// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package draw import ( "flag" "fmt" "image" "image/png" "os" "reflect" "testing" _ "image/jpeg" ) var genScaleFiles = flag.Bool("gen_scale_files", false, "whether to generate the TestScaleXxx golden files.") // testScale tests that scaling the source image gives the exact destination // image. This is to ensure that any refactoring or optimization of the scaling // code doesn't change the scaling behavior. Changing the actual algorithm or // kernel used by any particular quality setting will obviously change the // resultant pixels. In such a case, use the gen_scale_files flag to regenerate // the golden files. func testScale(t *testing.T, w int, h int, direction, srcFilename string) { f, err := os.Open("../testdata/go-turns-two-" + srcFilename) if err != nil { t.Fatalf("Open: %v", err) } defer f.Close() src, _, err := image.Decode(f) if err != nil { t.Fatalf("Decode: %v", err) } testCases := map[string]Interpolator{ "nn": NearestNeighbor, "ab": ApproxBiLinear, "bl": BiLinear, "cr": CatmullRom, } for name, q := range testCases { gotFilename := fmt.Sprintf("../testdata/go-turns-two-%s-%s.png", direction, name) got := image.NewRGBA(image.Rect(0, 0, w, h)) Scale(got, got.Bounds(), src, src.Bounds(), q) if *genScaleFiles { g, err := os.Create(gotFilename) if err != nil { t.Errorf("Create: %v", err) continue } defer g.Close() if err := png.Encode(g, got); err != nil { t.Errorf("Encode: %v", err) continue } continue } g, err := os.Open(gotFilename) if err != nil { t.Errorf("Open: %v", err) continue } defer g.Close() want, err := png.Decode(g) if err != nil { t.Errorf("Decode: %v", err) continue } if !reflect.DeepEqual(got, want) { t.Errorf("%s: actual image differs from golden image", gotFilename) continue } } } func TestScaleDown(t *testing.T) { testScale(t, 100, 100, "down", "280x360.jpeg") } func TestScaleUp(t *testing.T) { testScale(t, 75, 100, "up", "14x18.png") } // TODO: test that scaling concrete types like *image.RGBA and *image.YCbCr // give the same results as scaling those images wrapped in another Image or // image.Image type that would skip the fast-path type switch. func srcNRGBA() (image.Image, error) { return image.NewNRGBA(image.Rect(0, 0, 1024, 768)), nil } func srcRGBA() (image.Image, error) { return image.NewRGBA(image.Rect(0, 0, 1024, 768)), nil } func srcUniform() (image.Image, error) { return image.White, nil } func srcYCbCr() (image.Image, error) { return image.NewYCbCr(image.Rect(0, 0, 1024, 768), image.YCbCrSubsampleRatio420), nil } func srcYCbCrLarge() (image.Image, error) { // 3072 x 2304 is over 7 million pixels at 4:3, comparable to a // 2015 smart-phone camera's output. return image.NewYCbCr(image.Rect(0, 0, 3072, 2304), image.YCbCrSubsampleRatio420), nil } func srcTux() (image.Image, error) { // tux.png is a 386 x 395 image. f, err := os.Open("../testdata/tux.png") if err != nil { return nil, fmt.Errorf("Open: %v", err) } defer f.Close() src, err := png.Decode(f) if err != nil { return nil, fmt.Errorf("Decode: %v", err) } return src, nil } func benchScale(b *testing.B, srcf func() (image.Image, error), w int, h int, q Interpolator) { dst := image.NewRGBA(image.Rect(0, 0, w, h)) src, err := srcf() if err != nil { b.Fatal(err) } dr, sr := dst.Bounds(), src.Bounds() scaler := q.NewScaler(int32(dr.Dx()), int32(dr.Dy()), int32(sr.Dx()), int32(sr.Dy())) b.ResetTimer() for i := 0; i < b.N; i++ { scaler.Scale(dst, dr.Min, src, sr.Min) } } func BenchmarkScaleLargeDownNN(b *testing.B) { benchScale(b, srcYCbCrLarge, 200, 150, NearestNeighbor) } func BenchmarkScaleLargeDownAB(b *testing.B) { benchScale(b, srcYCbCrLarge, 200, 150, ApproxBiLinear) } func BenchmarkScaleLargeDownBL(b *testing.B) { benchScale(b, srcYCbCrLarge, 200, 150, BiLinear) } func BenchmarkScaleLargeDownCR(b *testing.B) { benchScale(b, srcYCbCrLarge, 200, 150, CatmullRom) } func BenchmarkScaleDownNN(b *testing.B) { benchScale(b, srcTux, 120, 80, NearestNeighbor) } func BenchmarkScaleDownAB(b *testing.B) { benchScale(b, srcTux, 120, 80, ApproxBiLinear) } func BenchmarkScaleDownBL(b *testing.B) { benchScale(b, srcTux, 120, 80, BiLinear) } func BenchmarkScaleDownCR(b *testing.B) { benchScale(b, srcTux, 120, 80, CatmullRom) } func BenchmarkScaleUpNN(b *testing.B) { benchScale(b, srcTux, 800, 600, NearestNeighbor) } func BenchmarkScaleUpAB(b *testing.B) { benchScale(b, srcTux, 800, 600, ApproxBiLinear) } func BenchmarkScaleUpBL(b *testing.B) { benchScale(b, srcTux, 800, 600, BiLinear) } func BenchmarkScaleUpCR(b *testing.B) { benchScale(b, srcTux, 800, 600, CatmullRom) } func BenchmarkScaleSrcNRGBA(b *testing.B) { benchScale(b, srcNRGBA, 200, 150, ApproxBiLinear) } func BenchmarkScaleSrcRGBA(b *testing.B) { benchScale(b, srcRGBA, 200, 150, ApproxBiLinear) } func BenchmarkScaleSrcUniform(b *testing.B) { benchScale(b, srcUniform, 200, 150, ApproxBiLinear) } func BenchmarkScaleSrcYCbCr(b *testing.B) { benchScale(b, srcYCbCr, 200, 150, ApproxBiLinear) }