// generated by "go run gen.go". DO NOT EDIT. package draw import ( "image" "image/color" "math" "golang.org/x/image/math/f64" ) func (z nnInterpolator) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) { // adr is the affected destination pixels, relative to dr.Min. adr := dst.Bounds().Intersect(dr).Sub(dr.Min) if adr.Empty() || sr.Empty() { return } // sr is the source pixels. If it extends beyond the src bounds, // we cannot use the type-specific fast paths, as they access // the Pix fields directly without bounds checking. if !sr.In(src.Bounds()) { switch opts.op() { case Over: z.scale_Image_Image_Over(dst, dr, adr, src, sr) case Src: z.scale_Image_Image_Src(dst, dr, adr, src, sr) } } else if _, ok := src.(*image.Uniform); ok { Draw(dst, dr, src, src.Bounds().Min, opts.op()) } else { switch opts.op() { case Over: switch dst := dst.(type) { case *image.RGBA: switch src := src.(type) { case *image.Gray: z.scale_RGBA_Gray_Over(dst, dr, adr, src, sr) case *image.NRGBA: z.scale_RGBA_NRGBA_Over(dst, dr, adr, src, sr) case *image.RGBA: z.scale_RGBA_RGBA_Over(dst, dr, adr, src, sr) case *image.YCbCr: switch src.SubsampleRatio { default: z.scale_RGBA_Image_Over(dst, dr, adr, src, sr) case image.YCbCrSubsampleRatio444: z.scale_RGBA_YCbCr444_Over(dst, dr, adr, src, sr) case image.YCbCrSubsampleRatio422: z.scale_RGBA_YCbCr422_Over(dst, dr, adr, src, sr) case image.YCbCrSubsampleRatio420: z.scale_RGBA_YCbCr420_Over(dst, dr, adr, src, sr) case image.YCbCrSubsampleRatio440: z.scale_RGBA_YCbCr440_Over(dst, dr, adr, src, sr) } default: z.scale_RGBA_Image_Over(dst, dr, adr, src, sr) } default: switch src := src.(type) { default: z.scale_Image_Image_Over(dst, dr, adr, src, sr) } } case Src: switch dst := dst.(type) { case *image.RGBA: switch src := src.(type) { case *image.Gray: z.scale_RGBA_Gray_Src(dst, dr, adr, src, sr) case *image.NRGBA: z.scale_RGBA_NRGBA_Src(dst, dr, adr, src, sr) case *image.RGBA: z.scale_RGBA_RGBA_Src(dst, dr, adr, src, sr) case *image.YCbCr: switch src.SubsampleRatio { default: z.scale_RGBA_Image_Src(dst, dr, adr, src, sr) case image.YCbCrSubsampleRatio444: z.scale_RGBA_YCbCr444_Src(dst, dr, adr, src, sr) case image.YCbCrSubsampleRatio422: z.scale_RGBA_YCbCr422_Src(dst, dr, adr, src, sr) case image.YCbCrSubsampleRatio420: z.scale_RGBA_YCbCr420_Src(dst, dr, adr, src, sr) case image.YCbCrSubsampleRatio440: z.scale_RGBA_YCbCr440_Src(dst, dr, adr, src, sr) } default: z.scale_RGBA_Image_Src(dst, dr, adr, src, sr) } default: switch src := src.(type) { default: z.scale_Image_Image_Src(dst, dr, adr, src, sr) } } } } } func (z nnInterpolator) Transform(dst Image, s2d *f64.Aff3, src image.Image, sr image.Rectangle, opts *Options) { dr := transformRect(s2d, &sr) // adr is the affected destination pixels. adr := dst.Bounds().Intersect(dr) if adr.Empty() || sr.Empty() { return } d2s := invert(s2d) // bias is a translation of the mapping from dst co-ordinates to // src co-ordinates such that the latter temporarily have // non-negative X and Y co-ordinates. This allows us to write // int(f) instead of int(math.Floor(f)), since "round to zero" and // "round down" are equivalent when f >= 0, but the former is much // cheaper. The X-- and Y-- are because the TransformLeaf methods // have a "sx -= 0.5" adjustment. bias := transformRect(&d2s, &adr).Min bias.X-- bias.Y-- d2s[2] -= float64(bias.X) d2s[5] -= float64(bias.Y) // Make adr relative to dr.Min. adr = adr.Sub(dr.Min) // sr is the source pixels. If it extends beyond the src bounds, // we cannot use the type-specific fast paths, as they access // the Pix fields directly without bounds checking. if !sr.In(src.Bounds()) { switch opts.op() { case Over: z.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias) case Src: z.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias) } } else if u, ok := src.(*image.Uniform); ok { transform_Uniform(dst, dr, adr, &d2s, u, sr, bias, opts.op()) } else { switch opts.op() { case Over: switch dst := dst.(type) { case *image.RGBA: switch src := src.(type) { case *image.Gray: z.transform_RGBA_Gray_Over(dst, dr, adr, &d2s, src, sr, bias) case *image.NRGBA: z.transform_RGBA_NRGBA_Over(dst, dr, adr, &d2s, src, sr, bias) case *image.RGBA: z.transform_RGBA_RGBA_Over(dst, dr, adr, &d2s, src, sr, bias) case *image.YCbCr: switch src.SubsampleRatio { default: z.transform_RGBA_Image_Over(dst, dr, adr, &d2s, src, sr, bias) case image.YCbCrSubsampleRatio444: z.transform_RGBA_YCbCr444_Over(dst, dr, adr, &d2s, src, sr, bias) case image.YCbCrSubsampleRatio422: z.transform_RGBA_YCbCr422_Over(dst, dr, adr, &d2s, src, sr, bias) case image.YCbCrSubsampleRatio420: z.transform_RGBA_YCbCr420_Over(dst, dr, adr, &d2s, src, sr, bias) case image.YCbCrSubsampleRatio440: z.transform_RGBA_YCbCr440_Over(dst, dr, adr, &d2s, src, sr, bias) } default: z.transform_RGBA_Image_Over(dst, dr, adr, &d2s, src, sr, bias) } default: switch src := src.(type) { default: z.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias) } } case Src: switch dst := dst.(type) { case *image.RGBA: switch src := src.(type) { case *image.Gray: z.transform_RGBA_Gray_Src(dst, dr, adr, &d2s, src, sr, bias) case *image.NRGBA: z.transform_RGBA_NRGBA_Src(dst, dr, adr, &d2s, src, sr, bias) case *image.RGBA: z.transform_RGBA_RGBA_Src(dst, dr, adr, &d2s, src, sr, bias) case *image.YCbCr: switch src.SubsampleRatio { default: z.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias) case image.YCbCrSubsampleRatio444: z.transform_RGBA_YCbCr444_Src(dst, dr, adr, &d2s, src, sr, bias) case image.YCbCrSubsampleRatio422: z.transform_RGBA_YCbCr422_Src(dst, dr, adr, &d2s, src, sr, bias) case image.YCbCrSubsampleRatio420: z.transform_RGBA_YCbCr420_Src(dst, dr, adr, &d2s, src, sr, bias) case image.YCbCrSubsampleRatio440: z.transform_RGBA_YCbCr440_Src(dst, dr, adr, &d2s, src, sr, bias) } default: z.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias) } default: switch src := src.(type) { default: z.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias) } } } } } func (nnInterpolator) scale_RGBA_Gray_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.Gray, sr image.Rectangle) { dw2 := uint64(dr.Dx()) * 2 dh2 := uint64(dr.Dy()) * 2 sw := uint64(sr.Dx()) sh := uint64(sr.Dy()) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (2*uint64(dy) + 1) * sh / dh2 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (2*uint64(dx) + 1) * sw / dw2 pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx) - src.Rect.Min.X) pr := uint32(src.Pix[pi]) * 0x101 out := uint8(uint32(pr) >> 8) dst.Pix[d+0] = out dst.Pix[d+1] = out dst.Pix[d+2] = out dst.Pix[d+3] = 0xff } } } func (nnInterpolator) scale_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.Gray, sr image.Rectangle) { dw2 := uint64(dr.Dx()) * 2 dh2 := uint64(dr.Dy()) * 2 sw := uint64(sr.Dx()) sh := uint64(sr.Dy()) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (2*uint64(dy) + 1) * sh / dh2 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (2*uint64(dx) + 1) * sw / dw2 pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx) - src.Rect.Min.X) pr := uint32(src.Pix[pi]) * 0x101 out := uint8(uint32(pr) >> 8) dst.Pix[d+0] = out dst.Pix[d+1] = out dst.Pix[d+2] = out dst.Pix[d+3] = 0xff } } } func (nnInterpolator) scale_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.NRGBA, sr image.Rectangle) { dw2 := uint64(dr.Dx()) * 2 dh2 := uint64(dr.Dy()) * 2 sw := uint64(sr.Dx()) sh := uint64(sr.Dy()) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (2*uint64(dy) + 1) * sh / dh2 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (2*uint64(dx) + 1) * sw / dw2 pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx)-src.Rect.Min.X)*4 pa := uint32(src.Pix[pi+3]) * 0x101 pr := uint32(src.Pix[pi+0]) * pa / 0xff pg := uint32(src.Pix[pi+1]) * pa / 0xff pb := uint32(src.Pix[pi+2]) * pa / 0xff dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = uint8(uint32(pa) >> 8) } } } func (nnInterpolator) scale_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.NRGBA, sr image.Rectangle) { dw2 := uint64(dr.Dx()) * 2 dh2 := uint64(dr.Dy()) * 2 sw := uint64(sr.Dx()) sh := uint64(sr.Dy()) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (2*uint64(dy) + 1) * sh / dh2 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (2*uint64(dx) + 1) * sw / dw2 pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx)-src.Rect.Min.X)*4 pa := uint32(src.Pix[pi+3]) * 0x101 pr := uint32(src.Pix[pi+0]) * pa / 0xff pg := uint32(src.Pix[pi+1]) * pa / 0xff pb := uint32(src.Pix[pi+2]) * pa / 0xff dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = uint8(uint32(pa) >> 8) } } } func (nnInterpolator) scale_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.RGBA, sr image.Rectangle) { dw2 := uint64(dr.Dx()) * 2 dh2 := uint64(dr.Dy()) * 2 sw := uint64(sr.Dx()) sh := uint64(sr.Dy()) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (2*uint64(dy) + 1) * sh / dh2 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (2*uint64(dx) + 1) * sw / dw2 pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx)-src.Rect.Min.X)*4 pr := uint32(src.Pix[pi+0]) * 0x101 pg := uint32(src.Pix[pi+1]) * 0x101 pb := uint32(src.Pix[pi+2]) * 0x101 pa := uint32(src.Pix[pi+3]) * 0x101 dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = uint8(uint32(pa) >> 8) } } } func (nnInterpolator) scale_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.RGBA, sr image.Rectangle) { dw2 := uint64(dr.Dx()) * 2 dh2 := uint64(dr.Dy()) * 2 sw := uint64(sr.Dx()) sh := uint64(sr.Dy()) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (2*uint64(dy) + 1) * sh / dh2 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (2*uint64(dx) + 1) * sw / dw2 pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx)-src.Rect.Min.X)*4 pr := uint32(src.Pix[pi+0]) * 0x101 pg := uint32(src.Pix[pi+1]) * 0x101 pb := uint32(src.Pix[pi+2]) * 0x101 pa := uint32(src.Pix[pi+3]) * 0x101 dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = uint8(uint32(pa) >> 8) } } } func (nnInterpolator) scale_RGBA_YCbCr444_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle) { dw2 := uint64(dr.Dx()) * 2 dh2 := uint64(dr.Dy()) * 2 sw := uint64(sr.Dx()) sh := uint64(sr.Dy()) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (2*uint64(dy) + 1) * sh / dh2 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (2*uint64(dx) + 1) * sw / dw2 pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X) pj := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx) - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pr := (pyy1 + 91881*pcr1) >> 8 pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pb := (pyy1 + 116130*pcb1) >> 8 if pr < 0 { pr = 0 } else if pr > 0xffff { pr = 0xffff } if pg < 0 { pg = 0 } else if pg > 0xffff { pg = 0xffff } if pb < 0 { pb = 0 } else if pb > 0xffff { pb = 0xffff } dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = 0xff } } } func (nnInterpolator) scale_RGBA_YCbCr422_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle) { dw2 := uint64(dr.Dx()) * 2 dh2 := uint64(dr.Dy()) * 2 sw := uint64(sr.Dx()) sh := uint64(sr.Dy()) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (2*uint64(dy) + 1) * sh / dh2 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (2*uint64(dx) + 1) * sw / dw2 pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X) pj := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx))/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pr := (pyy1 + 91881*pcr1) >> 8 pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pb := (pyy1 + 116130*pcb1) >> 8 if pr < 0 { pr = 0 } else if pr > 0xffff { pr = 0xffff } if pg < 0 { pg = 0 } else if pg > 0xffff { pg = 0xffff } if pb < 0 { pb = 0 } else if pb > 0xffff { pb = 0xffff } dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = 0xff } } } func (nnInterpolator) scale_RGBA_YCbCr420_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle) { dw2 := uint64(dr.Dx()) * 2 dh2 := uint64(dr.Dy()) * 2 sw := uint64(sr.Dx()) sh := uint64(sr.Dy()) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (2*uint64(dy) + 1) * sh / dh2 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (2*uint64(dx) + 1) * sw / dw2 pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X) pj := ((sr.Min.Y+int(sy))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx))/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pr := (pyy1 + 91881*pcr1) >> 8 pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pb := (pyy1 + 116130*pcb1) >> 8 if pr < 0 { pr = 0 } else if pr > 0xffff { pr = 0xffff } if pg < 0 { pg = 0 } else if pg > 0xffff { pg = 0xffff } if pb < 0 { pb = 0 } else if pb > 0xffff { pb = 0xffff } dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = 0xff } } } func (nnInterpolator) scale_RGBA_YCbCr440_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle) { dw2 := uint64(dr.Dx()) * 2 dh2 := uint64(dr.Dy()) * 2 sw := uint64(sr.Dx()) sh := uint64(sr.Dy()) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (2*uint64(dy) + 1) * sh / dh2 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (2*uint64(dx) + 1) * sw / dw2 pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X) pj := ((sr.Min.Y+int(sy))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx) - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pr := (pyy1 + 91881*pcr1) >> 8 pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pb := (pyy1 + 116130*pcb1) >> 8 if pr < 0 { pr = 0 } else if pr > 0xffff { pr = 0xffff } if pg < 0 { pg = 0 } else if pg > 0xffff { pg = 0xffff } if pb < 0 { pb = 0 } else if pb > 0xffff { pb = 0xffff } dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = 0xff } } } func (nnInterpolator) scale_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle) { dw2 := uint64(dr.Dx()) * 2 dh2 := uint64(dr.Dy()) * 2 sw := uint64(sr.Dx()) sh := uint64(sr.Dy()) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (2*uint64(dy) + 1) * sh / dh2 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (2*uint64(dx) + 1) * sw / dw2 pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X) pj := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx) - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pr := (pyy1 + 91881*pcr1) >> 8 pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pb := (pyy1 + 116130*pcb1) >> 8 if pr < 0 { pr = 0 } else if pr > 0xffff { pr = 0xffff } if pg < 0 { pg = 0 } else if pg > 0xffff { pg = 0xffff } if pb < 0 { pb = 0 } else if pb > 0xffff { pb = 0xffff } dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = 0xff } } } func (nnInterpolator) scale_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle) { dw2 := uint64(dr.Dx()) * 2 dh2 := uint64(dr.Dy()) * 2 sw := uint64(sr.Dx()) sh := uint64(sr.Dy()) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (2*uint64(dy) + 1) * sh / dh2 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (2*uint64(dx) + 1) * sw / dw2 pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X) pj := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx))/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pr := (pyy1 + 91881*pcr1) >> 8 pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pb := (pyy1 + 116130*pcb1) >> 8 if pr < 0 { pr = 0 } else if pr > 0xffff { pr = 0xffff } if pg < 0 { pg = 0 } else if pg > 0xffff { pg = 0xffff } if pb < 0 { pb = 0 } else if pb > 0xffff { pb = 0xffff } dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = 0xff } } } func (nnInterpolator) scale_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle) { dw2 := uint64(dr.Dx()) * 2 dh2 := uint64(dr.Dy()) * 2 sw := uint64(sr.Dx()) sh := uint64(sr.Dy()) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (2*uint64(dy) + 1) * sh / dh2 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (2*uint64(dx) + 1) * sw / dw2 pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X) pj := ((sr.Min.Y+int(sy))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx))/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pr := (pyy1 + 91881*pcr1) >> 8 pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pb := (pyy1 + 116130*pcb1) >> 8 if pr < 0 { pr = 0 } else if pr > 0xffff { pr = 0xffff } if pg < 0 { pg = 0 } else if pg > 0xffff { pg = 0xffff } if pb < 0 { pb = 0 } else if pb > 0xffff { pb = 0xffff } dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = 0xff } } } func (nnInterpolator) scale_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle) { dw2 := uint64(dr.Dx()) * 2 dh2 := uint64(dr.Dy()) * 2 sw := uint64(sr.Dx()) sh := uint64(sr.Dy()) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (2*uint64(dy) + 1) * sh / dh2 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (2*uint64(dx) + 1) * sw / dw2 pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X) pj := ((sr.Min.Y+int(sy))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx) - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pr := (pyy1 + 91881*pcr1) >> 8 pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pb := (pyy1 + 116130*pcb1) >> 8 if pr < 0 { pr = 0 } else if pr > 0xffff { pr = 0xffff } if pg < 0 { pg = 0 } else if pg > 0xffff { pg = 0xffff } if pb < 0 { pb = 0 } else if pb > 0xffff { pb = 0xffff } dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = 0xff } } } func (nnInterpolator) scale_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, src image.Image, sr image.Rectangle) { dw2 := uint64(dr.Dx()) * 2 dh2 := uint64(dr.Dy()) * 2 sw := uint64(sr.Dx()) sh := uint64(sr.Dy()) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (2*uint64(dy) + 1) * sh / dh2 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (2*uint64(dx) + 1) * sw / dw2 pr, pg, pb, pa := src.At(sr.Min.X+int(sx), sr.Min.Y+int(sy)).RGBA() dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = uint8(uint32(pa) >> 8) } } } func (nnInterpolator) scale_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, src image.Image, sr image.Rectangle) { dw2 := uint64(dr.Dx()) * 2 dh2 := uint64(dr.Dy()) * 2 sw := uint64(sr.Dx()) sh := uint64(sr.Dy()) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (2*uint64(dy) + 1) * sh / dh2 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (2*uint64(dx) + 1) * sw / dw2 pr, pg, pb, pa := src.At(sr.Min.X+int(sx), sr.Min.Y+int(sy)).RGBA() dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = uint8(uint32(pa) >> 8) } } } func (nnInterpolator) scale_Image_Image_Over(dst Image, dr, adr image.Rectangle, src image.Image, sr image.Rectangle) { dw2 := uint64(dr.Dx()) * 2 dh2 := uint64(dr.Dy()) * 2 sw := uint64(sr.Dx()) sh := uint64(sr.Dy()) dstColorRGBA64 := &color.RGBA64{} dstColor := color.Color(dstColorRGBA64) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (2*uint64(dy) + 1) * sh / dh2 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { sx := (2*uint64(dx) + 1) * sw / dw2 pr, pg, pb, pa := src.At(sr.Min.X+int(sx), sr.Min.Y+int(sy)).RGBA() dstColorRGBA64.R = uint16(pr) dstColorRGBA64.G = uint16(pg) dstColorRGBA64.B = uint16(pb) dstColorRGBA64.A = uint16(pa) dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) } } } func (nnInterpolator) scale_Image_Image_Src(dst Image, dr, adr image.Rectangle, src image.Image, sr image.Rectangle) { dw2 := uint64(dr.Dx()) * 2 dh2 := uint64(dr.Dy()) * 2 sw := uint64(sr.Dx()) sh := uint64(sr.Dy()) dstColorRGBA64 := &color.RGBA64{} dstColor := color.Color(dstColorRGBA64) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (2*uint64(dy) + 1) * sh / dh2 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { sx := (2*uint64(dx) + 1) * sw / dw2 pr, pg, pb, pa := src.At(sr.Min.X+int(sx), sr.Min.Y+int(sy)).RGBA() dstColorRGBA64.R = uint16(pr) dstColorRGBA64.G = uint16(pg) dstColorRGBA64.B = uint16(pb) dstColorRGBA64.A = uint16(pa) dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) } } } func (nnInterpolator) transform_RGBA_Gray_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Gray, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y if !(image.Point{sx0, sy0}).In(sr) { continue } pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0 - src.Rect.Min.X) pr := uint32(src.Pix[pi]) * 0x101 out := uint8(uint32(pr) >> 8) dst.Pix[d+0] = out dst.Pix[d+1] = out dst.Pix[d+2] = out dst.Pix[d+3] = 0xff } } } func (nnInterpolator) transform_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Gray, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y if !(image.Point{sx0, sy0}).In(sr) { continue } pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0 - src.Rect.Min.X) pr := uint32(src.Pix[pi]) * 0x101 out := uint8(uint32(pr) >> 8) dst.Pix[d+0] = out dst.Pix[d+1] = out dst.Pix[d+2] = out dst.Pix[d+3] = 0xff } } } func (nnInterpolator) transform_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y if !(image.Point{sx0, sy0}).In(sr) { continue } pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4 pa := uint32(src.Pix[pi+3]) * 0x101 pr := uint32(src.Pix[pi+0]) * pa / 0xff pg := uint32(src.Pix[pi+1]) * pa / 0xff pb := uint32(src.Pix[pi+2]) * pa / 0xff dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = uint8(uint32(pa) >> 8) } } } func (nnInterpolator) transform_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y if !(image.Point{sx0, sy0}).In(sr) { continue } pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4 pa := uint32(src.Pix[pi+3]) * 0x101 pr := uint32(src.Pix[pi+0]) * pa / 0xff pg := uint32(src.Pix[pi+1]) * pa / 0xff pb := uint32(src.Pix[pi+2]) * pa / 0xff dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = uint8(uint32(pa) >> 8) } } } func (nnInterpolator) transform_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y if !(image.Point{sx0, sy0}).In(sr) { continue } pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4 pr := uint32(src.Pix[pi+0]) * 0x101 pg := uint32(src.Pix[pi+1]) * 0x101 pb := uint32(src.Pix[pi+2]) * 0x101 pa := uint32(src.Pix[pi+3]) * 0x101 dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = uint8(uint32(pa) >> 8) } } } func (nnInterpolator) transform_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y if !(image.Point{sx0, sy0}).In(sr) { continue } pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4 pr := uint32(src.Pix[pi+0]) * 0x101 pg := uint32(src.Pix[pi+1]) * 0x101 pb := uint32(src.Pix[pi+2]) * 0x101 pa := uint32(src.Pix[pi+3]) * 0x101 dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = uint8(uint32(pa) >> 8) } } } func (nnInterpolator) transform_RGBA_YCbCr444_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y if !(image.Point{sx0, sy0}).In(sr) { continue } pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) pj := (sy0-src.Rect.Min.Y)*src.CStride + (sx0 - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pr := (pyy1 + 91881*pcr1) >> 8 pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pb := (pyy1 + 116130*pcb1) >> 8 if pr < 0 { pr = 0 } else if pr > 0xffff { pr = 0xffff } if pg < 0 { pg = 0 } else if pg > 0xffff { pg = 0xffff } if pb < 0 { pb = 0 } else if pb > 0xffff { pb = 0xffff } dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = 0xff } } } func (nnInterpolator) transform_RGBA_YCbCr422_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y if !