -= 0.5" adjustment.
bias := transformRect(&d2s, &adr).Min
bias.X--
bias.Y--
d2s[2] -= float64(bias.X)
d2s[5] -= float64(bias.Y)
// Make adr relative to dr.Min.
adr = adr.Sub(dr.Min)
// sr is the source pixels. If it extends beyond the src bounds,
// we cannot use the type-specific fast paths, as they access
// the Pix fields directly without bounds checking.
if !sr.In(src.Bounds()) {
z.transform_Image_Image(dst, dr, adr, &d2s, src, sr, bias)
} else if u, ok := src.(*image.Uniform); ok {
// TODO: get the Op from opts.
transform_Uniform(dst, dr, adr, &d2s, u, sr, bias, Src)
} else {
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.Gray:
z.transform_RGBA_Gray(dst, dr, adr, &d2s, src, sr, bias)
case *image.NRGBA:
z.transform_RGBA_NRGBA(dst, dr, adr, &d2s, src, sr, bias)
case *image.RGBA:
z.transform_RGBA_RGBA(dst, dr, adr, &d2s, src, sr, bias)
case *image.YCbCr:
switch src.SubsampleRatio {
default:
z.transform_RGBA_Image(dst, dr, adr, &d2s, src, sr, bias)
case image.YCbCrSubsampleRatio444:
z.transform_RGBA_YCbCr444(dst, dr, adr, &d2s, src, sr, bias)
case image.YCbCrSubsampleRatio422:
z.transform_RGBA_YCbCr422(dst, dr, adr, &d2s, src, sr, bias)
case image.YCbCrSubsampleRatio420:
z.transform_RGBA_YCbCr420(dst, dr, adr, &d2s, src, sr, bias)
case image.YCbCrSubsampleRatio440:
z.transform_RGBA_YCbCr440(dst, dr, adr, &d2s, src, sr, bias)
}
default:
z.transform_RGBA_Image(dst, dr, adr, &d2s, src, sr, bias)
}
default:
switch src := src.(type) {
default:
z.transform_Image_Image(dst, dr, adr, &d2s, src, sr, bias)
}
}
}
}
func (nnInterpolator) scale_RGBA_Gray(dst *image.RGBA, dr, adr image.Rectangle, src *image.Gray, sr image.Rectangle) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx) - src.Rect.Min.X)
pr := uint32(src.Pix[pi]) * 0x101
out := uint8(uint32(pr) >> 8)
dst.Pix[d+0] = out
dst.Pix[d+1] = out
dst.Pix[d+2] = out
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) scale_RGBA_NRGBA(dst *image.RGBA, dr, adr image.Rectangle, src *image.NRGBA, sr image.Rectangle) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx)-src.Rect.Min.X)*4
pa := uint32(src.Pix[pi+3]) * 0x101
pr := uint32(src.Pix[pi+0]) * pa / 0xff
pg := uint32(src.Pix[pi+1]) * pa / 0xff
pb := uint32(src.Pix[pi+2]) * pa / 0xff
dst.Pix[d+0] = uint8(uint32(pr) >> 8)
dst.Pix[d+1] = uint8(uint32(pg) >> 8)
dst.Pix[d+2] = uint8(uint32(pb) >> 8)
dst.Pix[d+3] = uint8(uint32(pa) >> 8)
}
}
}
func (nnInterpolator) scale_RGBA_RGBA(dst *image.RGBA, dr, adr image.Rectangle, src *image.RGBA, sr image.Rectangle) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx)-src.Rect.Min.X)*4
pr := uint32(src.Pix[pi+0]) * 0x101
pg := uint32(src.Pix[pi+1]) * 0x101
pb := uint32(src.Pix[pi+2]) * 0x101
pa := uint32(src.Pix[pi+3]) * 0x101
dst.Pix[d+0] = uint8(uint32(pr) >> 8)
dst.Pix[d+1] = uint8(uint32(pg) >> 8)
dst.Pix[d+2] = uint8(uint32(pb) >> 8)
dst.Pix[d+3] = uint8(uint32(pa) >> 8)
}
}
}
func (nnInterpolator) scale_RGBA_YCbCr444(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X)
pj := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
pyy1 := int(src.Y[pi])<<16 + 1<<15
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr8 := (pyy1 + 91881*pcr1) >> 16
pg8 := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 16
pb8 := (pyy1 + 116130*pcb1) >> 16
if pr8 < 0 {
pr8 = 0
} else if pr8 > 0xff {
pr8 = 0xff
}
if pg8 < 0 {
pg8 = 0
} else if pg8 > 0xff {
pg8 = 0xff
}
if pb8 < 0 {
pb8 = 0
} else if pb8 > 0xff {
pb8 = 0xff
}
pr := uint32(pr8) * 0x101
pg := uint32(pg8) * 0x101
pb := uint32(pb8) * 0x101
dst.Pix[d+0] = uint8(uint32(pr) >> 8)
dst.Pix[d+1] = uint8(uint32(pg) >> 8)
dst.Pix[d+2] = uint8(uint32(pb) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) scale_RGBA_YCbCr422(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X)
pj := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
pyy1 := int(src.Y[pi])<<16 + 1<<15
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr8 := (pyy1 + 91881*pcr1) >> 16
pg8 := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 16
pb8 := (pyy1 + 116130*pcb1) >> 16
if pr8 < 0 {
pr8 = 0
} else if pr8 > 0xff {
pr8 = 0xff
}
if pg8 < 0 {
pg8 = 0
} else if pg8 > 0xff {
pg8 = 0xff
}
if pb8 < 0 {
pb8 = 0
} else if pb8 > 0xff {
pb8 = 0xff
}
pr := uint32(pr8) * 0x101
pg := uint32(pg8) * 0x101
pb := uint32(pb8) * 0x101
dst.Pix[d+0] = uint8(uint32(pr) >> 8)
dst.Pix[d+1] = uint8(uint32(pg) >> 8)
dst.Pix[d+2] = uint8(uint32(pb) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) scale_RGBA_YCbCr420(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X)
pj := ((sr.Min.Y+int(sy))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
pyy1 := int(src.Y[pi])<<16 + 1<<15
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr8 := (pyy1 + 91881*pcr1) >> 16
pg8 := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 16
pb8 := (pyy1 + 116130*pcb1) >> 16
if pr8 < 0 {
pr8 = 0
} else if pr8 > 0xff {
pr8 = 0xff
}
if pg8 < 0 {
pg8 = 0
} else if pg8 > 0xff {
pg8 = 0xff
}
if pb8 < 0 {
pb8 = 0
} else if pb8 > 0xff {
pb8 = 0xff
}
pr := uint32(pr8) * 0x101
pg := uint32(pg8) * 0x101
pb := uint32(pb8) * 0x101
dst.Pix[d+0] = uint8(uint32(pr) >> 8)
dst.Pix[d+1] = uint8(uint32(pg) >> 8)
dst.Pix[d+2] = uint8(uint32(pb) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) scale_RGBA_YCbCr440(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X)
pj := ((sr.Min.Y+int(sy))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
pyy1 := int(src.Y[pi])<<16 + 1<<15
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr8 := (pyy1 + 91881*pcr1) >> 16
pg8 := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 16
pb8 := (pyy1 + 116130*pcb1) >> 16
if pr8 < 0 {
pr8 = 0
} else if pr8 > 0xff {
pr8 = 0xff
}
if pg8 < 0 {
pg8 = 0
} else if pg8 > 0xff {
pg8 = 0xff
}
if pb8 < 0 {
pb8 = 0
} else if pb8 > 0xff {
pb8 = 0xff
}
pr := uint32(pr8) * 0x101
pg := uint32(pg8) * 0x101
pb := uint32(pb8) * 0x101
dst.Pix[d+0] = uint8(uint32(pr) >> 8)
dst.Pix[d+1] = uint8(uint32(pg) >> 8)
dst.Pix[d+2] = uint8(uint32(pb) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) scale_RGBA_Image(dst *image.RGBA, dr, adr image.Rectangle, src image.Image, sr image.Rectangle) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pr, pg, pb, pa := src.At(sr.Min.X+int(sx), sr.Min.Y+int(sy)).RGBA()
dst.Pix[d+0] = uint8(uint32(pr) >> 8)
dst.Pix[d+1] = uint8(uint32(pg) >> 8)
dst.Pix[d+2] = uint8(uint32(pb) >> 8)
dst.Pix[d+3] = uint8(uint32(pa) >> 8)
}
}
}
func (nnInterpolator) scale_Image_Image(dst Image, dr, adr image.Rectangle, src image.Image, sr image.Rectangle) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
sx := (2*uint64(dx) + 1) * sw / dw2
pr, pg, pb, pa := src.At(sr.Min.X+int(sx), sr.Min.Y+int(sy)).RGBA()
dstColorRGBA64.R = uint16(pr)
dstColorRGBA64.G = uint16(pg)
dstColorRGBA64.B = uint16(pb)
dstColorRGBA64.A = uint16(pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}
func (nnInterpolator) transform_RGBA_Gray(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Gray, sr image.Rectangle, bias image.Point) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0 - src.Rect.Min.X)
pr := uint32(src.Pix[pi]) * 0x101
out := uint8(uint32(pr) >> 8)
dst.Pix[d+0] = out
dst.Pix[d+1] = out
dst.Pix[d+2] = out
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) transform_RGBA_NRGBA(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
