// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package draw import ( "bytes" "flag" "fmt" "image" "image/color" "image/png" "math/rand" "os" "reflect" "testing" "golang.org/x/image/math/f64" _ "image/jpeg" ) var genGoldenFiles = flag.Bool("gen_golden_files", false, "whether to generate the TestXxx golden files.") var transformMatrix = func(tx, ty float64) *f64.Aff3 { const scale, cos30, sin30 = 3.75, 0.866025404, 0.5 return &f64.Aff3{ +scale * cos30, -scale * sin30, tx, +scale * sin30, +scale * cos30, ty, } } func encode(filename string, m image.Image) error { f, err := os.Create(filename) if err != nil { return fmt.Errorf("Create: %v", err) } defer f.Close() if err := png.Encode(f, m); err != nil { return fmt.Errorf("Encode: %v", err) } return nil } // testInterp tests that interpolating the source image gives the exact // destination image. This is to ensure that any refactoring or optimization of // the interpolation code doesn't change the behavior. Changing the actual // algorithm or kernel used by any particular quality setting will obviously // change the resultant pixels. In such a case, use the gen_golden_files flag // to regenerate the golden files. func testInterp(t *testing.T, w int, h int, direction, srcFilename string) { f, err := os.Open("../testdata/go-turns-two-" + srcFilename) if err != nil { t.Fatalf("Open: %v", err) } defer f.Close() src, _, err := image.Decode(f) if err != nil { t.Fatalf("Decode: %v", err) } testCases := map[string]Interpolator{ "nn": NearestNeighbor, "ab": ApproxBiLinear, "bl": BiLinear, "cr": CatmullRom, } for name, q := range testCases { goldenFilename := fmt.Sprintf("../testdata/go-turns-two-%s-%s.png", direction, name) got := image.NewRGBA(image.Rect(0, 0, w, h)) if direction == "rotate" { q.Transform(got, transformMatrix(40, 10), src, src.Bounds(), nil) } else { q.Scale(got, got.Bounds(), src, src.Bounds(), nil) } if *genGoldenFiles { if err := encode(goldenFilename, got); err != nil { t.Error(err) } continue } g, err := os.Open(goldenFilename) if err != nil { t.Errorf("Open: %v", err) continue } defer g.Close() wantRaw, err := png.Decode(g) if err != nil { t.Errorf("Decode: %v", err) continue } // convert wantRaw to RGBA. want, ok := wantRaw.(*image.RGBA) if !ok { b := wantRaw.Bounds() want = image.NewRGBA(b) Draw(want, b, wantRaw, b.Min, Src) } if !reflect.DeepEqual(got, want) { t.Errorf("%s: actual image differs from golden image", goldenFilename) continue } } } func TestScaleDown(t *testing.T) { testInterp(t, 100, 100, "down", "280x360.jpeg") } func TestScaleUp(t *testing.T) { testInterp(t, 75, 100, "up", "14x18.png") } func TestTransform(t *testing.T) { testInterp(t, 100, 100, "rotate", "14x18.png") } func fillPix(r *rand.Rand, pixs ...[]byte) { for _, pix := range pixs { for i := range pix { pix[i] = uint8(r.Intn(256)) } } } func TestInterpClipCommute(t *testing.T) { src := image.NewNRGBA(image.Rect(0, 0, 20, 20)) fillPix(rand.New(rand.NewSource(0)), src.Pix) outer := image.Rect(1, 1, 8, 5) inner := image.Rect(2, 3, 6, 5) qs := []Interpolator{ NearestNeighbor, ApproxBiLinear, CatmullRom, } for _, transform := range []bool{false, true} { for _, q := range qs { dst0 := image.NewRGBA(image.Rect(1, 1, 10, 10)) dst1 := image.NewRGBA(image.Rect(1, 1, 10, 10)) for i := range dst0.Pix { dst0.Pix[i] = uint8(i / 4) dst1.Pix[i] = uint8(i / 4) } var interp func(dst *image.RGBA) if transform { interp = func(dst *image.RGBA) { q.Transform(dst, transformMatrix(2, 1), src, src.Bounds(), nil) } } else { interp = func(dst *image.RGBA) { q.Scale(dst, outer, src, src.Bounds(), nil) } } // Interpolate then clip. interp(dst0) dst0 = dst0.SubImage(inner).