(image.Point{sx0, sy0}).In(sr) { continue } pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) pj := (sy0-src.Rect.Min.Y)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pr := (pyy1 + 91881*pcr1) >> 8 pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pb := (pyy1 + 116130*pcb1) >> 8 if pr < 0 { pr = 0 } else if pr > 0xffff { pr = 0xffff } if pg < 0 { pg = 0 } else if pg > 0xffff { pg = 0xffff } if pb < 0 { pb = 0 } else if pb > 0xffff { pb = 0xffff } dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = 0xff } } } func (nnInterpolator) transform_RGBA_YCbCr420_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y if !(image.Point{sx0, sy0}).In(sr) { continue } pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) pj := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pr := (pyy1 + 91881*pcr1) >> 8 pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pb := (pyy1 + 116130*pcb1) >> 8 if pr < 0 { pr = 0 } else if pr > 0xffff { pr = 0xffff } if pg < 0 { pg = 0 } else if pg > 0xffff { pg = 0xffff } if pb < 0 { pb = 0 } else if pb > 0xffff { pb = 0xffff } dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = 0xff } } } func (nnInterpolator) transform_RGBA_YCbCr440_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y if !(image.Point{sx0, sy0}).In(sr) { continue } pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) pj := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + (sx0 - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pr := (pyy1 + 91881*pcr1) >> 8 pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pb := (pyy1 + 116130*pcb1) >> 8 if pr < 0 { pr = 0 } else if pr > 0xffff { pr = 0xffff } if pg < 0 { pg = 0 } else if pg > 0xffff { pg = 0xffff } if pb < 0 { pb = 0 } else if pb > 0xffff { pb = 0xffff } dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = 0xff } } } func (nnInterpolator) transform_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y if !(image.Point{sx0, sy0}).In(sr) { continue } pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) pj := (sy0-src.Rect.Min.Y)*src.CStride + (sx0 - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pr := (pyy1 + 91881*pcr1) >> 8 pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pb := (pyy1 + 116130*pcb1) >> 8 if pr < 0 { pr = 0 } else if pr > 0xffff { pr = 0xffff } if pg < 0 { pg = 0 } else if pg > 0xffff { pg = 0xffff } if pb < 0 { pb = 0 } else if pb > 0xffff { pb = 0xffff } dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = 0xff } } } func (nnInterpolator) transform_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y if !(image.Point{sx0, sy0}).In(sr) { continue } pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) pj := (sy0-src.Rect.Min.Y)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pr := (pyy1 + 91881*pcr1) >> 8 pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pb := (pyy1 + 116130*pcb1) >> 8 if pr < 0 { pr = 0 } else if pr > 0xffff { pr = 0xffff } if pg < 0 { pg = 0 } else if pg > 0xffff { pg = 0xffff } if pb < 0 { pb = 0 } else if pb > 0xffff { pb = 0xffff } dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = 0xff } } } func (nnInterpolator) transform_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y if !(image.Point{sx0, sy0}).In(sr) { continue } pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) pj := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pr := (pyy1 + 91881*pcr1) >> 8 pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pb := (pyy1 + 116130*pcb1) >> 8 if pr < 0 { pr = 0 } else if pr > 0xffff { pr = 0xffff } if pg < 0 { pg = 0 } else if pg > 0xffff { pg = 0xffff } if pb < 0 { pb = 0 } else if pb > 0xffff { pb = 0xffff } dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = 0xff } } } func (nnInterpolator) transform_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y if !(image.Point{sx0, sy0}).In(sr) { continue } pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) pj := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + (sx0 - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pr := (pyy1 + 91881*pcr1) >> 8 pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pb := (pyy1 + 116130*pcb1) >> 8 if pr < 0 { pr = 0 } else if pr > 0xffff { pr = 0xffff } if pg < 0 { pg = 0 } else if pg > 0xffff { pg = 0xffff } if pb < 0 { pb = 0 } else if pb > 0xffff { pb = 0xffff } dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = 0xff } } } func (nnInterpolator) transform_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y if !(image.Point{sx0, sy0}).In(sr) { continue } pr, pg, pb, pa := src.At(sx0, sy0).RGBA() dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = uint8(uint32(pa) >> 8) } } } func (nnInterpolator) transform_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y if !(image.Point{sx0, sy0}).In(sr) { continue } pr, pg, pb, pa := src.At(sx0, sy0).RGBA() dst.Pix[d+0] = uint8(uint32(pr) >> 8) dst.Pix[d+1] = uint8(uint32(pg) >> 8) dst.Pix[d+2] = uint8(uint32(pb) >> 8) dst.Pix[d+3] = uint8(uint32(pa) >> 8) } } } func (nnInterpolator) transform_Image_Image_Over(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point) { dstColorRGBA64 := &color.RGBA64{} dstColor := color.Color(dstColorRGBA64) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y if !(image.Point{sx0, sy0}).In(sr) { continue } pr, pg, pb, pa := src.At(sx0, sy0).RGBA() dstColorRGBA64.R = uint16(pr) dstColorRGBA64.G = uint16(pg) dstColorRGBA64.B = uint16(pb) dstColorRGBA64.A = uint16(pa) dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) } } } func (nnInterpolator) transform_Image_Image_Src(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point) { dstColorRGBA64 := &color.RGBA64{} dstColor := color.Color(dstColorRGBA64) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y if !(image.Point{sx0, sy0}).In(sr) { continue } pr, pg, pb, pa := src.At(sx0, sy0).RGBA() dstColorRGBA64.R = uint16(pr) dstColorRGBA64.G = uint16(pg) dstColorRGBA64.B = uint16(pb) dstColorRGBA64.A = uint16(pa) dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) } } } func (z ablInterpolator) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) { // adr is the affected destination pixels, relative to dr.Min. adr := dst.Bounds().Intersect(dr).Sub(dr.Min) if adr.Empty() || sr.Empty() { return } // sr is the source pixels. If it extends beyond the src bounds, // we cannot use the type-specific fast paths, as they access // the Pix fields directly without bounds checking. if !sr.In(src.Bounds()) { switch opts.op() { case Over: z.scale_Image_Image_Over(dst, dr, adr, src, sr) case Src: z.scale_Image_Image_Src(dst, dr, adr, src, sr) } } else if _, ok := src.(*image.Uniform); ok { Draw(dst, dr, src, src.Bounds().Min, opts.op()) } else { switch opts.op() { case Over: switch dst := dst.(type) { case *image.RGBA: switch src := src.(type) { case *image.Gray: z.scale_RGBA_Gray_Over(dst, dr, adr, src, sr) case *image.NRGBA: z.scale_RGBA_NRGBA_Over(dst, dr, adr, src, sr) case *image.RGBA: z.scale_RGBA_RGBA_Over(dst, dr, adr, src, sr) case *image.YCbCr: switch src.SubsampleRatio { default: z.scale_RGBA_Image_Over(dst, dr, adr, src, sr) case image.YCbCrSubsampleRatio444: z.scale_RGBA_YCbCr444_Over(dst, dr, adr, src, sr) case image.YCbCrSubsampleRatio422: z.scale_RGBA_YCbCr422_Over(dst, dr, adr, src, sr) case image.YCbCrSubsampleRatio420: z.scale_RGBA_YCbCr420_Over(dst, dr, adr, src, sr) case image.YCbCrSubsampleRatio440: z.scale_RGBA_YCbCr440_Over(dst, dr, adr, src, sr) } default: z.scale_RGBA_Image_Over(dst, dr, adr, src, sr) } default: switch src := src.(type) { default: z.scale_Image_Image_Over(dst, dr, adr, src, sr) } } case Src: switch dst := dst.(type) { case *image.RGBA: switch src := src.(type) { case *image.Gray: z.scale_RGBA_Gray_Src(dst, dr, adr, src, sr) case *image.NRGBA: z.scale_RGBA_NRGBA_Src(dst, dr, adr, src, sr) case *image.RGBA: z.scale_RGBA_RGBA_Src(dst, dr, adr, src, sr) case *image.YCbCr: switch src.SubsampleRatio { default: z.scale_RGBA_Image_Src(dst, dr, adr, src, sr) case image.YCbCrSubsampleRatio444: z.scale_RGBA_YCbCr444_Src(dst, dr, adr, src, sr) case image.YCbCrSubsampleRatio422: z.scale_RGBA_YCbCr422_Src(dst, dr, adr, src, sr) case image.YCbCrSubsampleRatio420: z.scale_RGBA_YCbCr420_Src(dst, dr, adr, src, sr) case image.YCbCrSubsampleRatio440: z.scale_RGBA_YCbCr440_Src(dst, dr, adr, src, sr) } default: z.scale_RGBA_Image_Src(dst, dr, adr, src, sr) } default: switch src := src.(type) { default: z.scale_Image_Image_Src(dst, dr, adr, src, sr) } } } } } func (z ablInterpolator) Transform(dst Image, s2d *f64.Aff3, src image.Image, sr image.Rectangle, opts *Options) { dr := transformRect(s2d, &sr) // adr is the affected destination pixels. adr := dst.Bounds().Intersect(dr) if adr.Empty() || sr.Empty() { return } d2s := invert(s2d) // bias is a translation of the mapping from dst co-ordinates to // src co-ordinates such that the latter temporarily have // non-negative X and Y co-ordinates. This allows us to write // int(f) instead of int(math.Floor(f)), since "round to zero" and // "round down" are equivalent when f >= 0, but the former is much // cheaper. The X-- and Y-- are because the TransformLeaf methods // have a "sx -= 0.5" adjustment. bias := transformRect(&d2s, &adr).Min bias.X-- bias.Y-- d2s[2] -= float64(bias.X) d2s[5] -= float64(bias.Y) // Make adr relative to dr.Min. adr = adr.Sub(dr.Min) // sr is the source pixels. If it extends beyond the src bounds, // we cannot use the type-specific fast paths, as they access // the Pix fields directly without bounds checking. if !sr.In(src.Bounds()) { switch opts.op() { case Over: z.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias) case Src: z.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias) } } else if u, ok := src.(*image.Uniform); ok { transform_Uniform(dst, dr, adr, &d2s, u, sr, bias, opts.op()) } else { switch opts.op() { case Over: switch dst := dst.(type) { case *image.RGBA: switch src := src.(type) { case *image.Gray: z.transform_RGBA_Gray_Over(dst, dr, adr, &d2s, src, sr, bias) case *image.NRGBA: z.transform_RGBA_NRGBA_Over(dst, dr, adr, &d2s, src, sr, bias) case *image.RGBA: z.transform_RGBA_RGBA_Over(dst, dr, adr, &d2s, src, sr, bias) case *image.YCbCr: switch src.SubsampleRatio { default: z.transform_RGBA_Image_Over(dst, dr, adr, &d2s, src, sr, bias) case image.YCbCrSubsampleRatio444: z.transform_RGBA_YCbCr444_Over(dst, dr, adr, &d2s, src, sr, bias) case image.YCbCrSubsampleRatio422: z.transform_RGBA_YCbCr422_Over(dst, dr, adr, &d2s, src, sr, bias) case image.YCbCrSubsampleRatio420: z.transform_RGBA_YCbCr420_Over(dst, dr, adr, &d2s, src, sr, bias) case image.YCbCrSubsampleRatio440: z.transform_RGBA_YCbCr440_Over(dst, dr, adr, &d2s, src, sr, bias) } default: z.transform_RGBA_Image_Over(dst, dr, adr, &d2s, src, sr, bias) } default: switch src := src.(type) { default: z.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias) } } case Src: switch dst := dst.(type) { case *image.RGBA: switch src := src.(type) { case *image.Gray: z.transform_RGBA_Gray_Src(dst, dr, adr, &d2s, src, sr, bias) case *image.NRGBA: z.transform_RGBA_NRGBA_Src(dst, dr, adr, &d2s, src, sr, bias) case *image.RGBA: z.transform_RGBA_RGBA_Src(dst, dr, adr, &d2s, src, sr, bias) case *image.YCbCr: switch src.SubsampleRatio { default: z.