pa := uint32(src.Pix[pi+3]) * 0x101
pr := uint32(src.Pix[pi+0]) * pa / 0xff
pg := uint32(src.Pix[pi+1]) * pa / 0xff
pb := uint32(src.Pix[pi+2]) * pa / 0xff
dst.Pix[d+0] = uint8(uint32(pr) >> 8)
dst.Pix[d+1] = uint8(uint32(pg) >> 8)
dst.Pix[d+2] = uint8(uint32(pb) >> 8)
dst.Pix[d+3] = uint8(uint32(pa) >> 8)
}
}
}
func (nnInterpolator) transform_RGBA_RGBA(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
pr := uint32(src.Pix[pi+0]) * 0x101
pg := uint32(src.Pix[pi+1]) * 0x101
pb := uint32(src.Pix[pi+2]) * 0x101
pa := uint32(src.Pix[pi+3]) * 0x101
dst.Pix[d+0] = uint8(uint32(pr) >> 8)
dst.Pix[d+1] = uint8(uint32(pg) >> 8)
dst.Pix[d+2] = uint8(uint32(pb) >> 8)
dst.Pix[d+3] = uint8(uint32(pa) >> 8)
}
}
}
func (nnInterpolator) transform_RGBA_YCbCr444(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
pj := (sy0-src.Rect.Min.Y)*src.CStride + (sx0 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
pyy1 := int(src.Y[pi])<<16 + 1<<15
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr8 := (pyy1 + 91881*pcr1) >> 16
pg8 := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 16
pb8 := (pyy1 + 116130*pcb1) >> 16
if pr8 < 0 {
pr8 = 0
} else if pr8 > 0xff {
pr8 = 0xff
}
if pg8 < 0 {
pg8 = 0
} else if pg8 > 0xff {
pg8 = 0xff
}
if pb8 < 0 {
pb8 = 0
} else if pb8 > 0xff {
pb8 = 0xff
}
pr := uint32(pr8) * 0x101
pg := uint32(pg8) * 0x101
pb := uint32(pb8) * 0x101
dst.Pix[d+0] = uint8(uint32(pr) >> 8)
dst.Pix[d+1] = uint8(uint32(pg) >> 8)
dst.Pix[d+2] = uint8(uint32(pb) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) transform_RGBA_YCbCr422(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
pj := (sy0-src.Rect.Min.Y)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
pyy1 := int(src.Y[pi])<<16 + 1<<15
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr8 := (pyy1 + 91881*pcr1) >> 16
pg8 := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 16
pb8 := (pyy1 + 116130*pcb1) >> 16
if pr8 < 0 {
pr8 = 0
} else if pr8 > 0xff {
pr8 = 0xff
}
if pg8 < 0 {
pg8 = 0
} else if pg8 > 0xff {
pg8 = 0xff
}
if pb8 < 0 {
pb8 = 0
} else if pb8 > 0xff {
pb8 = 0xff
}
pr := uint32(pr8) * 0x101
pg := uint32(pg8) * 0x101
pb := uint32(pb8) * 0x101
dst.Pix[d+0] = uint8(uint32(pr) >> 8)
dst.Pix[d+1] = uint8(uint32(pg) >> 8)
dst.Pix[d+2] = uint8(uint32(pb) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) transform_RGBA_YCbCr420(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
pj := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
pyy1 := int(src.Y[pi])<<16 + 1<<15
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr8 := (pyy1 + 91881*pcr1) >> 16
pg8 := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 16
pb8 := (pyy1 + 116130*pcb1) >> 16
if pr8 < 0 {
pr8 = 0
} else if pr8 > 0xff {
pr8 = 0xff
}
if pg8 < 0 {
pg8 = 0
} else if pg8 > 0xff {
pg8 = 0xff
}
if pb8 < 0 {
pb8 = 0
} else if pb8 > 0xff {
pb8 = 0xff
}
pr := uint32(pr8) * 0x101
pg := uint32(pg8) * 0x101
pb := uint32(pb8) * 0x101
dst.Pix[d+0] = uint8(uint32(pr) >> 8)
dst.Pix[d+1] = uint8(uint32(pg) >> 8)
dst.Pix[d+2] = uint8(uint32(pb) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) transform_RGBA_YCbCr440(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
pj := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + (sx0 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
pyy1 := int(src.Y[pi])<<16 + 1<<15
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr8 := (pyy1 + 91881*pcr1) >> 16
pg8 := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 16
pb8 := (pyy1 + 116130*pcb1) >> 16
if pr8 < 0 {
pr8 = 0
} else if pr8 > 0xff {
pr8 = 0xff
}
if pg8 < 0 {
pg8 = 0
} else if pg8 > 0xff {
pg8 = 0xff
}
if pb8 < 0 {
pb8 = 0
} else if pb8 > 0xff {
pb8 = 0xff
}
pr := uint32(pr8) * 0x101
pg := uint32(pg8) * 0x101
pb := uint32(pb8) * 0x101
dst.Pix[d+0] = uint8(uint32(pr) >> 8)
dst.Pix[d+1] = uint8(uint32(pg) >> 8)
dst.Pix[d+2] = uint8(uint32(pb) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) transform_RGBA_Image(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pr, pg, pb, pa := src.At(sx0, sy0).RGBA()
dst.Pix[d+0] = uint8(uint32(pr) >> 8)
dst.Pix[d+1] = uint8(uint32(pg) >> 8)
dst.Pix[d+2] = uint8(uint32(pb) >> 8)
dst.Pix[d+3] = uint8(uint32(pa) >> 8)
}
}
}
func (nnInterpolator) transform_Image_Image(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point) {
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pr, pg, pb, pa := src.At(sx0, sy0).RGBA()
dstColorRGBA64.R = uint16(pr)
dstColorRGBA64.G = uint16(pg)
dstColorRGBA64.B = uint16(pb)
dstColorRGBA64.A = uint16(pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}
func (z ablInterpolator) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
// adr is the affected destination pixels, relative to dr.Min.
adr := dst.Bounds().Intersect(dr).Sub(dr.Min)
if adr.Empty() || sr.Empty() {
return
}
// sr is the source pixels. If it extends beyond the src bounds,
// we cannot use the type-specific fast paths, as they access
// the Pix fields directly without bounds checking.
if !sr.In(src.Bounds()) {
z.scale_Image_Image(dst, dr, adr, src, sr)
} else if _, ok := src.(*image.Uniform); ok {
// TODO: get the Op from opts.
Draw(dst, dr, src, src.Bounds().Min, Src)
} else {
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.Gray:
z.scale_RGBA_Gray(dst, dr, adr, src, sr)
case *image.NRGBA:
z.scale_RGBA_NRGBA(dst, dr, adr, src, sr)
case *image.RGBA:
z.scale_RGBA_RGBA(dst, dr, adr, src, sr)
case *image.YCbCr:
switch src.SubsampleRatio {
default:
z.scale_RGBA_Image(dst, dr, adr, src, sr)
case image.YCbCrSubsampleRatio444:
z.scale_RGBA_YCbCr444(dst, dr, adr, src, sr)
case image.YCbCrSubsampleRatio422:
z.scale_RGBA_YCbCr422(dst, dr, adr, src, sr)
case image.YCbCrSubsampleRatio420:
z.scale_RGBA_YCbCr420(dst, dr, adr, src, sr)
case image.YCbCrSubsampleRatio440:
z.scale_RGBA_YCbCr440(dst, dr, adr, src, sr)
}
default:
z.scale_RGBA_Image(dst, dr, adr, src, sr)
}
default:
switch src := src.(type) {
default:
z.scale_Image_Image(dst, dr, adr, src, sr)
}
}
}
}
func (z ablInterpolator) Transform(dst Image, s2d *f64.Aff3, src image.Image, sr image.Rectangle, opts *Options) {
dr := transformRect(s2d, &sr)
// adr is the affected destination pixels.
adr := dst.Bounds().Intersect(dr)
if adr.Empty() || sr.Empty() {
return
}
d2s := invert(s2d)
// bias is a translation of the mapping from dst co-ordinates to
// src co-ordinates such that the latter temporarily have
// non-negative X and Y co-ordinates. This allows us to write
// int(f) instead of int(math.Floor(f)), since "round to zero" and
// "round down" are equivalent when f >= 0, but the former is much
// cheaper. The X-- and Y-- are because the TransformLeaf methods
// have a "sx -= 0.5" adjustment.
bias := transformRect(&d2s, &adr).Min
bias.X--
bias.Y--
d2s[2] -= float64(bias.X)
d2s[5] -= float64(bias.Y)
// Make adr relative to dr.Min.
adr = adr.Sub(dr.Min)
// sr is the source pixels. If it extends beyond the src bounds,
// we cannot use the type-specific fast paths, as they access
// the Pix fields directly without bounds checking.
if !sr.In(src.Bounds()) {
z.transform_Image_Image(dst, dr, adr, &d2s, src, sr, bias)
} else if u, ok := src.(*image.Uniform); ok {
// TODO: get the Op from opts.