(*image.RGBA) // Clip then interpolate. dst1 = dst1.SubImage(inner).(*image.RGBA) interp(dst1) loop: for y := inner.Min.Y; y < inner.Max.Y; y++ { for x := inner.Min.X; x < inner.Max.X; x++ { if c0, c1 := dst0.RGBAAt(x, y), dst1.RGBAAt(x, y); c0 != c1 { t.Errorf("q=%T: at (%d, %d): c0=%v, c1=%v", q, x, y, c0, c1) break loop } } } } } } // translatedImage is an image m translated by t. type translatedImage struct { m image.Image t image.Point } func (t *translatedImage) At(x, y int) color.Color { return t.m.At(x-t.t.X, y-t.t.Y) } func (t *translatedImage) Bounds() image.Rectangle { return t.m.Bounds().Add(t.t) } func (t *translatedImage) ColorModel() color.Model { return t.m.ColorModel() } // TestSrcTranslationInvariance tests that Scale and Transform are invariant // under src translations. Specifically, when some source pixels are not in the // bottom-right quadrant of src coordinate space, we consistently round down, // not round towards zero. func TestSrcTranslationInvariance(t *testing.T) { f, err := os.Open("../testdata/testpattern.png") if err != nil { t.Fatalf("Open: %v", err) } defer f.Close() src, _, err := image.Decode(f) if err != nil { t.Fatalf("Decode: %v", err) } sr := image.Rect(2, 3, 16, 12) if !sr.In(src.Bounds()) { t.Fatalf("src bounds too small: got %v", src.Bounds()) } qs := []Interpolator{ NearestNeighbor, ApproxBiLinear, CatmullRom, } deltas := []image.Point{ {+0, +0}, {+0, +5}, {+0, -5}, {+5, +0}, {-5, +0}, {+8, +8}, {+8, -8}, {-8, +8}, {-8, -8}, } m00 := transformMatrix(0, 0) for _, transform := range []bool{false, true} { for _, q := range qs { want := image.NewRGBA(image.Rect(0, 0, 20, 20)) if transform { q.Transform(want, m00, src, sr, nil) } else { q.Scale(want, want.Bounds(), src, sr, nil) } for _, delta := range deltas { tsrc := &translatedImage{src, delta} got := image.NewRGBA(image.Rect(0, 0, 20, 20)) if transform { m := matMul(m00, &f64.Aff3{ 1, 0, -float64(delta.X), 0, 1, -float64(delta.Y), }) q.Transform(got, &m, tsrc, sr.Add(delta), nil) } else { q.Scale(got, got.Bounds(), tsrc, sr.Add(delta), nil) } if !bytes.Equal(got.Pix, want.Pix) { t.Errorf("pix differ for delta=%v, transform=%t, q=%T", delta, transform, q) } } } } } // The fooWrapper types wrap the dst or src image to avoid triggering the // type-specific fast path implementations. type ( dstWrapper struct{ Image } srcWrapper struct{ image.Image } ) // TestFastPaths tests that the fast path implementations produce identical // results to the generic implementation. func TestFastPaths(t *testing.T) { drs := []image.Rectangle{ image.Rect(0, 0, 10, 10), // The dst bounds. image.Rect(3, 4, 8, 6), // A strict subset of the dst bounds. image.Rect(-3, -5, 2, 4), // Partial out-of-bounds #0. image.Rect(4, -2, 6, 12), // Partial out-of-bounds #1. image.Rect(12, 14, 23, 45), // Complete out-of-bounds. image.Rect(5, 5, 5, 5), // Empty. } srs := []image.Rectangle{ image.Rect(0, 0, 12, 9), // The src bounds. image.Rect(2, 2, 10, 8), // A strict subset of the src bounds. image.Rect(10, 5, 20, 20), // Partial out-of-bounds #0. image.Rect(-40, 0, 40, 8), // Partial out-of-bounds #1. image.Rect(-8, -8, -4, -4), // Complete out-of-bounds. image.Rect(5, 5, 5, 5), // Empty. } srcfs := []func(image.Rectangle) (image.Image, error){ srcGray, srcNRGBA, srcRGBA, srcUniform, srcYCbCr, } var srcs []image.Image for _, srcf := range srcfs { src, err := srcf(srs[0]) if err != nil { t.Fatal(err) } srcs = append(srcs, src) } qs := []Interpolator{ NearestNeighbor, ApproxBiLinear, CatmullRom, } blue := image.NewUniform(color.RGBA{0x11, 0x22, 0x44, 0x7f}) for _, dr := range drs { for _, src := range srcs { for _, sr := range srs { for _, transform := range []bool{false, true} { for _, q := range qs { dst0 := image.NewRGBA(drs[0]) dst1 := image.NewRGBA(drs[0]) Draw(dst0, dst0.Bounds(), blue, image.Point{}, Src) Draw(dstWrapper{dst1}, dst1.Bounds(), srcWrapper{blue}, image.Point{}, Src) if transform { m := transformMatrix(2, 1) q.Transform(dst0, m, src, sr, nil) q.Transform(dstWrapper{dst1}, m, srcWrapper{src}, sr, nil) } else { q.Scale(dst0, dr, src, sr, nil) q.Scale(dstWrapper{dst1}, dr, srcWrapper{src}, sr, nil) } if !bytes.Equal(dst0.Pix, dst1.Pix) { t.Errorf("pix differ for dr=%v, src=%T, sr=%v, transform=%t, q=%T", dr, src, sr, transform, q) } } } } } } } func srcGray(boundsHint image.Rectangle) (image.Image, error) { m := image.NewGray(boundsHint) fillPix(rand.New(rand.NewSource(0)), m.Pix) return m, nil } func srcNRGBA(boundsHint image.Rectangle) (image.Image, error) { m := image.NewNRGBA(boundsHint) fillPix(rand.New(rand.NewSource(1)), m.Pix) return m, nil } func srcRGBA(boundsHint image.Rectangle) (image.Image, error) { m := image.NewRGBA(boundsHint) fillPix(rand.New(rand.NewSource(2)), m.Pix) // RGBA is alpha-premultiplied, so the R, G and B values should // be <= the A values. for i := 0; i < len(m.Pix); i += 4 { m.Pix[i+0] = uint8(uint32(m.Pix[i+0]) * uint32(m.Pix[i+3]) / 0xff) m.Pix[i+1] = uint8(uint32(m.Pix[i+1]) * uint32(m.Pix[i+3]) / 0xff) m.Pix[i+2] = uint8(uint32(m.Pix[i+2]) * uint32(m.Pix[i+3]) / 0xff) } return m, nil } func srcUniform(boundsHint image.Rectangle) (image.Image, error) { return image.NewUniform(color.RGBA64{0x1234, 0x5555, 0x9181, 0xbeef}), nil } func srcYCbCr(boundsHint image.Rectangle) (image.Image, error) { m := image.NewYCbCr(boundsHint, image.YCbCrSubsampleRatio420) fillPix(rand.New(rand.NewSource(3)), m.Y, m.Cb, m.Cr) return m, nil } func srcYCbCrLarge(boundsHint image.Rectangle) (image.Image, error) { // 3072 x 2304 is over 7 million pixels at 4:3, comparable to a // 2015 smart-phone camera's output. return srcYCbCr(image.Rect(0, 0, 3072, 2304)) } func srcTux(boundsHint image.Rectangle) (image.Image, error) { // tux.png is a 386 x 395 image. f, err := os.Open("../testdata/tux.png") if err != nil { return nil, fmt.Errorf("Open: %v", err) } defer f.Close() src, err := png.Decode(f) if err != nil { return nil, fmt.Errorf("Decode: %v", err) } return src, nil } func benchScale(b *testing.B, srcf func(image.Rectangle) (image.Image, error), w int, h int, q Interpolator) { dst := image.NewRGBA(image.Rect(0, 0, w, h)) src, err := srcf(image.Rect(0, 0, 1024, 768)) if err != nil { b.Fatal(err) } dr, sr := dst.Bounds(), src.Bounds() scaler := Scaler(q) if n, ok := q.