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias) case image.YCbCrSubsampleRatio444: z.transform_RGBA_YCbCr444_Src(dst, dr, adr, &d2s, src, sr, bias) case image.YCbCrSubsampleRatio422: z.transform_RGBA_YCbCr422_Src(dst, dr, adr, &d2s, src, sr, bias) case image.YCbCrSubsampleRatio420: z.transform_RGBA_YCbCr420_Src(dst, dr, adr, &d2s, src, sr, bias) case image.YCbCrSubsampleRatio440: z.transform_RGBA_YCbCr440_Src(dst, dr, adr, &d2s, src, sr, bias) } default: z.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias) } default: switch src := src.(type) { default: z.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias) } } } } } func (ablInterpolator) scale_RGBA_Gray_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.Gray, sr image.Rectangle) { sw := int32(sr.Dx()) sh := int32(sr.Dy()) yscale := float64(sh) / float64(dr.Dy()) xscale := float64(sw) / float64(dr.Dx()) swMinus1, shMinus1 := sw-1, sh-1 for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (float64(dy)+0.5)*yscale - 0.5 // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for // sx, below. sy0 := int32(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy1 := sy0 + 1 if sy < 0 { sy0, sy1 = 0, 0 yFrac0, yFrac1 = 0, 1 } else if sy1 > shMinus1 { sy0, sy1 = shMinus1, shMinus1 yFrac0, yFrac1 = 1, 0 } d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (float64(dx)+0.5)*xscale - 0.5 sx0 := int32(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx1 := sx0 + 1 if sx < 0 { sx0, sx1 = 0, 0 xFrac0, xFrac1 = 0, 1 } else if sx1 > swMinus1 { sx0, sx1 = swMinus1, swMinus1 xFrac0, xFrac1 = 1, 0 } s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx0) - src.Rect.Min.X) s00ru := uint32(src.Pix[s00i]) * 0x101 s00r := float64(s00ru) s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx1) - src.Rect.Min.X) s10ru := uint32(src.Pix[s10i]) * 0x101 s10r := float64(s10ru) s10r = xFrac1*s00r + xFrac0*s10r s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx0) - src.Rect.Min.X) s01ru := uint32(src.Pix[s01i]) * 0x101 s01r := float64(s01ru) s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx1) - src.Rect.Min.X) s11ru := uint32(src.Pix[s11i]) * 0x101 s11r := float64(s11ru) s11r = xFrac1*s01r + xFrac0*s11r s11r = yFrac1*s10r + yFrac0*s11r out := uint8(uint32(s11r) >> 8) dst.Pix[d+0] = out dst.Pix[d+1] = out dst.Pix[d+2] = out dst.Pix[d+3] = 0xff } } } func (ablInterpolator) scale_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.Gray, sr image.Rectangle) { sw := int32(sr.Dx()) sh := int32(sr.Dy()) yscale := float64(sh) / float64(dr.Dy()) xscale := float64(sw) / float64(dr.Dx()) swMinus1, shMinus1 := sw-1, sh-1 for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (float64(dy)+0.5)*yscale - 0.5 // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for // sx, below. sy0 := int32(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy1 := sy0 + 1 if sy < 0 { sy0, sy1 = 0, 0 yFrac0, yFrac1 = 0, 1 } else if sy1 > shMinus1 { sy0, sy1 = shMinus1, shMinus1 yFrac0, yFrac1 = 1, 0 } d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (float64(dx)+0.5)*xscale - 0.5 sx0 := int32(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx1 := sx0 + 1 if sx < 0 { sx0, sx1 = 0, 0 xFrac0, xFrac1 = 0, 1 } else if sx1 > swMinus1 { sx0, sx1 = swMinus1, swMinus1 xFrac0, xFrac1 = 1, 0 } s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx0) - src.Rect.Min.X) s00ru := uint32(src.Pix[s00i]) * 0x101 s00r := float64(s00ru) s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx1) - src.Rect.Min.X) s10ru := uint32(src.Pix[s10i]) * 0x101 s10r := float64(s10ru) s10r = xFrac1*s00r + xFrac0*s10r s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx0) - src.Rect.Min.X) s01ru := uint32(src.Pix[s01i]) * 0x101 s01r := float64(s01ru) s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx1) - src.Rect.Min.X) s11ru := uint32(src.Pix[s11i]) * 0x101 s11r := float64(s11ru) s11r = xFrac1*s01r + xFrac0*s11r s11r = yFrac1*s10r + yFrac0*s11r out := uint8(uint32(s11r) >> 8) dst.Pix[d+0] = out dst.Pix[d+1] = out dst.Pix[d+2] = out dst.Pix[d+3] = 0xff } } } func (ablInterpolator) scale_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.NRGBA, sr image.Rectangle) { sw := int32(sr.Dx()) sh := int32(sr.Dy()) yscale := float64(sh) / float64(dr.Dy()) xscale := float64(sw) / float64(dr.Dx()) swMinus1, shMinus1 := sw-1, sh-1 for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (float64(dy)+0.5)*yscale - 0.5 // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for // sx, below. sy0 := int32(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy1 := sy0 + 1 if sy < 0 { sy0, sy1 = 0, 0 yFrac0, yFrac1 = 0, 1 } else if sy1 > shMinus1 { sy0, sy1 = shMinus1, shMinus1 yFrac0, yFrac1 = 1, 0 } d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (float64(dx)+0.5)*xscale - 0.5 sx0 := int32(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx1 := sx0 + 1 if sx < 0 { sx0, sx1 = 0, 0 xFrac0, xFrac1 = 0, 1 } else if sx1 > swMinus1 { sx0, sx1 = swMinus1, swMinus1 xFrac0, xFrac1 = 1, 0 } s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4 s00au := uint32(src.Pix[s00i+3]) * 0x101 s00ru := uint32(src.Pix[s00i+0]) * s00au / 0xff s00gu := uint32(src.Pix[s00i+1]) * s00au / 0xff s00bu := uint32(src.Pix[s00i+2]) * s00au / 0xff s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s00a := float64(s00au) s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4 s10au := uint32(src.Pix[s10i+3]) * 0x101 s10ru := uint32(src.Pix[s10i+0]) * s10au / 0xff s10gu := uint32(src.Pix[s10i+1]) * s10au / 0xff s10bu := uint32(src.Pix[s10i+2]) * s10au / 0xff s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10a := float64(s10au) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s10a = xFrac1*s00a + xFrac0*s10a s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4 s01au := uint32(src.Pix[s01i+3]) * 0x101 s01ru := uint32(src.Pix[s01i+0]) * s01au / 0xff s01gu := uint32(src.Pix[s01i+1]) * s01au / 0xff s01bu := uint32(src.Pix[s01i+2]) * s01au / 0xff s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s01a := float64(s01au) s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4 s11au := uint32(src.Pix[s11i+3]) * 0x101 s11ru := uint32(src.Pix[s11i+0]) * s11au / 0xff s11gu := uint32(src.Pix[s11i+1]) * s11au / 0xff s11bu := uint32(src.Pix[s11i+2]) * s11au / 0xff s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11a := float64(s11au) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11a = xFrac1*s01a + xFrac0*s11a s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b s11a = yFrac1*s10a + yFrac0*s11a dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = uint8(uint32(s11a) >> 8) } } } func (ablInterpolator) scale_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.NRGBA, sr image.Rectangle) { sw := int32(sr.Dx()) sh := int32(sr.Dy()) yscale := float64(sh) / float64(dr.Dy()) xscale := float64(sw) / float64(dr.Dx()) swMinus1, shMinus1 := sw-1, sh-1 for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (float64(dy)+0.5)*yscale - 0.5 // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for // sx, below. sy0 := int32(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy1 := sy0 + 1 if sy < 0 { sy0, sy1 = 0, 0 yFrac0, yFrac1 = 0, 1 } else if sy1 > shMinus1 { sy0, sy1 = shMinus1, shMinus1 yFrac0, yFrac1 = 1, 0 } d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (float64(dx)+0.5)*xscale - 0.5 sx0 := int32(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx1 := sx0 + 1 if sx < 0 { sx0, sx1 = 0, 0 xFrac0, xFrac1 = 0, 1 } else if sx1 > swMinus1 { sx0, sx1 = swMinus1, swMinus1 xFrac0, xFrac1 = 1, 0 } s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4 s00au := uint32(src.Pix[s00i+3]) * 0x101 s00ru := uint32(src.Pix[s00i+0]) * s00au / 0xff s00gu := uint32(src.Pix[s00i+1]) * s00au / 0xff s00bu := uint32(src.Pix[s00i+2]) * s00au / 0xff s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s00a := float64(s00au) s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4 s10au := uint32(src.Pix[s10i+3]) * 0x101 s10ru := uint32(src.Pix[s10i+0]) * s10au / 0xff s10gu := uint32(src.Pix[s10i+1]) * s10au / 0xff s10bu := uint32(src.Pix[s10i+2]) * s10au / 0xff s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10a := float64(s10au) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s10a = xFrac1*s00a + xFrac0*s10a s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4 s01au := uint32(src.Pix[s01i+3]) * 0x101 s01ru := uint32(src.Pix[s01i+0]) * s01au / 0xff s01gu := uint32(src.Pix[s01i+1]) * s01au / 0xff s01bu := uint32(src.Pix[s01i+2]) * s01au / 0xff s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s01a := float64(s01au) s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4 s11au := uint32(src.Pix[s11i+3]) * 0x101 s11ru := uint32(src.Pix[s11i+0]) * s11au / 0xff s11gu := uint32(src.Pix[s11i+1]) * s11au / 0xff s11bu := uint32(src.Pix[s11i+2]) * s11au / 0xff s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11a := float64(s11au) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11a = xFrac1*s01a + xFrac0*s11a s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b s11a = yFrac1*s10a + yFrac0*s11a dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = uint8(uint32(s11a) >> 8) } } } func (ablInterpolator) scale_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.RGBA, sr image.Rectangle) { sw := int32(sr.Dx()) sh := int32(sr.Dy()) yscale := float64(sh) / float64(dr.Dy()) xscale := float64(sw) / float64(dr.Dx()) swMinus1, shMinus1 := sw-1, sh-1 for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (float64(dy)+0.5)*yscale - 0.5 // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for // sx, below. sy0 := int32(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy1 := sy0 + 1 if sy < 0 { sy0, sy1 = 0, 0 yFrac0, yFrac1 = 0, 1 } else if sy1 > shMinus1 { sy0, sy1 = shMinus1, shMinus1 yFrac0, yFrac1 = 1, 0 } d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (float64(dx)+0.5)*xscale - 0.5 sx0 := int32(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx1 := sx0 + 1 if sx < 0 { sx0, sx1 = 0, 0 xFrac0, xFrac1 = 0, 1 } else if sx1 > swMinus1 { sx0, sx1 = swMinus1, swMinus1 xFrac0, xFrac1 = 1, 0 } s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4 s00ru := uint32(src.Pix[s00i+0]) * 0x101 s00gu := uint32(src.Pix[s00i+1]) * 0x101 s00bu := uint32(src.Pix[s00i+2]) * 0x101 s00au := uint32(src.Pix[s00i+3]) * 0x101 s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s00a := float64(s00au) s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4 s10ru := uint32(src.Pix[s10i+0]) * 0x101 s10gu := uint32(src.Pix[s10i+1]) * 0x101 s10bu := uint32(src.Pix[s10i+2]) * 0x101 s10au := uint32(src.Pix[s10i+3]) * 0x101 s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10a := float64(s10au) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s10a = xFrac1*s00a + xFrac0*s10a s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4 s01ru := uint32(src.Pix[s01i+0]) * 0x101 s01gu := uint32(src.Pix[s01i+1]) * 0x101 s01bu := uint32(src.Pix[s01i+2]) * 0x101 s01au := uint32(src.Pix[s01i+3]) * 0x101 s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s01a := float64(s01au) s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4 s11ru := uint32(src.Pix[s11i+0]) * 0x101 s11gu := uint32(src.Pix[s11i+1]) * 0x101 s11bu := uint32(src.Pix[s11i+2]) * 0x101 