transform_Uniform(dst, dr, adr, &d2s, u, sr, bias, Src)
} else {
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.Gray:
z.transform_RGBA_Gray(dst, dr, adr, &d2s, src, sr, bias)
case *image.NRGBA:
z.transform_RGBA_NRGBA(dst, dr, adr, &d2s, src, sr, bias)
case *image.RGBA:
z.transform_RGBA_RGBA(dst, dr, adr, &d2s, src, sr, bias)
case *image.YCbCr:
switch src.SubsampleRatio {
default:
z.transform_RGBA_Image(dst, dr, adr, &d2s, src, sr, bias)
case image.YCbCrSubsampleRatio444:
z.transform_RGBA_YCbCr444(dst, dr, adr, &d2s, src, sr, bias)
case image.YCbCrSubsampleRatio422:
z.transform_RGBA_YCbCr422(dst, dr, adr, &d2s, src, sr, bias)
case image.YCbCrSubsampleRatio420:
z.transform_RGBA_YCbCr420(dst, dr, adr, &d2s, src, sr, bias)
case image.YCbCrSubsampleRatio440:
z.transform_RGBA_YCbCr440(dst, dr, adr, &d2s, src, sr, bias)
}
default:
z.transform_RGBA_Image(dst, dr, adr, &d2s, src, sr, bias)
}
default:
switch src := src.(type) {
default:
z.transform_Image_Image(dst, dr, adr, &d2s, src, sr, bias)
}
}
}
}
func (ablInterpolator) scale_RGBA_Gray(dst *image.RGBA, dr, adr image.Rectangle, src *image.Gray, sr image.Rectangle) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s00ru := uint32(src.Pix[s00i]) * 0x101
s00r := float64(s00ru)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s10ru := uint32(src.Pix[s10i]) * 0x101
s10r := float64(s10ru)
s10r = xFrac1*s00r + xFrac0*s10r
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s01ru := uint32(src.Pix[s01i]) * 0x101
s01r := float64(s01ru)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s11ru := uint32(src.Pix[s11i]) * 0x101
s11r := float64(s11ru)
s11r = xFrac1*s01r + xFrac0*s11r
s11r = yFrac1*s10r + yFrac0*s11r
out := uint8(uint32(s11r) >> 8)
dst.Pix[d+0] = out
dst.Pix[d+1] = out
dst.Pix[d+2] = out
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) scale_RGBA_NRGBA(dst *image.RGBA, dr, adr image.Rectangle, src *image.NRGBA, sr image.Rectangle) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
s00au := uint32(src.Pix[s00i+3]) * 0x101
s00ru := uint32(src.Pix[s00i+0]) * s00au / 0xff
s00gu := uint32(src.Pix[s00i+1]) * s00au / 0xff
s00bu := uint32(src.Pix[s00i+2]) * s00au / 0xff
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
s10au := uint32(src.Pix[s10i+3]) * 0x101
s10ru := uint32(src.Pix[s10i+0]) * s10au / 0xff
s10gu := uint32(src.Pix[s10i+1]) * s10au / 0xff
s10bu := uint32(src.Pix[s10i+2]) * s10au / 0xff
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
s01au := uint32(src.Pix[s01i+3]) * 0x101
s01ru := uint32(src.Pix[s01i+0]) * s01au / 0xff
s01gu := uint32(src.Pix[s01i+1]) * s01au / 0xff
s01bu := uint32(src.Pix[s01i+2]) * s01au / 0xff
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
s11au := uint32(src.Pix[s11i+3]) * 0x101
s11ru := uint32(src.Pix[s11i+0]) * s11au / 0xff
s11gu := uint32(src.Pix[s11i+1]) * s11au / 0xff
s11bu := uint32(src.Pix[s11i+2]) * s11au / 0xff
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
dst.Pix[d+0] = uint8(uint32(s11r) >> 8)
dst.Pix[d+1] = uint8(uint32(s11g) >> 8)
dst.Pix[d+2] = uint8(uint32(s11b) >> 8)
dst.Pix[d+3] = uint8(uint32(s11a) >> 8)
}
}
}
func (ablInterpolator) scale_RGBA_RGBA(dst *image.RGBA, dr, adr image.Rectangle, src *image.RGBA, sr image.Rectangle) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
s00ru := uint32(src.Pix[s00i+0]) * 0x101
s00gu := uint32(src.Pix[s00i+1]) * 0x101
s00bu := uint32(src.Pix[s00i+2]) * 0x101
s00au := uint32(src.Pix[s00i+3]) * 0x101
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
s10ru := uint32(src.Pix[s10i+0]) * 0x101
s10gu := uint32(src.Pix[s10i+1]) * 0x101
s10bu := uint32(src.Pix[s10i+2]) * 0x101
s10au := uint32(src.Pix[s10i+3]) * 0x101
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
s01ru := uint32(src.Pix[s01i+0]) * 0x101
s01gu := uint32(src.Pix[s01i+1]) * 0x101
s01bu := uint32(src.Pix[s01i+2]) * 0x101
s01au := uint32(src.Pix[s01i+3]) * 0x101
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
s11ru := uint32(src.Pix[s11i+0]) * 0x101
s11gu := uint32(src.Pix[s11i+1]) * 0x101
s11bu := uint32(src.Pix[s11i+2]) * 0x101
s11au := uint32(src.Pix[s11i+3]) * 0x101
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
dst.Pix[d+0] = uint8(uint32(s11r) >> 8)
dst.Pix[d+1] = uint8(uint32(s11g) >> 8)
dst.Pix[d+2] = uint8(uint32(s11b) >> 8)
dst.Pix[d+3] = uint8(uint32(s11a) >> 8)
}
}
}
func (ablInterpolator) scale_RGBA_YCbCr444(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s00j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s00yy1 := int(src.Y[s00i])<<16 + 1<<15
s00cb1 := int(src.Cb[s00j]) - 128
s00cr1 := int(src.Cr[s00j]) - 128
s00r8 := (s00yy1 + 91881*s00cr1) >> 16
s00g8 := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 16
s00b8 := (s00yy1 + 116130*s00cb1) >> 16
if s00r8 < 0 {
s00r8 = 0
} else if s00r8 > 0xff {
s00r8 = 0xff
}
if s00g8 < 0 {
s00g8 = 0
} else if s00g8 > 0xff {
s00g8 = 0xff
}
if s00b8 < 0 {
s00b8 = 0
} else if s00b8 > 0xff {
s00b8 = 0xff
}
s00ru := uint32(s00r8) * 0x101
s00gu := uint32(s00g8) * 0x101
s00bu := uint32(s00b8) * 0x101
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s10j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s10yy1 := int(src.Y[s10i])<<16 + 1<<15
s10cb1 := int(src.Cb[s10j]) - 128
s10cr1 := int(src.Cr[s10j]) - 128
s10r8 := (s10yy1 + 91881*s10cr1) >> 16
s10g8 := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 16
s10b8 := (s10yy1 + 116130*s10cb1) >> 16
if s10r8 < 0 {
s10r8 = 0
} else if s10r8 > 0xff {
s10r8 = 0xff
}
if s10g8 < 0 {
s10g8 = 0
} else if s10g8 > 0xff {
s10g8 = 0xff
}
if s10b8 < 0 {
s10b8 = 0
} else if s10b8 > 0xff {
s10b8 = 0xff
}
s10ru := uint32(s10r8) * 0x101
s10gu := uint32(s10g8) * 0x101
s10bu := uint32(s10b8) * 0x101
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s01j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s01yy1 := int(src.Y[s01i])<<16 + 1<<15
s01cb1 := int(src.Cb[s01j]) - 128
s01cr1 := int(src.Cr[s01j]) - 128
s01r8 := (s01yy1 + 91881*s01cr1) >> 16
s01g8 := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 16
s01b8 := (s01yy1 + 116130*s01cb1) >> 16
if s01r8 < 0 {
s01r8 = 0
} else if s01r8 > 0xff {
s01r8 = 0xff
}
if s01g8 < 0 {
s01g8 = 0
} else if s01g8 > 0xff {
s01g8 = 0xff
}
if s01b8 < 0 {
s01b8 = 0
} else if s01b8 > 0xff {
s01b8 = 0xff
}
s01ru := uint32(s01r8) * 0x101
s01gu := uint32(s01g8) * 0x101
s01bu := uint32(s01b8) * 0x101
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s11j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s11yy1 := int(src.Y[s11i])<<16 + 1<<15
s11cb1 := int(src.Cb[s11j]) - 128
s11cr1 := int(src.Cr[s11j]) - 128
s11r8 := (s11yy1 + 91881*s11cr1) >> 16
s11g8 := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 16
s11b8 := (s11yy1 + 116130*s11cb1) >> 16
if s11r8 < 0 {
s11r8 = 0
} else if s11r8 > 0xff {
s11r8 = 0xff
}
if s11g8 < 0 {
s11g8 = 0
} else if s11g8 > 0xff {
s11g8 = 0xff
}
if s11b8 < 0 {
s11b8 = 0
} else if s11b8 > 0xff {
s11b8 = 0xff
}
s11ru := uint32(s11r8) * 0x101
s11gu := uint32(s11g8) * 0x101
s11bu := uint32(s11b8) * 0x101
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
dst.Pix[d+0] = uint8(uint32(s11r) >> 8)
dst.Pix[d+1] = uint8(uint32(s11g) >> 8)
dst.Pix[d+2] = uint8(uint32(s11b) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) scale_RGBA_YCbCr422(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s00j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s00yy1 := int(src.Y[s00i])<<16 + 1<<15
s00cb1 := int(src.Cb[s00j]) - 128
s00cr1 := int(src.Cr[s00j]) - 128
s00r8 := (s00yy1 + 91881*s00cr1) >> 16
s00g8 := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 16
s00b8 := (s00yy1 + 116130*s00cb1) >> 16
if s00r8 < 0 {
s00r8 = 0
} else if s00r8 > 0xff {
s00r8 = 0xff
}
if s00g8 < 0 {
s00g8 = 0
} else if s00g8 > 0xff {
s00g8 = 0xff
}
if s00b8 < 0 {
s00b8 = 0
} else if s00b8 > 0xff {
s00b8 = 0xff
}
s00ru := uint32(s00r8) * 0x101
s00gu := uint32(s00g8) * 0x101
s00bu := uint32(s00b8) * 0x101
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s10j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s10yy1 := int(src.Y[s10i])<<16 + 1<<15
s10cb1 := int(src.Cb[s10j]) - 128
s10cr1 := int(src.Cr[s10j]) - 128
s10r8 := (s10yy1 + 91881*s10cr1) >> 16
s10g8 := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 16
s10b8 := (s10yy1 + 116130*s10cb1) >> 16
if s10r8 < 0 {
s10r8 = 0
} else if s10r8 > 0xff {
s10r8 = 0xff
}
if s10g8 < 0 {
s10g8 = 0
} else if s10g8 > 0xff {
s10g8 = 0xff
}
if s10b8 < 0 {
s10b8 = 0
} else if s10b8 > 0xff {
s10b8 = 0xff
}
s10ru := uint32(s10r8) * 0x101
s10gu := uint32(s10g8) * 0x101
s10bu := uint32(s10b8) * 0x101
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s01j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s01yy1 := int(src.Y[s01i])<<16 + 1<<15