(interface { NewScaler(int, int, int, int) Scaler }); ok { scaler = n.NewScaler(dr.Dx(), dr.Dy(), sr.Dx(), sr.Dy()) } b.ReportAllocs() b.ResetTimer() for i := 0; i < b.N; i++ { scaler.Scale(dst, dr, src, sr, nil) } } func benchTform(b *testing.B, srcf func(image.Rectangle) (image.Image, error), w int, h int, q Interpolator) { dst := image.NewRGBA(image.Rect(0, 0, w, h)) src, err := srcf(image.Rect(0, 0, 1024, 768)) if err != nil { b.Fatal(err) } sr := src.Bounds() m := transformMatrix(40, 10) b.ReportAllocs() b.ResetTimer() for i := 0; i < b.N; i++ { q.Transform(dst, m, src, sr, nil) } } func BenchmarkScaleNNLargeDown(b *testing.B) { benchScale(b, srcYCbCrLarge, 200, 150, NearestNeighbor) } func BenchmarkScaleABLargeDown(b *testing.B) { benchScale(b, srcYCbCrLarge, 200, 150, ApproxBiLinear) } func BenchmarkScaleBLLargeDown(b *testing.B) { benchScale(b, srcYCbCrLarge, 200, 150, BiLinear) } func BenchmarkScaleCRLargeDown(b *testing.B) { benchScale(b, srcYCbCrLarge, 200, 150, CatmullRom) } func BenchmarkScaleNNDown(b *testing.B) { benchScale(b, srcTux, 120, 80, NearestNeighbor) } func BenchmarkScaleABDown(b *testing.B) { benchScale(b, srcTux, 120, 80, ApproxBiLinear) } func BenchmarkScaleBLDown(b *testing.B) { benchScale(b, srcTux, 120, 80, BiLinear) } func BenchmarkScaleCRDown(b *testing.B) { benchScale(b, srcTux, 120, 80, CatmullRom) } func BenchmarkScaleNNUp(b *testing.B) { benchScale(b, srcTux, 800, 600, NearestNeighbor) } func BenchmarkScaleABUp(b *testing.B) { benchScale(b, srcTux, 800, 600, ApproxBiLinear) } func BenchmarkScaleBLUp(b *testing.B) { benchScale(b, srcTux, 800, 600, BiLinear) } func BenchmarkScaleCRUp(b *testing.B) { benchScale(b, srcTux, 800, 600, CatmullRom) } func BenchmarkScaleNNSrcRGBA(b *testing.B) { benchScale(b, srcRGBA, 200, 150, NearestNeighbor) } func BenchmarkScaleNNSrcUniform(b *testing.B) { benchScale(b, srcUniform, 200, 150, NearestNeighbor) } func BenchmarkTformNNSrcRGBA(b *testing.B) { benchTform(b, srcRGBA, 200, 150, NearestNeighbor) } func BenchmarkTformNNSrcUniform(b *testing.B) { benchTform(b, srcUniform, 200, 150, NearestNeighbor) } func BenchmarkScaleABSrcGray(b *testing.B) { benchScale(b, srcGray, 200, 150, ApproxBiLinear) } func BenchmarkScaleABSrcNRGBA(b *testing.B) { benchScale(b, srcNRGBA, 200, 150, ApproxBiLinear) } func BenchmarkScaleABSrcRGBA(b *testing.B) { benchScale(b, srcRGBA, 200, 150, ApproxBiLinear) } func BenchmarkScaleABSrcYCbCr(b *testing.B) { benchScale(b, srcYCbCr, 200, 150, ApproxBiLinear) } func BenchmarkTformABSrcGray(b *testing.B) { benchTform(b, srcGray, 200, 150, ApproxBiLinear) } func BenchmarkTformABSrcNRGBA(b *testing.B) { benchTform(b, srcNRGBA, 200, 150, ApproxBiLinear) } func BenchmarkTformABSrcRGBA(b *testing.B) { benchTform(b, srcRGBA, 200, 150, ApproxBiLinear) } func BenchmarkTformABSrcYCbCr(b *testing.B) { benchTform(b, srcYCbCr, 200, 150, ApproxBiLinear) } func BenchmarkScaleCRSrcGray(b *testing.B) { benchScale(b, srcGray, 200, 150, CatmullRom) } func BenchmarkScaleCRSrcNRGBA(b *testing.B) { benchScale(b, srcNRGBA, 200, 150, CatmullRom) } func BenchmarkScaleCRSrcRGBA(b *testing.B) { benchScale(b, srcRGBA, 200, 150, CatmullRom) } func BenchmarkScaleCRSrcYCbCr(b *testing.B) { benchScale(b, srcYCbCr, 200, 150, CatmullRom) } func BenchmarkTformCRSrcGray(b *testing.B) { benchTform(b, srcGray, 200, 150, CatmullRom) } func BenchmarkTformCRSrcNRGBA(b *testing.B) { benchTform(b, srcNRGBA, 200, 150, CatmullRom) } func BenchmarkTformCRSrcRGBA(b *testing.B) { benchTform(b, srcRGBA, 200, 150, CatmullRom) } func BenchmarkTformCRSrcYCbCr(b *testing.B) { benchTform(b, srcYCbCr, 200, 150, CatmullRom) }