// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package vector // This file contains a fixed point math implementation of the vector // graphics rasterizer. import ( "golang.org/x/image/math/f32" ) const ( // ϕ is the number of binary digits after the fixed point. // // For example, if ϕ == 10 (and int1ϕ is based on the int32 type) then we // are using 22.10 fixed point math. // // When changing this number, also change the assembly code (search for ϕ // in the .s files). ϕ = 10 fxOne int1ϕ = 1 << ϕ fxOneAndAHalf int1ϕ = 1<<ϕ + 1<<(ϕ-1) fxOneMinusIota int1ϕ = 1<<ϕ - 1 // Used for rounding up. ) // int1ϕ is a signed fixed-point number with 1*ϕ binary digits after the fixed // point. type int1ϕ int32 // int2ϕ is a signed fixed-point number with 2*ϕ binary digits after the fixed // point. // // The Rasterizer's bufU32 field, nominally of type []uint32 (since that slice // is also used by other code), can be thought of as a []int2ϕ during the // fixedLineTo method. Lines of code that are actually like: // buf[i] += uint32(etc) // buf has type []uint32. // can be thought of as // buf[i] += int2ϕ(etc) // buf has type []int2ϕ. type int2ϕ int32 func fixedMax(x, y int1ϕ) int1ϕ { if x > y { return x } return y } func fixedMin(x, y int1ϕ) int1ϕ { if x < y { return x } return y } func fixedFloor(x int1ϕ) int32 { return int32(x >> ϕ) } func fixedCeil(x int1ϕ) int32 { return int32((x + fxOneMinusIota) >> ϕ) } func (z *Rasterizer) fixedLineTo(b f32.Vec2) { a := z.pen z.pen = b dir := int1ϕ(1) if a[1] > b[1] { dir, a, b = -1, b, a } // Horizontal line segments yield no change in coverage. Almost horizontal // segments would yield some change, in ideal math, but the computation // further below, involving 1 / (b[1] - a[1]), is unstable in fixed point // math, so we treat the segment as if it was perfectly horizontal. if b[1]-a[1] <= 0.000001 { return } dxdy := (b[0] - a[0]) / (b[1] - a[1]) ay := int1ϕ(a[1] * float32(fxOne)) by := int1ϕ(b[1] * float32(fxOne)) x := int1ϕ(a[0] * float32(fxOne)) y := fixedFloor(ay) yMax := fixedCeil(by) if yMax > int32(z.size.Y) { yMax = int32(z.size.Y) } width := int32(z.size.X) for ; y < yMax; y++ { dy := fixedMin(int1ϕ(y+1)<<ϕ, by) - fixedMax(int1ϕ(y)<<ϕ, ay) xNext := x + int1ϕ(float32(dy)*dxdy) if y < 0 { x = xNext continue } buf := z.bufU32[y*width:] d := dy * dir x0, x1 := x, xNext if x > xNext { x0, x1 = x1, x0 } x0i := fixedFloor(x0) x0Floor := int1ϕ(x0i) << ϕ x1i := fixedCeil(x1) x1Ceil := int1ϕ(x1i) << ϕ if x1i <= x0i+1 { xmf := (x+xNext)>>1 - x0Floor if i := clamp(x0i+0, width); i < uint(len(buf)) { buf[i] += uint32(d * (fxOne - xmf)) } if i := clamp(x0i+1, width); i < uint(len(buf)) { buf[i] += uint32(d * xmf) } } else { oneOverS := x1 - x0 twoOverS := 2 * oneOverS x0f := x0 - x0Floor oneMinusX0f := fxOne - x0f oneMinusX0fSquared := oneMinusX0f * oneMinusX0f x1f := x1 - x1Ceil + fxOne x1fSquared := x1f * x1f // These next two variables are unused, as rounding errors are // minimized when we delay the division by oneOverS for as long as // possible. These lines of code (and the "In ideal math" comments // below) are commented out instead of deleted in order to aid the // comparison with the floating point version of the rasterizer. // // a0 := ((oneMinusX0f * oneMinusX0f) >> 1) / oneOverS // am := ((x1f * x1f) >> 1) / oneOverS if i := clamp(x0i, width); i < uint(len(buf)) { // In ideal math: buf[i] += uint32(d * a0) D := oneMinusX0fSquared D *= d D /= twoOverS buf[i] += uint32(D) } if x1i == x0i+2 { if i := clamp(x0i+1, width); i < uint(len(buf)) { // In ideal math: buf[i] += uint32(d * (fxOne - a0 - am)) D := twoOverS<<ϕ - oneMinusX0fSquared - x1fSquared D *= d D /= twoOverS buf[i] += uint32(D) } } else { // This is commented out for the same reason as a0 and am. // // a1 := ((fxOneAndAHalf - x0f) << ϕ) / oneOverS if i := clamp(x0i+1, width); i < uint(len(buf)) { // In ideal math: buf[i] += uint32(d * (a1 - a0)) // // Convert to int64 to avoid overflow. Without that, // TestRasterizePolygon fails. D := int64((fxOneAndAHalf-x0f)<<(ϕ+1) - oneMinusX0fSquared) D *= int64(d) D /= int64(twoOverS) buf[i] += uint32(D) } dTimesS := uint32((d << (2 * ϕ)) / oneOverS) for xi := x0i + 2; xi < x1i-1; xi++ { if i := clamp(xi, width); i < uint(len(buf)) { buf[i] += dTimesS } } // This is commented out for the same reason as a0 and am. // // a2 := a1 + (int1ϕ(x1i-x0i-3)<<(2*ϕ))/oneOverS if i := clamp(x1i-1, width); i < uint(len(buf)) { // In ideal math: buf[i] += uint32(d * (fxOne - a2 - am)) // // Convert to int64 to avoid overflow. Without that, // TestRasterizePolygon fails. D := int64(twoOverS << ϕ) D -= int64((fxOneAndAHalf - x0f) << (ϕ + 1)) D -= int64((x1i - x0i - 3) << (2*ϕ + 1)) D -= int64(x1fSquared) D *= int64(d) D /= int64(twoOverS) buf[i] += uint32(D) } } if i := clamp(x1i, width); i < uint(len(buf)) { // In ideal math: buf[i] += uint32(d * am) D := x1fSquared D *= d D /= twoOverS buf[i] += uint32(D) } } x = xNext } } func fixedAccumulateOpOver(dst []uint8, src []uint32) { acc := int2ϕ(0) for i, v := range src { acc += int2ϕ(v) a := acc if a < 0 { a = -a } a >>= 2*ϕ - 16 if a > 0xffff { a = 0xffff } // This algorithm comes from the standard library's image/draw package. dstA := uint32(dst[i]) * 0x101 maskA := uint32(a) outA := dstA*(0xffff-maskA)/0xffff + maskA dst[i] = uint8(outA >> 8) } } func fixedAccumulateOpSrc(dst []uint8, src []uint32) { // Sanity check that len(dst) >= len(src). if len(dst) < len(src) { return } acc := int2ϕ(0) for i, v := range src { acc += int2ϕ(v) a := acc if a < 0 { a = -a } a >>= 2*ϕ - 8 if a > 0xff { a = 0xff } dst[i] = uint8(a) } } func fixedAccumulateMask(buf []uint32) { acc := int2ϕ(0) for i, v := range buf { acc += int2ϕ(v) a := acc if a < 0 { a = -a } a >>= 2*ϕ - 16 if a > 0xffff { a = 0xffff } buf[i] = uint32(a) } }