s01cb1 := int(src.Cb[s01j]) - 128
s01cr1 := int(src.Cr[s01j]) - 128
s01r8 := (s01yy1 + 91881*s01cr1) >> 16
s01g8 := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 16
s01b8 := (s01yy1 + 116130*s01cb1) >> 16
if s01r8 < 0 {
s01r8 = 0
} else if s01r8 > 0xff {
s01r8 = 0xff
}
if s01g8 < 0 {
s01g8 = 0
} else if s01g8 > 0xff {
s01g8 = 0xff
}
if s01b8 < 0 {
s01b8 = 0
} else if s01b8 > 0xff {
s01b8 = 0xff
}
s01ru := uint32(s01r8) * 0x101
s01gu := uint32(s01g8) * 0x101
s01bu := uint32(s01b8) * 0x101
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s11j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s11yy1 := int(src.Y[s11i])<<16 + 1<<15
s11cb1 := int(src.Cb[s11j]) - 128
s11cr1 := int(src.Cr[s11j]) - 128
s11r8 := (s11yy1 + 91881*s11cr1) >> 16
s11g8 := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 16
s11b8 := (s11yy1 + 116130*s11cb1) >> 16
if s11r8 < 0 {
s11r8 = 0
} else if s11r8 > 0xff {
s11r8 = 0xff
}
if s11g8 < 0 {
s11g8 = 0
} else if s11g8 > 0xff {
s11g8 = 0xff
}
if s11b8 < 0 {
s11b8 = 0
} else if s11b8 > 0xff {
s11b8 = 0xff
}
s11ru := uint32(s11r8) * 0x101
s11gu := uint32(s11g8) * 0x101
s11bu := uint32(s11b8) * 0x101
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
dst.Pix[d+0] = uint8(uint32(s11r) >> 8)
dst.Pix[d+1] = uint8(uint32(s11g) >> 8)
dst.Pix[d+2] = uint8(uint32(s11b) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) scale_RGBA_YCbCr420(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s00j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s00yy1 := int(src.Y[s00i])<<16 + 1<<15
s00cb1 := int(src.Cb[s00j]) - 128
s00cr1 := int(src.Cr[s00j]) - 128
s00r8 := (s00yy1 + 91881*s00cr1) >> 16
s00g8 := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 16
s00b8 := (s00yy1 + 116130*s00cb1) >> 16
if s00r8 < 0 {
s00r8 = 0
} else if s00r8 > 0xff {
s00r8 = 0xff
}
if s00g8 < 0 {
s00g8 = 0
} else if s00g8 > 0xff {
s00g8 = 0xff
}
if s00b8 < 0 {
s00b8 = 0
} else if s00b8 > 0xff {
s00b8 = 0xff
}
s00ru := uint32(s00r8) * 0x101
s00gu := uint32(s00g8) * 0x101
s00bu := uint32(s00b8) * 0x101
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s10j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s10yy1 := int(src.Y[s10i])<<16 + 1<<15
s10cb1 := int(src.Cb[s10j]) - 128
s10cr1 := int(src.Cr[s10j]) - 128
s10r8 := (s10yy1 + 91881*s10cr1) >> 16
s10g8 := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 16
s10b8 := (s10yy1 + 116130*s10cb1) >> 16
if s10r8 < 0 {
s10r8 = 0
} else if s10r8 > 0xff {
s10r8 = 0xff
}
if s10g8 < 0 {
s10g8 = 0
} else if s10g8 > 0xff {
s10g8 = 0xff
}
if s10b8 < 0 {
s10b8 = 0
} else if s10b8 > 0xff {
s10b8 = 0xff
}
s10ru := uint32(s10r8) * 0x101
s10gu := uint32(s10g8) * 0x101
s10bu := uint32(s10b8) * 0x101
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s01j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s01yy1 := int(src.Y[s01i])<<16 + 1<<15
s01cb1 := int(src.Cb[s01j]) - 128
s01cr1 := int(src.Cr[s01j]) - 128
s01r8 := (s01yy1 + 91881*s01cr1) >> 16
s01g8 := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 16
s01b8 := (s01yy1 + 116130*s01cb1) >> 16
if s01r8 < 0 {
s01r8 = 0
} else if s01r8 > 0xff {
s01r8 = 0xff
}
if s01g8 < 0 {
s01g8 = 0
} else if s01g8 > 0xff {
s01g8 = 0xff
}
if s01b8 < 0 {
s01b8 = 0
} else if s01b8 > 0xff {
s01b8 = 0xff
}
s01ru := uint32(s01r8) * 0x101
s01gu := uint32(s01g8) * 0x101
s01bu := uint32(s01b8) * 0x101
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s11j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s11yy1 := int(src.Y[s11i])<<16 + 1<<15
s11cb1 := int(src.Cb[s11j]) - 128
s11cr1 := int(src.Cr[s11j]) - 128
s11r8 := (s11yy1 + 91881*s11cr1) >> 16
s11g8 := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 16
s11b8 := (s11yy1 + 116130*s11cb1) >> 16
if s11r8 < 0 {
s11r8 = 0
} else if s11r8 > 0xff {
s11r8 = 0xff
}
if s11g8 < 0 {
s11g8 = 0
} else if s11g8 > 0xff {
s11g8 = 0xff
}
if s11b8 < 0 {
s11b8 = 0
} else if s11b8 > 0xff {
s11b8 = 0xff
}
s11ru := uint32(s11r8) * 0x101
s11gu := uint32(s11g8) * 0x101
s11bu := uint32(s11b8) * 0x101
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
dst.Pix[d+0] = uint8(uint32(s11r) >> 8)
dst.Pix[d+1] = uint8(uint32(s11g) >> 8)
dst.Pix[d+2] = uint8(uint32(s11b) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) scale_RGBA_YCbCr440(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s00j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s00yy1 := int(src.Y[s00i])<<16 + 1<<15
s00cb1 := int(src.Cb[s00j]) - 128
s00cr1 := int(src.Cr[s00j]) - 128
s00r8 := (s00yy1 + 91881*s00cr1) >> 16
s00g8 := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 16
s00b8 := (s00yy1 + 116130*s00cb1) >> 16
if s00r8 < 0 {
s00r8 = 0
} else if s00r8 > 0xff {
s00r8 = 0xff
}
if s00g8 < 0 {
s00g8 = 0
} else if s00g8 > 0xff {
s00g8 = 0xff
}
if s00b8 < 0 {
s00b8 = 0
} else if s00b8 > 0xff {
s00b8 = 0xff
}
s00ru := uint32(s00r8) * 0x101
s00gu := uint32(s00g8) * 0x101
s00bu := uint32(s00b8) * 0x101
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s10j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s10yy1 := int(src.Y[s10i])<<16 + 1<<15
s10cb1 := int(src.Cb[s10j]) - 128
s10cr1 := int(src.Cr[s10j]) - 128
s10r8 := (s10yy1 + 91881*s10cr1) >> 16
s10g8 := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 16
s10b8 := (s10yy1 + 116130*s10cb1) >> 16
if s10r8 < 0 {
s10r8 = 0
} else if s10r8 > 0xff {
s10r8 = 0xff
}
if s10g8 < 0 {
s10g8 = 0
} else if s10g8 > 0xff {
s10g8 = 0xff
}
if s10b8 < 0 {
s10b8 = 0
} else if s10b8 > 0xff {
s10b8 = 0xff
}
s10ru := uint32(s10r8) * 0x101
s10gu := uint32(s10g8) * 0x101
s10bu := uint32(s10b8) * 0x101
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s01j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s01yy1 := int(src.Y[s01i])<<16 + 1<<15
s01cb1 := int(src.Cb[s01j]) - 128
s01cr1 := int(src.Cr[s01j]) - 128
s01r8 := (s01yy1 + 91881*s01cr1) >> 16
s01g8 := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 16
s01b8 := (s01yy1 + 116130*s01cb1) >> 16
if s01r8 < 0 {
s01r8 = 0
} else if s01r8 > 0xff {
s01r8 = 0xff
}
if s01g8 < 0 {
s01g8 = 0
} else if s01g8 > 0xff {
s01g8 = 0xff
}
if s01b8 < 0 {
s01b8 = 0
} else if s01b8 > 0xff {
s01b8 = 0xff
}
s01ru := uint32(s01r8) * 0x101
s01gu := uint32(s01g8) * 0x101
s01bu := uint32(s01b8) * 0x101
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s11j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s11yy1 := int(src.Y[s11i])<<16 + 1<<15
s11cb1 := int(src.Cb[s11j]) - 128
s11cr1 := int(src.Cr[s11j]) - 128
s11r8 := (s11yy1 + 91881*s11cr1) >> 16
s11g8 := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 16
s11b8 := (s11yy1 + 116130*s11cb1) >> 16
if s11r8 < 0 {
s11r8 = 0
} else if s11r8 > 0xff {
s11r8 = 0xff
}
if s11g8 < 0 {
s11g8 = 0
} else if s11g8 > 0xff {
s11g8 = 0xff
}
if s11b8 < 0 {
s11b8 = 0
} else if s11b8 > 0xff {
s11b8 = 0xff
}
s11ru := uint32(s11r8) * 0x101
s11gu := uint32(s11g8) * 0x101
s11bu := uint32(s11b8) * 0x101
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
dst.Pix[d+0] = uint8(uint32(s11r) >> 8)
dst.Pix[d+1] = uint8(uint32(s11g) >> 8)
dst.Pix[d+2] = uint8(uint32(s11b) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) scale_RGBA_Image(dst *image.RGBA, dr, adr image.Rectangle, src image.Image, sr image.Rectangle) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00ru, s00gu, s00bu, s00au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy0)).RGBA()
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10ru, s10gu, s10bu, s10au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy0)).RGBA()
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01ru, s01gu, s01bu, s01au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy1)).RGBA()
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11ru, s11gu, s11bu, s11au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy1)).RGBA()
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
dst.Pix[d+0] = uint8(uint32(s11r) >> 8)
dst.Pix[d+1] = uint8(uint32(s11g) >> 8)
dst.Pix[d+2] = uint8(uint32(s11b) >> 8)
dst.Pix[d+3] = uint8(uint32(s11a) >> 8)
}
}
}
func (ablInterpolator) scale_Image_Image(dst Image, dr, adr image.Rectangle, src image.Image, sr image.Rectangle) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00ru, s00gu, s00bu, s00au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy0)).RGBA()
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10ru, s10gu, s10bu, s10au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy0)).RGBA()
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01ru, s01gu, s01bu, s01au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy1)).RGBA()
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11ru, s11gu, s11bu, s11au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy1)).RGBA()
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
dstColorRGBA64.R = uint16(s11r)
dstColorRGBA64.G = uint16(s11g)
dstColorRGBA64.B = uint16(s11b)
dstColorRGBA64.A = uint16(s11a)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}
func (ablInterpolator) transform_RGBA_Gray(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Gray, sr image.Rectangle, bias image.Point) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0 - src.Rect.Min.X)
s00ru := uint32(src.Pix[s00i]) * 0x101
s00r := float64(s00ru)
s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1 - src.Rect.Min.X)
s10ru := uint32(src.Pix[s10i]) * 0x101
s10r := float64(s10ru)
s10r = xFrac1*s00r + xFrac0*s10r
s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0 - src.Rect.Min.X)
s01ru := uint32(src.Pix[s01i]) * 0x101
s01r := float64(s01ru)
s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1 - src.Rect.Min.X)
s11ru := uint32(src.Pix[s11i]) * 0x101
s11r := float64(s11ru)
s11r = xFrac1*s01r + xFrac0*s11r
s11r = yFrac1*s10r + yFrac0*s11r
out := uint8(uint32(s11r) >> 8)
dst.Pix[d+0] = out
dst.Pix[d+1] = out
dst.Pix[d+2] = out
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) transform_RGBA_NRGBA(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
s00au := uint32(src.Pix[s00i+3]) * 0x101
s00ru := uint32(src.Pix[s00i+0]) * s00au / 0xff
s00gu := uint32(src.Pix[s00i+1]) * s00au / 0xff
s00bu := uint32(src.Pix[s00i+2]) * s00au / 0xff
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
s10au := uint32(src.Pix[s10i+3]) * 0x101
s10ru := uint32(src.Pix[s10i+0]) * s10au / 0xff
s10gu := uint32(src.Pix[s10i+1]) * s10au / 0xff
s10bu := uint32(src.Pix[s10i+2]) * s10au / 0xff
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
s01au := uint32(src.Pix[s01i+3]) * 0x101
s01ru := uint32(src.Pix[s01i+0]) * s01au / 0xff
s01gu := uint32(src.Pix[s01i+1]) * s01au / 0xff
s01bu := uint32(src.Pix[s01i+2]) * s01au / 0xff
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
s11au := uint32(src.Pix[s11i+3]) * 0x101
s11ru := uint32(src.Pix[s11i+0]) * s11au / 0xff
s11gu := uint32(src.Pix[s11i+1]) * s11au / 0xff
s11bu := uint32(src.Pix[s11i+2]) * s11au / 0xff
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
dst.Pix[d+0] = uint8(uint32(s11r) >> 8)
dst.Pix[d+1] = uint8(uint32(s11g) >> 8)
dst.Pix[d+2] = uint8(uint32(s11b) >> 8)
dst.Pix[d+3] = uint8(uint32(s11a) >> 8)
}
}
}
func (ablInterpolator) transform_RGBA_RGBA(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
s00ru := uint32(src.Pix[s00i+0]) * 0x101
s00gu := uint32(src.Pix[s00i+1]) * 0x101
s00bu := uint32(src.Pix[s00i+2]) * 0x101
s00au := uint32(src.Pix[s00i+3]) * 0x101
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
s10ru := uint32(src.Pix[s10i+0]) * 0x101
s10gu := uint32(src.Pix[s10i+1]) * 0x101
s10bu := uint32(src.Pix[s10i+2]) * 0x101
s10au := uint32(src.Pix[s10i+3]) * 0x101
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
s01ru := uint32(src.Pix[s01i+0]) * 0x101
s01gu := uint32(src.Pix[s01i+1]) * 0x101
s01bu := uint32(src.Pix[s01i+2]) * 0x101
s01au := uint32(src.Pix[s01i+3]) * 0x101
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
s11ru := uint32(src.Pix[s11i+0]) * 0x101
s11gu := uint32(src.Pix[s11i+1]) * 0x101
s11bu := uint32(src.Pix[s11i+2]) * 0x101
s11au := uint32(src.Pix[s11i+3]) * 0x101
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
dst.Pix[d+0] = uint8(uint32(s11r) >> 8)
dst.Pix[d+1] = uint8(uint32(s11g) >> 8)
dst.Pix[d+2] = uint8(uint32(s11b) >> 8)
dst.Pix[d+3] = uint8(uint32(s11a) >> 8)
}
}
}
func (ablInterpolator) transform_RGBA_YCbCr444(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
s00j := (sy0-src.Rect.Min.Y)*src.CStride + (sx0 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s00yy1 := int(src.Y[s00i])<<16 + 1<<15
s00cb1 := int(src.Cb[s00j]) - 128
s00cr1 := int(src.Cr[s00j]) - 128
s00r8 := (s00yy1 + 91881*s00cr1) >> 16
s00g8 := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 16
s00b8 := (s00yy1 + 116130*s00cb1) >> 16
if s00r8 < 0 {
s00r8 = 0
} else if s00r8 > 0xff {
s00r8 = 0xff
}
if s00g8 < 0 {
s00g8 = 0
} else if s00g8 > 0xff {
s00g8 = 0xff
}
if s00b8 < 0 {
s00b8 = 0
} else if s00b8 > 0xff {
s00b8 = 0xff
}
s00ru := uint32(s00r8) * 0x101
s00gu := uint32(s00g8) * 0x101
s00bu := uint32(s00b8) * 0x101
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
s10j := (sy0-src.Rect.Min.Y)*src.CStride + (sx1 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s10yy1 := int(src.Y[s10i])<<16 + 1<<15
s10cb1 := int(src.Cb[s10j]) - 128
s10cr1 := int(src.Cr[s10j]) - 128
s10r8 := (s10yy1 + 91881*s10cr1) >> 16
s10g8 := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 16
s10b8 := (s10yy1 + 116130*s10cb1) >> 16
if s10r8 < 0 {
s10r8 = 0
} else if s10r8 > 0xff {
s10r8 = 0xff
}
if s10g8 < 0 {
s10g8 = 0
} else if s10g8 > 0xff {
s10g8 = 0xff
}
if s10b8 < 0 {
s10b8 = 0
} else if s10b8 > 0xff {
s10b8 = 0xff
}
s10ru := uint32(s10r8) * 0x101
s10gu := uint32(s10g8) * 0x101
s10bu := uint32(s10b8) * 0x101
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
s01j := (sy1-src.Rect.Min.Y)*src.CStride + (sx0 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s01yy1 := int(src.Y[s01i])<<16 + 1<<15
s01cb1 := int(src.Cb[s01j]) - 128
s01cr1 := int(src.Cr[s01j]) - 128
s01r8 := (s01yy1 + 91881*s01cr1) >> 16
s01g8 := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 16
s01b8 := (s01yy1 + 116130*s01cb1) >> 16
if s01r8 < 0 {
s01r8 = 0
} else if s01r8 > 0xff {
s01r8 = 0xff
}
if s01g8 < 0 {
s01g8 = 0
} else if s01g8 > 0xff {
s01g8 = 0xff
}
if s01b8 < 0 {
s01b8 = 0
} else if s01b8 > 0xff {
s01b8 = 0xff
}
s01ru := uint32(s01r8) * 0x101
s01gu := uint32(s01g8) * 0x101
s01bu := uint32(s01b8) * 0x101
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
s11j := (sy1-src.Rect.Min.Y)*src.CStride + (sx1 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s11yy1 := int(src.Y[s11i])<<16 + 1<<15
s11cb1 := int(src.Cb[s11j]) - 128
s11cr1 := int(src.Cr[s11j]) - 128
s11r8 := (s11yy1 + 91881*s11cr1) >> 16
s11g8 := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 16
s11b8 := (s11yy1 + 116130*s11cb1) >> 16
if s11r8 < 0 {
s11r8 = 0
} else if s11r8 > 0xff {
s11r8 = 0xff
}
if s11g8 < 0 {
s11g8 = 0
} else if s11g8 > 0xff {
s11g8 = 0xff
}
if s11b8 < 0 {
s11b8 = 0
} else if s11b8 > 0xff {
s11b8 = 0xff
}
s11ru := uint32(s11r8) * 0x101
s11gu := uint32(s11g8) * 0x101
s11bu := uint32(s11b8) * 0x101
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
dst.Pix[d+0] = uint8(uint32(s11r) >> 8)
dst.Pix[d+1] = uint8(uint32(s11g) >> 8)
dst.Pix[d+2] = uint8(uint32(s11b) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) transform_RGBA_YCbCr422(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
s00j := (sy0-src.Rect.Min.Y)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s00yy1 := int(src.Y[s00i])<<16 + 1<<15
s00cb1 := int(src.Cb[s00j]) - 128
s00cr1 := int(src.Cr[s00j]) - 128
s00r8 := (s00yy1 + 91881*s00cr1) >> 16
s00g8 := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 16
s00b8 := (s00yy1 + 116130*s00cb1) >> 16
if s00r8 < 0 {
s00r8 = 0
} else if s00r8 > 0xff {
s00r8 = 0xff
}
if s00g8 < 0 {
s00g8 = 0
} else if s00g8 > 0xff {
s00g8 = 0xff
}
if s00b8 < 0 {
s00b8 = 0
} else if s00b8 > 0xff {
s00b8 = 0xff
}
s00ru := uint32(s00r8) * 0x101
s00gu := uint32(s00g8) * 0x101
s00bu := uint32(s00b8) * 0x101
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
s10j := (sy0-src.Rect.Min.Y)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s10yy1 := int(src.Y[s10i])<<16 + 1<<15
s10cb1 := int(src.Cb[s10j]) - 128
s10cr1 := int(src.Cr[s10j]) - 128
s10r8 := (s10yy1 + 91881*s10cr1) >> 16
s10g8 := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 16
s10b8 := (s10yy1 + 116130*s10cb1) >> 16
if s10r8 < 0 {
s10r8 = 0
} else if s10r8 > 0xff {
s10r8 = 0xff
}
if s10g8 < 0 {
s10g8 = 0
} else if s10g8 > 0xff {
s10g8 = 0xff
}
if s10b8 < 0 {
s10b8 = 0
} else if s10b8 > 0xff {
s10b8 = 0xff
}
s10ru := uint32(s10r8) * 0x101
s10gu := uint32(s10g8) * 0x101
s10bu := uint32(s10b8) * 0x101
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
s01j := (sy1-src.Rect.Min.Y)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s01yy1 := int(src.Y[s01i])<<16 + 1<<15
s01cb1 := int(src.Cb[s01j]) - 128
s01cr1 := int(src.Cr[s01j]) - 128
s01r8 := (s01yy1 + 91881*s01cr1) >> 16
s01g8 := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 16
s01b8 := (s01yy1 + 116130*s01cb1) >> 16
if s01r8 < 0 {
s01r8 = 0
} else if s01r8 > 0xff {
s01r8 = 0xff
}
if s01g8 < 0 {
s01g8 = 0
} else if s01g8 > 0xff {
s01g8 = 0xff
}
if s01b8 < 0 {
s01b8 = 0
} else if s01b8 > 0xff {
s01b8 = 0xff
}
s01ru := uint32(s01r8) * 0x101
s01gu := uint32(s01g8) * 0x101
s01bu := uint32(s01b8) * 0x101
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
s11j := (sy1-src.Rect.Min.Y)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s11yy1 := int(src.Y[s11i])<<16 + 1<<15
s11cb1 := int(src.Cb[s11j]) - 128
s11cr1 := int(src.Cr[s11j]) - 128
s11r8 := (s11yy1 + 91881*s11cr1) >> 16
s11g8 := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 16
s11b8 := (s11yy1 + 116130*s11cb1) >> 16
if s11r8 < 0 {
s11r8 = 0
} else if s11r8 > 0xff {
s11r8 = 0xff
}
if s11g8 < 0 {
s11g8 = 0
} else if s11g8 > 0xff {
s11g8 = 0xff
}
if s11b8 < 0 {
s11b8 = 0
} else if s11b8 > 0xff {
s11b8 = 0xff
}
s11ru := uint32(s11r8) * 0x101
s11gu := uint32(s11g8) * 0x101
s11bu := uint32(s11b8) * 0x101
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
dst.Pix[d+0] = uint8(uint32(s11r) >> 8)
dst.Pix[d+1] = uint8(uint32(s11g) >> 8)
dst.Pix[d+2] = uint8(uint32(s11b) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) transform_RGBA_YCbCr420(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
s00j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s00yy1 := int(src.Y[s00i])<<16 + 1<<15
s00cb1 := int(src.Cb[s00j]) - 128
s00cr1 := int(src.Cr[s00j]) - 128
s00r8 := (s00yy1 + 91881*s00cr1) >> 16
s00g8 := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 16
s00b8 := (s00yy1 + 116130*s00cb1) >> 16
if s00r8 < 0 {
s00r8 = 0
} else if s00r8 > 0xff {
s00r8 = 0xff
}
if s00g8 < 0 {
s00g8 = 0
} else if s00g8 > 0xff {
s00g8 = 0xff
}
if s00b8 < 0 {
s00b8 = 0
} else if s00b8 > 0xff {
s00b8 = 0xff
}
s00ru := uint32(s00r8) * 0x101
s00gu := uint32(s00g8) * 0x101
s00bu := uint32(s00b8) * 0x101
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
s10j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s10yy1 := int(src.Y[s10i])<<16 + 1<<15
s10cb1 := int(src.Cb[s10j]) - 128
s10cr1 := int(src.Cr[s10j]) - 128
s10r8 := (s10yy1 + 91881*s10cr1) >> 16
s10g8 := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 16
s10b8 := (s10yy1 + 116130*s10cb1) >> 16
if s10r8 < 0 {
s10r8 = 0
} else if s10r8 > 0xff {
s10r8 = 0xff
}
if s10g8 < 0 {
s10g8 = 0
} else if s10g8 > 0xff {
s10g8 = 0xff
}
if s10b8 < 0 {
s10b8 = 0
} else if s10b8 > 0xff {
s10b8 = 0xff
}
s10ru := uint32(s10r8) * 0x101
s10gu := uint32(s10g8) * 0x101
s10bu := uint32(s10b8) * 0x101
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
s01j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s01yy1 := int(src.Y[s01i])<<16 + 1<<15
s01cb1 := int(src.Cb[s01j]) - 128
s01cr1 := int(src.Cr[s01j]) - 128
s01r8 := (s01yy1 + 91881*s01cr1) >> 16
s01g8 := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 16
s01b8 := (s01yy1 + 116130*s01cb1) >> 16
if s01r8 < 0 {
s01r8 = 0
} else if s01r8 > 0xff {
s01r8 = 0xff
}
if s01g8 < 0 {
s01g8 = 0
} else if s01g8 > 0xff {
s01g8 = 0xff
}
if s01b8 < 0 {
s01b8 = 0
} else if s01b8 > 0xff {
s01b8 = 0xff
}
s01ru := uint32(s01r8) * 0x101
s01gu := uint32(s01g8) * 0x101
s01bu := uint32(s01b8) * 0x101
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
s11j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s11yy1 := int(src.Y[s11i])<<16 + 1<<15
s11cb1 := int(src.Cb[s11j]) - 128
s11cr1 := int(src.Cr[s11j]) - 128
s11r8 := (s11yy1 + 91881*s11cr1) >> 16
s11g8 := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 16
s11b8 := (s11yy1 + 116130*s11cb1) >> 16
if s11r8 < 0 {
s11r8 = 0
} else if s11r8 > 0xff {
s11r8 = 0xff
}
if s11g8 < 0 {
s11g8 = 0
} else if s11g8 > 0xff {
s11g8 = 0xff
}
if s11b8 < 0 {
s11b8 = 0
} else if s11b8 > 0xff {
s11b8 = 0xff
}
s11ru := uint32(s11r8) * 0x101
s11gu := uint32(s11g8) * 0x101
s11bu := uint32(s11b8) * 0x101
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
dst.Pix[d+0] = uint8(uint32(s11r) >> 8)
dst.Pix[d+1] = uint8(uint32(s11g) >> 8)
dst.Pix[d+2] = uint8(uint32(s11b) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) transform_RGBA_YCbCr440(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
s00j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + (sx0 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s00yy1 := int(src.Y[s00i])<<16 + 1<<15
s00cb1 := int(src.Cb[s00j]) - 128
s00cr1 := int(src.Cr[s00j]) - 128
s00r8 := (s00yy1 + 91881*s00cr1) >> 16
s00g8 := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 16
s00b8 := (s00yy1 + 116130*s00cb1) >> 16
if s00r8 < 0 {
s00r8 = 0
} else if s00r8 > 0xff {
s00r8 = 0xff
}
if s00g8 < 0 {
s00g8 = 0
} else if s00g8 > 0xff {
s00g8 = 0xff
}
if s00b8 < 0 {
s00b8 = 0
} else if s00b8 > 0xff {
s00b8 = 0xff
}
s00ru := uint32(s00r8) * 0x101
s00gu := uint32(s00g8) * 0x101
s00bu := uint32(s00b8) * 0x101
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
s10j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + (sx1 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s10yy1 := int(src.Y[s10i])<<16 + 1<<15
s10cb1 := int(src.Cb[s10j]) - 128
s10cr1 := int(src.Cr[s10j]) - 128
s10r8 := (s10yy1 + 91881*s10cr1) >> 16
s10g8 := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 16
s10b8 := (s10yy1 + 116130*s10cb1) >> 16
if s10r8 < 0 {
s10r8 = 0
} else if s10r8 > 0xff {
s10r8 = 0xff
}
if s10g8 < 0 {
s10g8 = 0
} else if s10g8 > 0xff {
s10g8 = 0xff
}
if s10b8 < 0 {
s10b8 = 0
} else if s10b8 > 0xff {
s10b8 = 0xff
}
s10ru := uint32(s10r8) * 0x101
s10gu := uint32(s10g8) * 0x101
s10bu := uint32(s10b8) * 0x101
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
s01j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + (sx0 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s01yy1 := int(src.Y[s01i])<<16 + 1<<15
s01cb1 := int(src.Cb[s01j]) - 128
s01cr1 := int(src.Cr[s01j]) - 128
s01r8 := (s01yy1 + 91881*s01cr1) >> 16
s01g8 := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 16
s01b8 := (s01yy1 + 116130*s01cb1) >> 16
if s01r8 < 0 {
s01r8 = 0
} else if s01r8 > 0xff {
s01r8 = 0xff
}
if s01g8 < 0 {
s01g8 = 0
} else if s01g8 > 0xff {
s01g8 = 0xff
}
if s01b8 < 0 {
s01b8 = 0
} else if s01b8 > 0xff {
s01b8 = 0xff
}
s01ru := uint32(s01r8) * 0x101
s01gu := uint32(s01g8) * 0x101
s01bu := uint32(s01b8) * 0x101
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
s11j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + (sx1 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
s11yy1 := int(src.Y[s11i])<<16 + 1<<15
s11cb1 := int(src.Cb[s11j]) - 128
s11cr1 := int(src.Cr[s11j]) - 128
s11r8 := (s11yy1 + 91881*s11cr1) >> 16
s11g8 := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 16
s11b8 := (s11yy1 + 116130*s11cb1) >> 16
if s11r8 < 0 {
s11r8 = 0
} else if s11r8 > 0xff {
s11r8 = 0xff
}
if s11g8 < 0 {
s11g8 = 0
} else if s11g8 > 0xff {
s11g8 = 0xff
}
if s11b8 < 0 {
s11b8 = 0
} else if s11b8 > 0xff {
s11b8 = 0xff
}
s11ru := uint32(s11r8) * 0x101
s11gu := uint32(s11g8) * 0x101
s11bu := uint32(s11b8) * 0x101
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
dst.Pix[d+0] = uint8(uint32(s11r) >> 8)
dst.Pix[d+1] = uint8(uint32(s11g) >> 8)
dst.Pix[d+2] = uint8(uint32(s11b) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) transform_RGBA_Image(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00ru, s00gu, s00bu, s00au := src.At(sx0, sy0).RGBA()
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10ru, s10gu, s10bu, s10au := src.At(sx1, sy0).RGBA()
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01ru, s01gu, s01bu, s01au := src.At(sx0, sy1).RGBA()
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11ru, s11gu, s11bu, s11au := src.At(sx1, sy1).RGBA()
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
dst.Pix[d+0] = uint8(uint32(s11r) >> 8)
dst.Pix[d+1] = uint8(uint32(s11g) >> 8)
dst.Pix[d+2] = uint8(uint32(s11b) >> 8)
dst.Pix[d+3] = uint8(uint32(s11a) >> 8)
}
}
}
func (ablInterpolator) transform_Image_Image(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point) {
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00ru, s00gu, s00bu, s00au := src.At(sx0, sy0).RGBA()
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10ru, s10gu, s10bu, s10au := src.At(sx1, sy0).RGBA()
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01ru, s01gu, s01bu, s01au := src.At(sx0, sy1).RGBA()
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11ru, s11gu, s11bu, s11au := src.At(sx1, sy1).RGBA()
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
dstColorRGBA64.R = uint16(s11r)
dstColorRGBA64.G = uint16(s11g)
dstColorRGBA64.B = uint16(s11b)
dstColorRGBA64.A = uint16(s11a)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}
func (z *kernelScaler) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
if z.dw != int32(dr.Dx()) || z.dh != int32(dr.Dy()) || z.sw != int32(sr.Dx()) || z.sh != int32(sr.Dy()) {
z.kernel.Scale(dst, dr, src, sr, opts)
return
}
// adr is the affected destination pixels, relative to dr.Min.
adr := dst.Bounds().Intersect(dr).Sub(dr.Min)
if adr.Empty() || sr.Empty() {
return
}
if _, ok := src.(*image.Uniform); ok && sr.In(src.Bounds()) {
// TODO: get the Op from opts.
Draw(dst, dr, src, src.Bounds().Min, Src)
return
}
// Create a temporary buffer:
// scaleX distributes the source image's columns over the temporary image.
// scaleY distributes the temporary image's rows over the destination image.
// TODO: is it worth having a sync.Pool for this temporary buffer?
tmp := make([][4]float64, z.dw*z.sh)
// sr is the source pixels. If it extends beyond the src bounds,
// we cannot use the type-specific fast paths, as they access
// the Pix fields directly without bounds checking.
if !sr.In(src.Bounds()) {
z.scaleX_Image(tmp, src, sr)
} else {
switch src := src.(type) {
case *image.Gray:
z.scaleX_Gray(tmp, src, sr)
case *image.NRGBA:
z.scaleX_NRGBA(tmp, src, sr)
case *image.RGBA:
z.scaleX_RGBA(tmp, src, sr)
case *image.YCbCr:
switch src.SubsampleRatio {
default:
z.scaleX_Image(tmp, src, sr)
case image.YCbCrSubsampleRatio444:
z.scaleX_YCbCr444(tmp, src, sr)
case image.YCbCrSubsampleRatio422:
z.scaleX_YCbCr422(tmp, src, sr)
case image.YCbCrSubsampleRatio420:
z.scaleX_YCbCr420(tmp, src, sr)
case image.YCbCrSubsampleRatio440:
z.scaleX_YCbCr440(tmp, src, sr)
}
default:
z.scaleX_Image(tmp, src, sr)
}
}
switch dst := dst.(type) {
case *image.RGBA:
z.scaleY_RGBA(dst, dr, adr, tmp)
default:
z.scaleY_Image(dst, dr, adr, tmp)
}
}
func (q *Kernel) Transform(dst Image, s2d *f64.Aff3, src image.Image, sr image.Rectangle, opts *Options) {
dr := transformRect(s2d, &sr)
// adr is the affected destination pixels.
adr := dst.Bounds().Intersect(dr)
if adr.Empty() || sr.Empty() {
return
}
d2s := invert(s2d)
// bias is a translation of the mapping from dst co-ordinates to
// src co-ordinates such that the latter temporarily have
// non-negative X and Y co-ordinates. This allows us to write
// int(f) instead of int(math.Floor(f)), since "round to zero" and
// "round down" are equivalent when f >= 0, but the former is much
// cheaper. The X-- and Y-- are because the TransformLeaf methods
// have a "sx -= 0.5" adjustment.
bias := transformRect(&d2s, &adr).Min
bias.X--
bias.Y--
d2s[2] -= float64(bias.X)
d2s[5] -= float64(bias.Y)
// Make adr relative to dr.Min.
adr = adr.Sub(dr.Min)
if u, ok := src.(*image.Uniform); ok && sr.In(src.Bounds()) {
// TODO: get the Op from opts.
transform_Uniform(dst, dr, adr, &d2s, u, sr, bias, Src)
return
}
xscale := abs(d2s[0])
if s := abs(d2s[1]); xscale < s {
xscale = s
}
yscale := abs(d2s[3])
if s := abs(d2s[4]); yscale < s {
yscale = s
}
// sr is the source pixels. If it extends beyond the src bounds,
// we cannot use the type-specific fast paths, as they access
// the Pix fields directly without bounds checking.
if !sr.In(src.Bounds()) {
q.transform_Image_Image(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale)
} else {
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.Gray:
q.transform_RGBA_Gray(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale)
case *image.NRGBA:
q.transform_RGBA_NRGBA(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale)
case *image.RGBA:
q.transform_RGBA_RGBA(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale)
case *image.YCbCr:
switch src.SubsampleRatio {
default:
q.transform_RGBA_Image(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale)
case image.YCbCrSubsampleRatio444:
q.transform_RGBA_YCbCr444(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale)
case image.YCbCrSubsampleRatio422:
q.transform_RGBA_YCbCr422(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale)
case image.YCbCrSubsampleRatio420:
q.transform_RGBA_YCbCr420(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale)
case image.YCbCrSubsampleRatio440:
q.transform_RGBA_YCbCr440(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale)
}
default:
q.transform_RGBA_Image(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale)
}
default:
switch src := src.(type) {
default:
q.transform_Image_Image(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale)
}
}
}
}
func (z *kernelScaler) scaleX_Gray(tmp [][4]float64, src *image.Gray, sr image.Rectangle) {
t := 0
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
pru := uint32(src.Pix[pi]) * 0x101
pr += float64(pru) * c.weight
}
pr *= s.invTotalWeightFFFF
tmp[t] = [4]float64{
pr,
pr,
pr,
1,
}
t++
}
}
}
func (z *kernelScaler) scaleX_NRGBA(tmp [][4]float64, src *image.NRGBA, sr image.Rectangle) {
t := 0
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr, pg, pb, pa float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(c.coord)-src.Rect.Min.X)*4
pau := uint32(src.Pix[pi+3]) * 0x101
pru := uint32(src.Pix[pi+0]) * pau / 0xff
pgu := uint32(src.Pix[pi+1]) * pau / 0xff
pbu := uint32(src.Pix[pi+2]) * pau / 0xff
pr += float64(pru) * c.weight
pg += float64(pgu) * c.weight
pb += float64(pbu) * c.weight
pa += float64(pau) * c.weight
}
tmp[t] = [4]float64{
pr * s.invTotalWeightFFFF,
pg * s.invTotalWeightFFFF,
pb * s.invTotalWeightFFFF,
pa * s.invTotalWeightFFFF,
}
t++
}
}
}
func (z *kernelScaler) scaleX_RGBA(tmp [][4]float64, src *image.RGBA, sr image.Rectangle) {
t := 0
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr, pg, pb, pa float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(c.coord)-src.Rect.Min.X)*4
pru := uint32(src.Pix[pi+0]) * 0x101
pgu := uint32(src.Pix[pi+1]) * 0x101
pbu := uint32(src.Pix[pi+2]) * 0x101
pau := uint32(src.Pix[pi+3]) * 0x101
pr += float64(pru) * c.weight
pg += float64(pgu) * c.weight
pb += float64(pbu) * c.weight
pa += float64(pau) * c.weight
}
tmp[t] = [4]float64{
pr * s.invTotalWeightFFFF,
pg * s.invTotalWeightFFFF,
pb * s.invTotalWeightFFFF,
pa * s.invTotalWeightFFFF,
}
t++
}
}
}
func (z *kernelScaler) scaleX_YCbCr444(tmp [][4]float64, src *image.YCbCr, sr image.Rectangle) {
t := 0
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr, pg, pb float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
pj := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
pyy1 := int(src.Y[pi])<<16 + 1<<15
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr8 := (pyy1 + 91881*pcr1) >> 16
pg8 := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 16
pb8 := (pyy1 + 116130*pcb1) >> 16
if pr8 < 0 {
pr8 = 0
} else if pr8 > 0xff {
pr8 = 0xff
}
if pg8 < 0 {
pg8 = 0
} else if pg8 > 0xff {
pg8 = 0xff
}
if pb8 < 0 {
pb8 = 0
} else if pb8 > 0xff {
pb8 = 0xff
}
pru := uint32(pr8) * 0x101
pgu := uint32(pg8) * 0x101
pbu := uint32(pb8) * 0x101
pr += float64(pru) * c.weight
pg += float64(pgu) * c.weight
pb += float64(pbu) * c.weight
}
tmp[t] = [4]float64{
pr * s.invTotalWeightFFFF,
pg * s.invTotalWeightFFFF,
pb * s.invTotalWeightFFFF,
1,
}
t++
}
}
}
func (z *kernelScaler) scaleX_YCbCr422(tmp [][4]float64, src *image.YCbCr, sr image.Rectangle) {
t := 0
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr, pg, pb float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
pj := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(c.coord))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
pyy1 := int(src.Y[pi])<<16 + 1<<15
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr8 := (pyy1 + 91881*pcr1) >> 16
pg8 := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 16
pb8 := (pyy1 + 116130*pcb1) >> 16
if pr8 < 0 {
pr8 = 0
} else if pr8 > 0xff {
pr8 = 0xff
}
if pg8 < 0 {
pg8 = 0
} else if pg8 > 0xff {
pg8 = 0xff
}
if pb8 < 0 {
pb8 = 0
} else if pb8 > 0xff {
pb8 = 0xff
}
pru := uint32(pr8) * 0x101
pgu := uint32(pg8) * 0x101
pbu := uint32(pb8) * 0x101
pr += float64(pru) * c.weight
pg += float64(pgu) * c.weight
pb += float64(pbu) * c.weight
}
tmp[t] = [4]float64{
pr * s.invTotalWeightFFFF,
pg * s.invTotalWeightFFFF,
pb * s.invTotalWeightFFFF,
1,
}
t++
}
}
}
func (z *kernelScaler) scaleX_YCbCr420(tmp [][4]float64, src *image.YCbCr, sr image.Rectangle) {
t := 0
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr, pg, pb float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
pj := ((sr.Min.Y+int(y))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(c.coord))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
pyy1 := int(src.Y[pi])<<16 + 1<<15
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr8 := (pyy1 + 91881*pcr1) >> 16
pg8 := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 16
pb8 := (pyy1 + 116130*pcb1) >> 16
if pr8 < 0 {
pr8 = 0
} else if pr8 > 0xff {
pr8 = 0xff
}
if pg8 < 0 {
pg8 = 0
} else if pg8 > 0xff {
pg8 = 0xff
}
if pb8 < 0 {
pb8 = 0
} else if pb8 > 0xff {
pb8 = 0xff
}
pru := uint32(pr8) * 0x101
pgu := uint32(pg8) * 0x101
pbu := uint32(pb8) * 0x101
pr += float64(pru) * c.weight
pg += float64(pgu) * c.weight
pb += float64(pbu) * c.weight
}
tmp[t] = [4]float64{
pr * s.invTotalWeightFFFF,
pg * s.invTotalWeightFFFF,
pb * s.invTotalWeightFFFF,
1,
}
t++
}
}
}
func (z *kernelScaler) scaleX_YCbCr440(tmp [][4]float64, src *image.YCbCr, sr image.Rectangle) {
t := 0
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr, pg, pb float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
pj := ((sr.Min.Y+int(y))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
pyy1 := int(src.Y[pi])<<16 + 1<<15
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr8 := (pyy1 + 91881*pcr1) >> 16
pg8 := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 16
pb8 := (pyy1 + 116130*pcb1) >> 16
if pr8 < 0 {
pr8 = 0
} else if pr8 > 0xff {
pr8 = 0xff
}
if pg8 < 0 {
pg8 = 0
} else if pg8 > 0xff {
pg8 = 0xff
}
if pb8 < 0 {
pb8 = 0
} else if pb8 > 0xff {
pb8 = 0xff
}
pru := uint32(pr8) * 0x101
pgu := uint32(pg8) * 0x101
pbu := uint32(pb8) * 0x101
pr += float64(pru) * c.weight
pg += float64(pgu) * c.weight
pb += float64(pbu) * c.weight
}
tmp[t] = [4]float64{
pr * s.invTotalWeightFFFF,
pg * s.invTotalWeightFFFF,
pb * s.invTotalWeightFFFF,
1,
}
t++
}
}
}
func (z *kernelScaler) scaleX_Image(tmp [][4]float64, src image.Image, sr image.Rectangle) {
t := 0
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr, pg, pb, pa float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
pru, pgu, pbu, pau := src.At(sr.Min.X+int(c.coord), sr.Min.Y+int(y)).RGBA()
pr += float64(pru) * c.weight
pg += float64(pgu) * c.weight
pb += float64(pbu) * c.weight
pa += float64(pau) * c.weight
}
tmp[t] = [4]float64{
pr * s.invTotalWeightFFFF,
pg * s.invTotalWeightFFFF,
pb * s.invTotalWeightFFFF,
pa * s.invTotalWeightFFFF,
}
t++
}
}
}
func (z *kernelScaler) scaleY_RGBA(dst *image.RGBA, dr, adr image.Rectangle, tmp [][4]float64) {
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
d := (dr.Min.Y+adr.Min.Y-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+int(dx)-dst.Rect.Min.X)*4
for _, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] {
var pr, pg, pb, pa float64
for _, c := range z.vertical.contribs[s.i:s.j] {
p := &tmp[c.coord*z.dw+dx]
pr += p[0] * c.weight
pg += p[1] * c.weight
pb += p[2] * c.weight
pa += p[3] * c.weight
}
dst.Pix[d+0] = uint8(ftou(pr*s.invTotalWeight) >> 8)
dst.Pix[d+1] = uint8(ftou(pg*s.invTotalWeight) >> 8)
dst.Pix[d+2] = uint8(ftou(pb*s.invTotalWeight) >> 8)
dst.Pix[d+3] = uint8(ftou(pa*s.invTotalWeight) >> 8)
d += dst.Stride
}
}
}
func (z *kernelScaler) scaleY_Image(dst Image, dr, adr image.Rectangle, tmp [][4]float64) {
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
for dy, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] {
var pr, pg, pb, pa float64
for _, c := range z.vertical.contribs[s.i:s.j] {
p := &tmp[c.coord*z.dw+dx]
pr += p[0] * c.weight
pg += p[1] * c.weight
pb += p[2] * c.weight
pa += p[3] * c.weight
}
dstColorRGBA64.R = ftou(pr * s.invTotalWeight)
dstColorRGBA64.G = ftou(pg * s.invTotalWeight)
dstColorRGBA64.B = ftou(pb * s.invTotalWeight)
dstColorRGBA64.A = ftou(pa * s.invTotalWeight)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(adr.Min.Y+dy), dstColor)
}
}
}
func (q *Kernel) transform_RGBA_Gray(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Gray, sr image.Rectangle, bias image.Point, xscale, yscale float64) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.Stride + (kx - src.Rect.Min.X)
pru := uint32(src.Pix[pi]) * 0x101
pr += float64(pru) * w
}
}
}
}
out := uint8(fffftou(pr) >> 8)
dst.Pix[d+0] = out
dst.Pix[d+1] = out
dst.Pix[d+2] = out
dst.Pix[d+3] = 0xff
}
}
}
func (q *Kernel) transform_RGBA_NRGBA(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, xscale, yscale float64) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb, pa float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.Stride + (kx-src.Rect.Min.X)*4
pau := uint32(src.Pix[pi+3]) * 0x101
pru := uint32(src.Pix[pi+0]) * pau / 0xff
pgu := uint32(src.Pix[pi+1]) * pau / 0xff
pbu := uint32(src.Pix[pi+2]) * pau / 0xff
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
pa += float64(pau) * w
}
}
}
}
dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
dst.Pix[d+3] = uint8(fffftou(pa) >> 8)
}
}
}
func (q *Kernel) transform_RGBA_RGBA(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, xscale, yscale float64) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb, pa float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.Stride + (kx-src.Rect.Min.X)*4
pru := uint32(src.Pix[pi+0]) * 0x101
pgu := uint32(src.Pix[pi+1]) * 0x101
pbu := uint32(src.Pix[pi+2]) * 0x101
pau := uint32(src.Pix[pi+3]) * 0x101
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
pa += float64(pau) * w
}
}
}
}
dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
dst.Pix[d+3] = uint8(fffftou(pa) >> 8)
}
}
}
func (q *Kernel) transform_RGBA_YCbCr444(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X)
pj := (ky-src.Rect.Min.Y)*src.CStride + (kx - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
pyy1 := int(src.Y[pi])<<16 + 1<<15
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr8 := (pyy1 + 91881*pcr1) >> 16
pg8 := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 16
pb8 := (pyy1 + 116130*pcb1) >> 16
if pr8 < 0 {
pr8 = 0
} else if pr8 > 0xff {
pr8 = 0xff
}
if pg8 < 0 {
pg8 = 0
} else if pg8 > 0xff {
pg8 = 0xff
}
if pb8 < 0 {
pb8 = 0
} else if pb8 > 0xff {
pb8 = 0xff
}
pru := uint32(pr8) * 0x101
pgu := uint32(pg8) * 0x101
pbu := uint32(pb8) * 0x101
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
}
}
}
}
dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (q *Kernel) transform_RGBA_YCbCr422(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X)
pj := (ky-src.Rect.Min.Y)*src.CStride + ((kx)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
pyy1 := int(src.Y[pi])<<16 + 1<<15
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr8 := (pyy1 + 91881*pcr1) >> 16
pg8 := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 16
pb8 := (pyy1 + 116130*pcb1) >> 16
if pr8 < 0 {
pr8 = 0
} else if pr8 > 0xff {
pr8 = 0xff
}
if pg8 < 0 {
pg8 = 0
} else if pg8 > 0xff {
pg8 = 0xff
}
if pb8 < 0 {
pb8 = 0
} else if pb8 > 0xff {
pb8 = 0xff
}
pru := uint32(pr8) * 0x101
pgu := uint32(pg8) * 0x101
pbu := uint32(pb8) * 0x101
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
}
}
}
}
dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (q *Kernel) transform_RGBA_YCbCr420(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X)
pj := ((ky)/2-src.Rect.Min.Y/2)*src.CStride + ((kx)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
pyy1 := int(src.Y[pi])<<16 + 1<<15
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr8 := (pyy1 + 91881*pcr1) >> 16
pg8 := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 16
pb8 := (pyy1 + 116130*pcb1) >> 16
if pr8 < 0 {
pr8 = 0
} else if pr8 > 0xff {
pr8 = 0xff
}
if pg8 < 0 {
pg8 = 0
} else if pg8 > 0xff {
pg8 = 0xff
}
if pb8 < 0 {
pb8 = 0
} else if pb8 > 0xff {
pb8 = 0xff
}
pru := uint32(pr8) * 0x101
pgu := uint32(pg8) * 0x101
pbu := uint32(pb8) * 0x101
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
}
}
}
}
dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (q *Kernel) transform_RGBA_YCbCr440(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X)
pj := ((ky)/2-src.Rect.Min.Y/2)*src.CStride + (kx - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's func YCbCrToRGB.
pyy1 := int(src.Y[pi])<<16 + 1<<15
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr8 := (pyy1 + 91881*pcr1) >> 16
pg8 := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 16
pb8 := (pyy1 + 116130*pcb1) >> 16
if pr8 < 0 {
pr8 = 0
} else if pr8 > 0xff {
pr8 = 0xff
}
if pg8 < 0 {
pg8 = 0
} else if pg8 > 0xff {
pg8 = 0xff
}
if pb8 < 0 {
pb8 = 0
} else if pb8 > 0xff {
pb8 = 0xff
}
pru := uint32(pr8) * 0x101
pgu := uint32(pg8) * 0x101
pbu := uint32(pb8) * 0x101
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
}
}
}
}
dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (q *Kernel) transform_RGBA_Image(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, xscale, yscale float64) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb, pa float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pru, pgu, pbu, pau := src.At(kx, ky).RGBA()
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
pa += float64(pau) * w
}
}
}
}
dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
dst.Pix[d+3] = uint8(fffftou(pa) >> 8)
}
}
}
func (q *Kernel) transform_Image_Image(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, xscale, yscale float64) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb, pa float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pru, pgu, pbu, pau := src.At(kx, ky).RGBA()
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
pa += float64(pau) * w
}
}
}
}
dstColorRGBA64.R = fffftou(pr)
dstColorRGBA64.G = fffftou(pg)
dstColorRGBA64.B = fffftou(pb)
dstColorRGBA64.A = fffftou(pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}