s11au := uint32(src.Pix[s11i+3]) * 0x101 s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11a := float64(s11au) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11a = xFrac1*s01a + xFrac0*s11a s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b s11a = yFrac1*s10a + yFrac0*s11a dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = uint8(uint32(s11a) >> 8) } } } func (ablInterpolator) scale_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.RGBA, sr image.Rectangle) { sw := int32(sr.Dx()) sh := int32(sr.Dy()) yscale := float64(sh) / float64(dr.Dy()) xscale := float64(sw) / float64(dr.Dx()) swMinus1, shMinus1 := sw-1, sh-1 for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (float64(dy)+0.5)*yscale - 0.5 // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for // sx, below. sy0 := int32(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy1 := sy0 + 1 if sy < 0 { sy0, sy1 = 0, 0 yFrac0, yFrac1 = 0, 1 } else if sy1 > shMinus1 { sy0, sy1 = shMinus1, shMinus1 yFrac0, yFrac1 = 1, 0 } d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (float64(dx)+0.5)*xscale - 0.5 sx0 := int32(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx1 := sx0 + 1 if sx < 0 { sx0, sx1 = 0, 0 xFrac0, xFrac1 = 0, 1 } else if sx1 > swMinus1 { sx0, sx1 = swMinus1, swMinus1 xFrac0, xFrac1 = 1, 0 } s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4 s00ru := uint32(src.Pix[s00i+0]) * 0x101 s00gu := uint32(src.Pix[s00i+1]) * 0x101 s00bu := uint32(src.Pix[s00i+2]) * 0x101 s00au := uint32(src.Pix[s00i+3]) * 0x101 s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s00a := float64(s00au) s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4 s10ru := uint32(src.Pix[s10i+0]) * 0x101 s10gu := uint32(src.Pix[s10i+1]) * 0x101 s10bu := uint32(src.Pix[s10i+2]) * 0x101 s10au := uint32(src.Pix[s10i+3]) * 0x101 s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10a := float64(s10au) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s10a = xFrac1*s00a + xFrac0*s10a s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4 s01ru := uint32(src.Pix[s01i+0]) * 0x101 s01gu := uint32(src.Pix[s01i+1]) * 0x101 s01bu := uint32(src.Pix[s01i+2]) * 0x101 s01au := uint32(src.Pix[s01i+3]) * 0x101 s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s01a := float64(s01au) s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4 s11ru := uint32(src.Pix[s11i+0]) * 0x101 s11gu := uint32(src.Pix[s11i+1]) * 0x101 s11bu := uint32(src.Pix[s11i+2]) * 0x101 s11au := uint32(src.Pix[s11i+3]) * 0x101 s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11a := float64(s11au) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11a = xFrac1*s01a + xFrac0*s11a s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b s11a = yFrac1*s10a + yFrac0*s11a dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = uint8(uint32(s11a) >> 8) } } } func (ablInterpolator) scale_RGBA_YCbCr444_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle) { sw := int32(sr.Dx()) sh := int32(sr.Dy()) yscale := float64(sh) / float64(dr.Dy()) xscale := float64(sw) / float64(dr.Dx()) swMinus1, shMinus1 := sw-1, sh-1 for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (float64(dy)+0.5)*yscale - 0.5 // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for // sx, below. sy0 := int32(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy1 := sy0 + 1 if sy < 0 { sy0, sy1 = 0, 0 yFrac0, yFrac1 = 0, 1 } else if sy1 > shMinus1 { sy0, sy1 = shMinus1, shMinus1 yFrac0, yFrac1 = 1, 0 } d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (float64(dx)+0.5)*xscale - 0.5 sx0 := int32(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx1 := sx0 + 1 if sx < 0 { sx0, sx1 = 0, 0 xFrac0, xFrac1 = 0, 1 } else if sx1 > swMinus1 { sx0, sx1 = swMinus1, swMinus1 xFrac0, xFrac1 = 1, 0 } s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) s00j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s00yy1 := int(src.Y[s00i])<<16 + 1<<15 s00cb1 := int(src.Cb[s00j]) - 128 s00cr1 := int(src.Cr[s00j]) - 128 s00ru := (s00yy1 + 91881*s00cr1) >> 8 s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8 s00bu := (s00yy1 + 116130*s00cb1) >> 8 if s00ru < 0 { s00ru = 0 } else if s00ru > 0xffff { s00ru = 0xffff } if s00gu < 0 { s00gu = 0 } else if s00gu > 0xffff { s00gu = 0xffff } if s00bu < 0 { s00bu = 0 } else if s00bu > 0xffff { s00bu = 0xffff } s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) s10j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s10yy1 := int(src.Y[s10i])<<16 + 1<<15 s10cb1 := int(src.Cb[s10j]) - 128 s10cr1 := int(src.Cr[s10j]) - 128 s10ru := (s10yy1 + 91881*s10cr1) >> 8 s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8 s10bu := (s10yy1 + 116130*s10cb1) >> 8 if s10ru < 0 { s10ru = 0 } else if s10ru > 0xffff { s10ru = 0xffff } if s10gu < 0 { s10gu = 0 } else if s10gu > 0xffff { s10gu = 0xffff } if s10bu < 0 { s10bu = 0 } else if s10bu > 0xffff { s10bu = 0xffff } s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) s01j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s01yy1 := int(src.Y[s01i])<<16 + 1<<15 s01cb1 := int(src.Cb[s01j]) - 128 s01cr1 := int(src.Cr[s01j]) - 128 s01ru := (s01yy1 + 91881*s01cr1) >> 8 s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8 s01bu := (s01yy1 + 116130*s01cb1) >> 8 if s01ru < 0 { s01ru = 0 } else if s01ru > 0xffff { s01ru = 0xffff } if s01gu < 0 { s01gu = 0 } else if s01gu > 0xffff { s01gu = 0xffff } if s01bu < 0 { s01bu = 0 } else if s01bu > 0xffff { s01bu = 0xffff } s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) s11j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s11yy1 := int(src.Y[s11i])<<16 + 1<<15 s11cb1 := int(src.Cb[s11j]) - 128 s11cr1 := int(src.Cr[s11j]) - 128 s11ru := (s11yy1 + 91881*s11cr1) >> 8 s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8 s11bu := (s11yy1 + 116130*s11cb1) >> 8 if s11ru < 0 { s11ru = 0 } else if s11ru > 0xffff { s11ru = 0xffff } if s11gu < 0 { s11gu = 0 } else if s11gu > 0xffff { s11gu = 0xffff } if s11bu < 0 { s11bu = 0 } else if s11bu > 0xffff { s11bu = 0xffff } s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = 0xff } } } func (ablInterpolator) scale_RGBA_YCbCr422_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle) { sw := int32(sr.Dx()) sh := int32(sr.Dy()) yscale := float64(sh) / float64(dr.Dy()) xscale := float64(sw) / float64(dr.Dx()) swMinus1, shMinus1 := sw-1, sh-1 for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (float64(dy)+0.5)*yscale - 0.5 // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for // sx, below. sy0 := int32(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy1 := sy0 + 1 if sy < 0 { sy0, sy1 = 0, 0 yFrac0, yFrac1 = 0, 1 } else if sy1 > shMinus1 { sy0, sy1 = shMinus1, shMinus1 yFrac0, yFrac1 = 1, 0 } d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (float64(dx)+0.5)*xscale - 0.5 sx0 := int32(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx1 := sx0 + 1 if sx < 0 { sx0, sx1 = 0, 0 xFrac0, xFrac1 = 0, 1 } else if sx1 > swMinus1 { sx0, sx1 = swMinus1, swMinus1 xFrac0, xFrac1 = 1, 0 } s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) s00j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s00yy1 := int(src.Y[s00i])<<16 + 1<<15 s00cb1 := int(src.Cb[s00j]) - 128 s00cr1 := int(src.Cr[s00j]) - 128 s00ru := (s00yy1 + 91881*s00cr1) >> 8 s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8 s00bu := (s00yy1 + 116130*s00cb1) >> 8 if s00ru < 0 { s00ru = 0 } else if s00ru > 0xffff { s00ru = 0xffff } if s00gu < 0 { s00gu = 0 } else if s00gu > 0xffff { s00gu = 0xffff } if s00bu < 0 { s00bu = 0 } else if s00bu > 0xffff { s00bu = 0xffff } s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) s10j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s10yy1 := int(src.Y[s10i])<<16 + 1<<15 s10cb1 := int(src.Cb[s10j]) - 128 s10cr1 := int(src.Cr[s10j]) - 128 s10ru := (s10yy1 + 91881*s10cr1) >> 8 s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8 s10bu := (s10yy1 + 116130*s10cb1) >> 8 if s10ru < 0 { s10ru = 0 } else if s10ru > 0xffff { s10ru = 0xffff } if s10gu < 0 { s10gu = 0 } else if s10gu > 0xffff { s10gu = 0xffff } if s10bu < 0 { s10bu = 0 } else if s10bu > 0xffff { s10bu = 0xffff } s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) s01j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s01yy1 := int(src.Y[s01i])<<16 + 1<<15 s01cb1 := int(src.Cb[s01j]) - 128 s01cr1 := int(src.Cr[s01j]) - 128 s01ru := (s01yy1 + 91881*s01cr1) >> 8 s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8 s01bu := (s01yy1 + 116130*s01cb1) >> 8 if s01ru < 0 { s01ru = 0 } else if s01ru > 0xffff { s01ru = 0xffff } if s01gu < 0 { s01gu = 0 } else if s01gu > 0xffff { s01gu = 0xffff } if s01bu < 0 { s01bu = 0 } else if s01bu > 0xffff { s01bu = 0xffff } s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) s11j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s11yy1 := int(src.Y[s11i])<<16 + 1<<15 s11cb1 := int(src.Cb[s11j]) - 128 s11cr1 := int(src.Cr[s11j]) - 128 s11ru := (s11yy1 + 91881*s11cr1) >> 8 s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8 s11bu := (s11yy1 + 116130*s11cb1) >> 8 if s11ru < 0 { s11ru = 0 } else if s11ru > 0xffff { s11ru = 0xffff } if s11gu < 0 { s11gu = 0 } else if s11gu > 0xffff { s11gu = 0xffff } if s11bu < 0 { s11bu = 0 } else if s11bu > 0xffff { s11bu = 0xffff } s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = 0xff } } } func (ablInterpolator) scale_RGBA_YCbCr420_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle) { sw := int32(sr.Dx()) sh := int32(sr.Dy()) yscale := float64(sh) / float64(dr.Dy()) xscale := float64(sw) / float64(dr.Dx()) swMinus1, shMinus1 := sw-1, sh-1 for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (float64(dy)+0.5)*yscale - 0.5 // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for // sx, below. sy0 := int32(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy1 := sy0 + 1 if sy < 0 { sy0, sy1 = 0, 0 yFrac0, yFrac1 = 0, 1 } else if sy1 > shMinus1 { sy0, sy1 = shMinus1, shMinus1 yFrac0, yFrac1 = 1, 0 } d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (float64(dx)+0.5)*xscale - 0.5 sx0 := int32(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx1 := sx0 + 1 if sx < 0 { sx0, sx1 = 0, 0 xFrac0, xFrac1 = 0, 1 } else if sx1 > swMinus1 { sx0, sx1 = swMinus1, swMinus1 xFrac0, xFrac1 = 1, 0 } s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) s00j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s00yy1 := int(src.Y[s00i])<<16 + 1<<15 s00cb1 := int(src.Cb[s00j]) - 128 s00cr1 := int(src.Cr[s00j]) - 128 s00ru := (s00yy1 + 91881*s00cr1) >> 8 s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8 s00bu := (s00yy1 + 116130*s00cb1) >> 8 if s00ru < 0 { s00ru = 0 } else if s00ru > 0xffff { s00ru = 0xffff } if s00gu < 0 { s00gu = 0 } else if s00gu > 0xffff { s00gu = 0xffff } if s00bu < 0 { s00bu = 0 } else if s00bu > 0xffff { s00bu = 0xffff } s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) s10j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s10yy1 := int(src.Y[s10i])<<16 + 1<<15 s10cb1 := int(src.Cb[s10j]) - 128 s10cr1 := int(src.Cr[s10j]) - 128 s10ru := (s10yy1 + 91881*s10cr1) >> 8 s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8 s10bu := (s10yy1 + 116130*s10cb1) >> 8 if s10ru < 0 { s10ru = 0 } else if s10ru > 0xffff { s10ru = 0xffff } if s10gu < 0 { s10gu = 0 } else if s10gu > 0xffff { s10gu = 0xffff } if s10bu < 0 { s10bu = 0 } else if s10bu > 0xffff { s10bu = 0xffff } s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) s01j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s01yy1 := int(src.Y[s01i])<<16 + 1<<15 s01cb1 := int(src.Cb[s01j]) - 128 s01cr1 := int(src.Cr[s01j]) - 128 s01ru := (s01yy1 + 91881*s01cr1) >> 8 s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8 s01bu := (s01yy1 + 116130*s01cb1) >> 8 if s01ru < 0 { s01ru = 0 } else if s01ru > 0xffff { s01ru = 0xffff } if s01gu < 0 { s01gu = 0 } else if s01gu > 0xffff { s01gu = 0xffff } if s01bu < 0 { s01bu = 0 } else if s01bu > 0xffff { s01bu = 0xffff } s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) s11j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s11yy1 := int(src.Y[s11i])<<16 + 1<<15 s11cb1 := int(src.Cb[s11j]) - 128 s11cr1 := int(src.Cr[s11j]) - 128 s11ru := (s11yy1 + 91881*s11cr1) >> 8 s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8 s11bu := (s11yy1 + 116130*s11cb1) >> 8 if s11ru < 0 { s11ru = 0 } else if s11ru > 0xffff { s11ru = 0xffff } if s11gu < 0 { s11gu = 0 } else if s11gu > 0xffff { s11gu = 0xffff } if s11bu < 0 { s11bu = 0 } else if s11bu > 0xffff { s11bu = 0xffff } s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = 0xff } } } func (ablInterpolator) scale_RGBA_YCbCr440_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle) { sw := int32(sr.Dx()) sh := int32(sr.Dy()) yscale := float64(sh) / float64(dr.Dy()) xscale := float64(sw) / float64(dr.Dx()) swMinus1, shMinus1 := sw-1, sh-1 for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (float64(dy)+0.5)*yscale - 0.5 // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for // sx, below. sy0 := int32(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy1 := sy0 + 1 if sy < 0 { sy0, sy1 = 0, 0 yFrac0, yFrac1 = 0, 1 } else if sy1 > shMinus1 { sy0, sy1 = shMinus1, shMinus1 yFrac0, yFrac1 = 1, 0 } d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (float64(dx)+0.5)*xscale - 0.5 sx0 := int32(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx1 := sx0 + 1 if sx < 0 { sx0, sx1 = 0, 0 xFrac0, xFrac1 = 0, 1 } else if sx1 > swMinus1 { sx0, sx1 = swMinus1, swMinus1 xFrac0, xFrac1 = 1, 0 } s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) s00j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s00yy1 := int(src.Y[s00i])<<16 + 1<<15 s00cb1 := int(src.Cb[s00j]) - 128 s00cr1 := int(src.Cr[s00j]) - 128 s00ru := (s00yy1 + 91881*s00cr1) >> 8 s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8 s00bu := (s00yy1 + 116130*s00cb1) >> 8 if s00ru < 0 { s00ru = 0 } else if s00ru > 0xffff { s00ru = 0xffff } if s00gu < 0 { s00gu = 0 } else if s00gu > 0xffff { s00gu = 0xffff } if s00bu < 0 { s00bu = 0 } else if s00bu > 0xffff { s00bu = 0xffff } s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) s10j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s10yy1 := int(src.Y[s10i])<<16 + 1<<15 s10cb1 := int(src.Cb[s10j]) - 128 s10cr1 := int(src.Cr[s10j]) - 128 s10ru := (s10yy1 + 91881*s10cr1) >> 8 s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8 s10bu := (s10yy1 + 116130*s10cb1) >> 8 if s10ru < 0 { s10ru = 0 } else if s10ru > 0xffff { s10ru = 0xffff } if s10gu < 0 { s10gu = 0 } else if s10gu > 0xffff { s10gu = 0xffff } if s10bu < 0 { s10bu = 0 } else if s10bu > 0xffff { s10bu = 0xffff } s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) s01j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s01yy1 := int(src.Y[s01i])<<16 + 1<<15 s01cb1 := int(src.Cb[s01j]) - 128 s01cr1 := int(src.Cr[s01j]) - 128 s01ru := (s01yy1 + 91881*s01cr1) >> 8 s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8 s01bu := (s01yy1 + 116130*s01cb1) >> 8 if s01ru < 0 { s01ru = 0 } else if s01ru > 0xffff { s01ru = 0xffff } if s01gu < 0 { s01gu = 0 } else if s01gu > 0xffff { s01gu = 0xffff } if s01bu < 0 { s01bu = 0 } else if s01bu > 0xffff { s01bu = 0xffff } s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) s11j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s11yy1 := int(src.Y[s11i])<<16 + 1<<15 s11cb1 := int(src.Cb[s11j]) - 128 s11cr1 := int(src.Cr[s11j]) - 128 s11ru := (s11yy1 + 91881*s11cr1) >> 8 s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8 s11bu := (s11yy1 + 116130*s11cb1) >> 8 if s11ru < 0 { s11ru = 0 } else if s11ru > 0xffff { s11ru = 0xffff } if s11gu < 0 { s11gu = 0 } else if s11gu > 0xffff { s11gu = 0xffff } if s11bu < 0 { s11bu = 0 } else if s11bu > 0xffff { s11bu = 0xffff } s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = 0xff } } } func (ablInterpolator) scale_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle) { sw := int32(sr.Dx()) sh := int32(sr.Dy()) yscale := float64(sh) / float64(dr.Dy()) xscale := float64(sw) / float64(dr.Dx()) swMinus1, shMinus1 := sw-1, sh-1 for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (float64(dy)+0.5)*yscale - 0.5 // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for // sx, below. sy0 := int32(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy1 := sy0 + 1 if sy < 0 { sy0, sy1 = 0, 0 yFrac0, yFrac1 = 0, 1 } else if sy1 > shMinus1 { sy0, sy1 = shMinus1, shMinus1 yFrac0, yFrac1 = 1, 0 } d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (float64(dx)+0.5)*xscale - 0.5 sx0 := int32(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx1 := sx0 + 1 if sx < 0 { sx0, sx1 = 0, 0 xFrac0, xFrac1 = 0, 1 } else if sx1 > swMinus1 { sx0, sx1 = swMinus1, swMinus1 xFrac0, xFrac1 = 1, 0 } s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) s00j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s00yy1 := int(src.Y[s00i])<<16 + 1<<15 s00cb1 := int(src.Cb[s00j]) - 128 s00cr1 := int(src.Cr[s00j]) - 128 s00ru := (s00yy1 + 91881*s00cr1) >> 8 s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8 s00bu := (s00yy1 + 116130*s00cb1) >> 8 if s00ru < 0 { s00ru = 0 } else if s00ru > 0xffff { s00ru = 0xffff } if s00gu < 0 { s00gu = 0 } else if s00gu > 0xffff { s00gu = 0xffff } if s00bu < 0 { s00bu = 0 } else if s00bu > 0xffff { s00bu = 0xffff } s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) s10j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s10yy1 := int(src.Y[s10i])<<16 + 1<<15 s10cb1 := int(src.Cb[s10j]) - 128 s10cr1 := int(src.Cr[s10j]) - 128 s10ru := (s10yy1 + 91881*s10cr1) >> 8 s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8 s10bu := (s10yy1 + 116130*s10cb1) >> 8 if s10ru < 0 { s10ru = 0 } else if s10ru > 0xffff { s10ru = 0xffff } if s10gu < 0 { s10gu = 0 } else if s10gu > 0xffff { s10gu = 0xffff } if s10bu < 0 { s10bu = 0 } else if s10bu > 0xffff { s10bu = 0xffff } s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) s01j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s01yy1 := int(src.Y[s01i])<<16 + 1<<15 s01cb1 := int(src.Cb[s01j]) - 128 s01cr1 := int(src.Cr[s01j]) - 128 s01ru := (s01yy1 + 91881*s01cr1) >> 8 s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8 s01bu := (s01yy1 + 116130*s01cb1) >> 8 if s01ru < 0 { s01ru = 0 } else if s01ru > 0xffff { s01ru = 0xffff } if s01gu < 0 { s01gu = 0 } else if s01gu > 0xffff { s01gu = 0xffff } if s01bu < 0 { s01bu = 0 } else if s01bu > 0xffff { s01bu = 0xffff } s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) s11j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s11yy1 := int(src.Y[s11i])<<16 + 1<<15 s11cb1 := int(src.Cb[s11j]) - 128 s11cr1 := int(src.Cr[s11j]) - 128 s11ru := (s11yy1 + 91881*s11cr1) >> 8 s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8 s11bu := (s11yy1 + 116130*s11cb1) >> 8 if s11ru < 0 { s11ru = 0 } else if s11ru > 0xffff { s11ru = 0xffff } if s11gu < 0 { s11gu = 0 } else if s11gu > 0xffff { s11gu = 0xffff } if s11bu < 0 { s11bu = 0 } else if s11bu > 0xffff { s11bu = 0xffff } s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = 0xff } } } func (ablInterpolator) scale_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle) { sw := int32(sr.Dx()) sh := int32(sr.Dy()) yscale := float64(sh) / float64(dr.Dy()) xscale := float64(sw) / float64(dr.Dx()) swMinus1, shMinus1 := sw-1, sh-1 for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (float64(dy)+0.5)*yscale - 0.5 // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for // sx, below. sy0 := int32(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy1 := sy0 + 1 if sy < 0 { sy0, sy1 = 0, 0 yFrac0, yFrac1 = 0, 1 } else if sy1 > shMinus1 { sy0, sy1 = shMinus1, shMinus1 yFrac0, yFrac1 = 1, 0 } d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (float64(dx)+0.5)*xscale - 0.5 sx0 := int32(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx1 := sx0 + 1 if sx < 0 { sx0, sx1 = 0, 0 xFrac0, xFrac1 = 0, 1 } else if sx1 > swMinus1 { sx0, sx1 = swMinus1, swMinus1 xFrac0, xFrac1 = 1, 0 } s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) s00j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s00yy1 := int(src.Y[s00i])<<16 + 1<<15 s00cb1 := int(src.Cb[s00j]) - 128 s00cr1 := int(src.Cr[s00j]) - 128 s00ru := (s00yy1 + 91881*s00cr1) >> 8 s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8 s00bu := (s00yy1 + 116130*s00cb1) >> 8 if s00ru < 0 { s00ru = 0 } else if s00ru > 0xffff { s00ru = 0xffff } if s00gu < 0 { s00gu = 0 } else if s00gu > 0xffff { s00gu = 0xffff } if s00bu < 0 { s00bu = 0 } else if s00bu > 0xffff { s00bu = 0xffff } s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) s10j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s10yy1 := int(src.Y[s10i])<<16 + 1<<15 s10cb1 := int(src.Cb[s10j]) - 128 s10cr1 := int(src.Cr[s10j]) - 128 s10ru := (s10yy1 + 91881*s10cr1) >> 8 s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8 s10bu := (s10yy1 + 116130*s10cb1) >> 8 if s10ru < 0 { s10ru = 0 } else if s10ru > 0xffff { s10ru = 0xffff } if s10gu < 0 { s10gu = 0 } else if s10gu > 0xffff { s10gu = 0xffff } if s10bu < 0 { s10bu = 0 } else if s10bu > 0xffff { s10bu = 0xffff } s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) s01j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s01yy1 := int(src.Y[s01i])<<16 + 1<<15 s01cb1 := int(src.Cb[s01j]) - 128 s01cr1 := int(src.Cr[s01j]) - 128 s01ru := (s01yy1 + 91881*s01cr1) >> 8 s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8 s01bu := (s01yy1 + 116130*s01cb1) >> 8 if s01ru < 0 { s01ru = 0 } else if s01ru > 0xffff { s01ru = 0xffff } if s01gu < 0 { s01gu = 0 } else if s01gu > 0xffff { s01gu = 0xffff } if s01bu < 0 { s01bu = 0 } else if s01bu > 0xffff { s01bu = 0xffff } s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) s11j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s11yy1 := int(src.Y[s11i])<<16 + 1<<15 s11cb1 := int(src.Cb[s11j]) - 128 s11cr1 := int(src.Cr[s11j]) - 128 s11ru := (s11yy1 + 91881*s11cr1) >> 8 s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8 s11bu := (s11yy1 + 116130*s11cb1) >> 8 if s11ru < 0 { s11ru = 0 } else if s11ru > 0xffff { s11ru = 0xffff } if s11gu < 0 { s11gu = 0 } else if s11gu > 0xffff { s11gu = 0xffff } if s11bu < 0 { s11bu = 0 } else if s11bu > 0xffff { s11bu = 0xffff } s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = 0xff } } } func (ablInterpolator) scale_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle) { sw := int32(sr.Dx()) sh := int32(sr.Dy()) yscale := float64(sh) / float64(dr.Dy()) xscale := float64(sw) / float64(dr.Dx()) swMinus1, shMinus1 := sw-1, sh-1 for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (float64(dy)+0.5)*yscale - 0.5 // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for // sx, below. sy0 := int32(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy1 := sy0 + 1 if sy < 0 { sy0, sy1 = 0, 0 yFrac0, yFrac1 = 0, 1 } else if sy1 > shMinus1 { sy0, sy1 = shMinus1, shMinus1 yFrac0, yFrac1 = 1, 0 } d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (float64(dx)+0.5)*xscale - 0.5 sx0 := int32(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx1 := sx0 + 1 if sx < 0 { sx0, sx1 = 0, 0 xFrac0, xFrac1 = 0, 1 } else if sx1 > swMinus1 { sx0, sx1 = swMinus1, swMinus1 xFrac0, xFrac1 = 1, 0 } s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) s00j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s00yy1 := int(src.Y[s00i])<<16 + 1<<15 s00cb1 := int(src.Cb[s00j]) - 128 s00cr1 := int(src.Cr[s00j]) - 128 s00ru := (s00yy1 + 91881*s00cr1) >> 8 s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8 s00bu := (s00yy1 + 116130*s00cb1) >> 8 if s00ru < 0 { s00ru = 0 } else if s00ru > 0xffff { s00ru = 0xffff } if s00gu < 0 { s00gu = 0 } else if s00gu > 0xffff { s00gu = 0xffff } if s00bu < 0 { s00bu = 0 } else if s00bu > 0xffff { s00bu = 0xffff } s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) s10j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s10yy1 := int(src.Y[s10i])<<16 + 1<<15 s10cb1 := int(src.Cb[s10j]) - 128 s10cr1 := int(src.Cr[s10j]) - 128 s10ru := (s10yy1 + 91881*s10cr1) >> 8 s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8 s10bu := (s10yy1 + 116130*s10cb1) >> 8 if s10ru < 0 { s10ru = 0 } else if s10ru > 0xffff { s10ru = 0xffff } if s10gu < 0 { s10gu = 0 } else if s10gu > 0xffff { s10gu = 0xffff } if s10bu < 0 { s10bu = 0 } else if s10bu > 0xffff { s10bu = 0xffff } s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) s01j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s01yy1 := int(src.Y[s01i])<<16 + 1<<15 s01cb1 := int(src.Cb[s01j]) - 128 s01cr1 := int(src.Cr[s01j]) - 128 s01ru := (s01yy1 + 91881*s01cr1) >> 8 s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8 s01bu := (s01yy1 + 116130*s01cb1) >> 8 if s01ru < 0 { s01ru = 0 } else if s01ru > 0xffff { s01ru = 0xffff } if s01gu < 0 { s01gu = 0 } else if s01gu > 0xffff { s01gu = 0xffff } if s01bu < 0 { s01bu = 0 } else if s01bu > 0xffff { s01bu = 0xffff } s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) s11j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s11yy1 := int(src.Y[s11i])<<16 + 1<<15 s11cb1 := int(src.Cb[s11j]) - 128 s11cr1 := int(src.Cr[s11j]) - 128 s11ru := (s11yy1 + 91881*s11cr1) >> 8 s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8 s11bu := (s11yy1 + 116130*s11cb1) >> 8 if s11ru < 0 { s11ru = 0 } else if s11ru > 0xffff { s11ru = 0xffff } if s11gu < 0 { s11gu = 0 } else if s11gu > 0xffff { s11gu = 0xffff } if s11bu < 0 { s11bu = 0 } else if s11bu > 0xffff { s11bu = 0xffff } s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = 0xff } } } func (ablInterpolator) scale_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle) { sw := int32(sr.Dx()) sh := int32(sr.Dy()) yscale := float64(sh) / float64(dr.Dy()) xscale := float64(sw) / float64(dr.Dx()) swMinus1, shMinus1 := sw-1, sh-1 for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (float64(dy)+0.5)*yscale - 0.5 // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for // sx, below. sy0 := int32(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy1 := sy0 + 1 if sy < 0 { sy0, sy1 = 0, 0 yFrac0, yFrac1 = 0, 1 } else if sy1 > shMinus1 { sy0, sy1 = shMinus1, shMinus1 yFrac0, yFrac1 = 1, 0 } d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (float64(dx)+0.5)*xscale - 0.5 sx0 := int32(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx1 := sx0 + 1 if sx < 0 { sx0, sx1 = 0, 0 xFrac0, xFrac1 = 0, 1 } else if sx1 > swMinus1 { sx0, sx1 = swMinus1, swMinus1 xFrac0, xFrac1 = 1, 0 } s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) s00j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s00yy1 := int(src.Y[s00i])<<16 + 1<<15 s00cb1 := int(src.Cb[s00j]) - 128 s00cr1 := int(src.Cr[s00j]) - 128 s00ru := (s00yy1 + 91881*s00cr1) >> 8 s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8 s00bu := (s00yy1 + 116130*s00cb1) >> 8 if s00ru < 0 { s00ru = 0 } else if s00ru > 0xffff { s00ru = 0xffff } if s00gu < 0 { s00gu = 0 } else if s00gu > 0xffff { s00gu = 0xffff } if s00bu < 0 { s00bu = 0 } else if s00bu > 0xffff { s00bu = 0xffff } s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) s10j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s10yy1 := int(src.Y[s10i])<<16 + 1<<15 s10cb1 := int(src.Cb[s10j]) - 128 s10cr1 := int(src.Cr[s10j]) - 128 s10ru := (s10yy1 + 91881*s10cr1) >> 8 s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8 s10bu := (s10yy1 + 116130*s10cb1) >> 8 if s10ru < 0 { s10ru = 0 } else if s10ru > 0xffff { s10ru = 0xffff } if s10gu < 0 { s10gu = 0 } else if s10gu > 0xffff { s10gu = 0xffff } if s10bu < 0 { s10bu = 0 } else if s10bu > 0xffff { s10bu = 0xffff } s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) s01j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s01yy1 := int(src.Y[s01i])<<16 + 1<<15 s01cb1 := int(src.Cb[s01j]) - 128 s01cr1 := int(src.Cr[s01j]) - 128 s01ru := (s01yy1 + 91881*s01cr1) >> 8 s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8 s01bu := (s01yy1 + 116130*s01cb1) >> 8 if s01ru < 0 { s01ru = 0 } else if s01ru > 0xffff { s01ru = 0xffff } if s01gu < 0 { s01gu = 0 } else if s01gu > 0xffff { s01gu = 0xffff } if s01bu < 0 { s01bu = 0 } else if s01bu > 0xffff { s01bu = 0xffff } s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) s11j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s11yy1 := int(src.Y[s11i])<<16 + 1<<15 s11cb1 := int(src.Cb[s11j]) - 128 s11cr1 := int(src.Cr[s11j]) - 128 s11ru := (s11yy1 + 91881*s11cr1) >> 8 s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8 s11bu := (s11yy1 + 116130*s11cb1) >> 8 if s11ru < 0 { s11ru = 0 } else if s11ru > 0xffff { s11ru = 0xffff } if s11gu < 0 { s11gu = 0 } else if s11gu > 0xffff { s11gu = 0xffff } if s11bu < 0 { s11bu = 0 } else if s11bu > 0xffff { s11bu = 0xffff } s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = 0xff } } } func (ablInterpolator) scale_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, src image.Image, sr image.Rectangle) { sw := int32(sr.Dx()) sh := int32(sr.Dy()) yscale := float64(sh) / float64(dr.Dy()) xscale := float64(sw) / float64(dr.Dx()) swMinus1, shMinus1 := sw-1, sh-1 for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (float64(dy)+0.5)*yscale - 0.5 // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for // sx, below. sy0 := int32(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy1 := sy0 + 1 if sy < 0 { sy0, sy1 = 0, 0 yFrac0, yFrac1 = 0, 1 } else if sy1 > shMinus1 { sy0, sy1 = shMinus1, shMinus1 yFrac0, yFrac1 = 1, 0 } d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (float64(dx)+0.5)*xscale - 0.5 sx0 := int32(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx1 := sx0 + 1 if sx < 0 { sx0, sx1 = 0, 0 xFrac0, xFrac1 = 0, 1 } else if sx1 > swMinus1 { sx0, sx1 = swMinus1, swMinus1 xFrac0, xFrac1 = 1, 0 } s00ru, s00gu, s00bu, s00au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy0)).RGBA() s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s00a := float64(s00au) s10ru, s10gu, s10bu, s10au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy0)).RGBA() s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10a := float64(s10au) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s10a = xFrac1*s00a + xFrac0*s10a s01ru, s01gu, s01bu, s01au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy1)).RGBA() s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s01a := float64(s01au) s11ru, s11gu, s11bu, s11au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy1)).RGBA() s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11a := float64(s11au) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11a = xFrac1*s01a + xFrac0*s11a s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b s11a = yFrac1*s10a + yFrac0*s11a dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = uint8(uint32(s11a) >> 8) } } } func (ablInterpolator) scale_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, src image.Image, sr image.Rectangle) { sw := int32(sr.Dx()) sh := int32(sr.Dy()) yscale := float64(sh) / float64(dr.Dy()) xscale := float64(sw) / float64(dr.Dx()) swMinus1, shMinus1 := sw-1, sh-1 for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (float64(dy)+0.5)*yscale - 0.5 // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for // sx, below. sy0 := int32(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy1 := sy0 + 1 if sy < 0 { sy0, sy1 = 0, 0 yFrac0, yFrac1 = 0, 1 } else if sy1 > shMinus1 { sy0, sy1 = shMinus1, shMinus1 yFrac0, yFrac1 = 1, 0 } d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { sx := (float64(dx)+0.5)*xscale - 0.5 sx0 := int32(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx1 := sx0 + 1 if sx < 0 { sx0, sx1 = 0, 0 xFrac0, xFrac1 = 0, 1 } else if sx1 > swMinus1 { sx0, sx1 = swMinus1, swMinus1 xFrac0, xFrac1 = 1, 0 } s00ru, s00gu, s00bu, s00au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy0)).RGBA() s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s00a := float64(s00au) s10ru, s10gu, s10bu, s10au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy0)).RGBA() s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10a := float64(s10au) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s10a = xFrac1*s00a + xFrac0*s10a s01ru, s01gu, s01bu, s01au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy1)).RGBA() s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s01a := float64(s01au) s11ru, s11gu, s11bu, s11au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy1)).RGBA() s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11a := float64(s11au) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11a = xFrac1*s01a + xFrac0*s11a s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b s11a = yFrac1*s10a + yFrac0*s11a dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = uint8(uint32(s11a) >> 8) } } } func (ablInterpolator) scale_Image_Image_Over(dst Image, dr, adr image.Rectangle, src image.Image, sr image.Rectangle) { sw := int32(sr.Dx()) sh := int32(sr.Dy()) yscale := float64(sh) / float64(dr.Dy()) xscale := float64(sw) / float64(dr.Dx()) swMinus1, shMinus1 := sw-1, sh-1 dstColorRGBA64 := &color.RGBA64{} dstColor := color.Color(dstColorRGBA64) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (float64(dy)+0.5)*yscale - 0.5 // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for // sx, below. sy0 := int32(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy1 := sy0 + 1 if sy < 0 { sy0, sy1 = 0, 0 yFrac0, yFrac1 = 0, 1 } else if sy1 > shMinus1 { sy0, sy1 = shMinus1, shMinus1 yFrac0, yFrac1 = 1, 0 } for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { sx := (float64(dx)+0.5)*xscale - 0.5 sx0 := int32(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx1 := sx0 + 1 if sx < 0 { sx0, sx1 = 0, 0 xFrac0, xFrac1 = 0, 1 } else if sx1 > swMinus1 { sx0, sx1 = swMinus1, swMinus1 xFrac0, xFrac1 = 1, 0 } s00ru, s00gu, s00bu, s00au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy0)).RGBA() s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s00a := float64(s00au) s10ru, s10gu, s10bu, s10au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy0)).RGBA() s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10a := float64(s10au) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s10a = xFrac1*s00a + xFrac0*s10a s01ru, s01gu, s01bu, s01au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy1)).RGBA() s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s01a := float64(s01au) s11ru, s11gu, s11bu, s11au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy1)).RGBA() s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11a := float64(s11au) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11a = xFrac1*s01a + xFrac0*s11a s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b s11a = yFrac1*s10a + yFrac0*s11a dstColorRGBA64.R = uint16(s11r) dstColorRGBA64.G = uint16(s11g) dstColorRGBA64.B = uint16(s11b) dstColorRGBA64.A = uint16(s11a) dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) } } } func (ablInterpolator) scale_Image_Image_Src(dst Image, dr, adr image.Rectangle, src image.Image, sr image.Rectangle) { sw := int32(sr.Dx()) sh := int32(sr.Dy()) yscale := float64(sh) / float64(dr.Dy()) xscale := float64(sw) / float64(dr.Dx()) swMinus1, shMinus1 := sw-1, sh-1 dstColorRGBA64 := &color.RGBA64{} dstColor := color.Color(dstColorRGBA64) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { sy := (float64(dy)+0.5)*yscale - 0.5 // If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if // we say int32(sy) instead of int32(math.Floor(sy)). Similarly for // sx, below. sy0 := int32(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy1 := sy0 + 1 if sy < 0 { sy0, sy1 = 0, 0 yFrac0, yFrac1 = 0, 1 } else if sy1 > shMinus1 { sy0, sy1 = shMinus1, shMinus1 yFrac0, yFrac1 = 1, 0 } for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { sx := (float64(dx)+0.5)*xscale - 0.5 sx0 := int32(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx1 := sx0 + 1 if sx < 0 { sx0, sx1 = 0, 0 xFrac0, xFrac1 = 0, 1 } else if sx1 > swMinus1 { sx0, sx1 = swMinus1, swMinus1 xFrac0, xFrac1 = 1, 0 } s00ru, s00gu, s00bu, s00au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy0)).RGBA() s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s00a := float64(s00au) s10ru, s10gu, s10bu, s10au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy0)).RGBA() s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10a := float64(s10au) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s10a = xFrac1*s00a + xFrac0*s10a s01ru, s01gu, s01bu, s01au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy1)).RGBA() s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s01a := float64(s01au) s11ru, s11gu, s11bu, s11au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy1)).RGBA() s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11a := float64(s11au) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11a = xFrac1*s01a + xFrac0*s11a s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b s11a = yFrac1*s10a + yFrac0*s11a dstColorRGBA64.R = uint16(s11r) dstColorRGBA64.G = uint16(s11g) dstColorRGBA64.B = uint16(s11b) dstColorRGBA64.A = uint16(s11a) dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) } } } func (ablInterpolator) transform_RGBA_Gray_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Gray, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } sx -= 0.5 sx0 := int(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx0 += bias.X sx1 := sx0 + 1 if sx0 < sr.Min.X { sx0, sx1 = sr.Min.X, sr.Min.X xFrac0, xFrac1 = 0, 1 } else if sx1 >= sr.Max.X { sx0, sx1 = sr.Max.X-1, sr.Max.X-1 xFrac0, xFrac1 = 1, 0 } sy -= 0.5 sy0 := int(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy0 += bias.Y sy1 := sy0 + 1 if sy0 < sr.Min.Y { sy0, sy1 = sr.Min.Y, sr.Min.Y yFrac0, yFrac1 = 0, 1 } else if sy1 >= sr.Max.Y { sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 yFrac0, yFrac1 = 1, 0 } s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0 - src.Rect.Min.X) s00ru := uint32(src.Pix[s00i]) * 0x101 s00r := float64(s00ru) s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1 - src.Rect.Min.X) s10ru := uint32(src.Pix[s10i]) * 0x101 s10r := float64(s10ru) s10r = xFrac1*s00r + xFrac0*s10r s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0 - src.Rect.Min.X) s01ru := uint32(src.Pix[s01i]) * 0x101 s01r := float64(s01ru) s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1 - src.Rect.Min.X) s11ru := uint32(src.Pix[s11i]) * 0x101 s11r := float64(s11ru) s11r = xFrac1*s01r + xFrac0*s11r s11r = yFrac1*s10r + yFrac0*s11r out := uint8(uint32(s11r) >> 8) dst.Pix[d+0] = out dst.Pix[d+1] = out dst.Pix[d+2] = out dst.Pix[d+3] = 0xff } } } func (ablInterpolator) transform_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Gray, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } sx -= 0.5 sx0 := int(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx0 += bias.X sx1 := sx0 + 1 if sx0 < sr.Min.X { sx0, sx1 = sr.Min.X, sr.Min.X xFrac0, xFrac1 = 0, 1 } else if sx1 >= sr.Max.X { sx0, sx1 = sr.Max.X-1, sr.Max.X-1 xFrac0, xFrac1 = 1, 0 } sy -= 0.5 sy0 := int(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy0 += bias.Y sy1 := sy0 + 1 if sy0 < sr.Min.Y { sy0, sy1 = sr.Min.Y, sr.Min.Y yFrac0, yFrac1 = 0, 1 } else if sy1 >= sr.Max.Y { sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 yFrac0, yFrac1 = 1, 0 } s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0 - src.Rect.Min.X) s00ru := uint32(src.Pix[s00i]) * 0x101 s00r := float64(s00ru) s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1 - src.Rect.Min.X) s10ru := uint32(src.Pix[s10i]) * 0x101 s10r := float64(s10ru) s10r = xFrac1*s00r + xFrac0*s10r s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0 - src.Rect.Min.X) s01ru := uint32(src.Pix[s01i]) * 0x101 s01r := float64(s01ru) s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1 - src.Rect.Min.X) s11ru := uint32(src.Pix[s11i]) * 0x101 s11r := float64(s11ru) s11r = xFrac1*s01r + xFrac0*s11r s11r = yFrac1*s10r + yFrac0*s11r out := uint8(uint32(s11r) >> 8) dst.Pix[d+0] = out dst.Pix[d+1] = out dst.Pix[d+2] = out dst.Pix[d+3] = 0xff } } } func (ablInterpolator) transform_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } sx -= 0.5 sx0 := int(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx0 += bias.X sx1 := sx0 + 1 if sx0 < sr.Min.X { sx0, sx1 = sr.Min.X, sr.Min.X xFrac0, xFrac1 = 0, 1 } else if sx1 >= sr.Max.X { sx0, sx1 = sr.Max.X-1, sr.Max.X-1 xFrac0, xFrac1 = 1, 0 } sy -= 0.5 sy0 := int(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy0 += bias.Y sy1 := sy0 + 1 if sy0 < sr.Min.Y { sy0, sy1 = sr.Min.Y, sr.Min.Y yFrac0, yFrac1 = 0, 1 } else if sy1 >= sr.Max.Y { sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 yFrac0, yFrac1 = 1, 0 } s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4 s00au := uint32(src.Pix[s00i+3]) * 0x101 s00ru := uint32(src.Pix[s00i+0]) * s00au / 0xff s00gu := uint32(src.Pix[s00i+1]) * s00au / 0xff s00bu := uint32(src.Pix[s00i+2]) * s00au / 0xff s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s00a := float64(s00au) s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4 s10au := uint32(src.Pix[s10i+3]) * 0x101 s10ru := uint32(src.Pix[s10i+0]) * s10au / 0xff s10gu := uint32(src.Pix[s10i+1]) * s10au / 0xff s10bu := uint32(src.Pix[s10i+2]) * s10au / 0xff s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10a := float64(s10au) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s10a = xFrac1*s00a + xFrac0*s10a s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4 s01au := uint32(src.Pix[s01i+3]) * 0x101 s01ru := uint32(src.Pix[s01i+0]) * s01au / 0xff s01gu := uint32(src.Pix[s01i+1]) * s01au / 0xff s01bu := uint32(src.Pix[s01i+2]) * s01au / 0xff s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s01a := float64(s01au) s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4 s11au := uint32(src.Pix[s11i+3]) * 0x101 s11ru := uint32(src.Pix[s11i+0]) * s11au / 0xff s11gu := uint32(src.Pix[s11i+1]) * s11au / 0xff s11bu := uint32(src.Pix[s11i+2]) * s11au / 0xff s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11a := float64(s11au) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11a = xFrac1*s01a + xFrac0*s11a s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b s11a = yFrac1*s10a + yFrac0*s11a dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = uint8(uint32(s11a) >> 8) } } } func (ablInterpolator) transform_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } sx -= 0.5 sx0 := int(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx0 += bias.X sx1 := sx0 + 1 if sx0 < sr.Min.X { sx0, sx1 = sr.Min.X, sr.Min.X xFrac0, xFrac1 = 0, 1 } else if sx1 >= sr.Max.X { sx0, sx1 = sr.Max.X-1, sr.Max.X-1 xFrac0, xFrac1 = 1, 0 } sy -= 0.5 sy0 := int(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy0 += bias.Y sy1 := sy0 + 1 if sy0 < sr.Min.Y { sy0, sy1 = sr.Min.Y, sr.Min.Y yFrac0, yFrac1 = 0, 1 } else if sy1 >= sr.Max.Y { sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 yFrac0, yFrac1 = 1, 0 } s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4 s00au := uint32(src.Pix[s00i+3]) * 0x101 s00ru := uint32(src.Pix[s00i+0]) * s00au / 0xff s00gu := uint32(src.Pix[s00i+1]) * s00au / 0xff s00bu := uint32(src.Pix[s00i+2]) * s00au / 0xff s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s00a := float64(s00au) s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4 s10au := uint32(src.Pix[s10i+3]) * 0x101 s10ru := uint32(src.Pix[s10i+0]) * s10au / 0xff s10gu := uint32(src.Pix[s10i+1]) * s10au / 0xff s10bu := uint32(src.Pix[s10i+2]) * s10au / 0xff s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10a := float64(s10au) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s10a = xFrac1*s00a + xFrac0*s10a s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4 s01au := uint32(src.Pix[s01i+3]) * 0x101 s01ru := uint32(src.Pix[s01i+0]) * s01au / 0xff s01gu := uint32(src.Pix[s01i+1]) * s01au / 0xff s01bu := uint32(src.Pix[s01i+2]) * s01au / 0xff s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s01a := float64(s01au) s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4 s11au := uint32(src.Pix[s11i+3]) * 0x101 s11ru := uint32(src.Pix[s11i+0]) * s11au / 0xff s11gu := uint32(src.Pix[s11i+1]) * s11au / 0xff s11bu := uint32(src.Pix[s11i+2]) * s11au / 0xff s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11a := float64(s11au) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11a = xFrac1*s01a + xFrac0*s11a s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b s11a = yFrac1*s10a + yFrac0*s11a dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = uint8(uint32(s11a) >> 8) } } } func (ablInterpolator) transform_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } sx -= 0.5 sx0 := int(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx0 += bias.X sx1 := sx0 + 1 if sx0 < sr.Min.X { sx0, sx1 = sr.Min.X, sr.Min.X xFrac0, xFrac1 = 0, 1 } else if sx1 >= sr.Max.X { sx0, sx1 = sr.Max.X-1, sr.Max.X-1 xFrac0, xFrac1 = 1, 0 } sy -= 0.5 sy0 := int(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy0 += bias.Y sy1 := sy0 + 1 if sy0 < sr.Min.Y { sy0, sy1 = sr.Min.Y, sr.Min.Y yFrac0, yFrac1 = 0, 1 } else if sy1 >= sr.Max.Y { sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 yFrac0, yFrac1 = 1, 0 } s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4 s00ru := uint32(src.Pix[s00i+0]) * 0x101 s00gu := uint32(src.Pix[s00i+1]) * 0x101 s00bu := uint32(src.Pix[s00i+2]) * 0x101 s00au := uint32(src.Pix[s00i+3]) * 0x101 s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s00a := float64(s00au) s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4 s10ru := uint32(src.Pix[s10i+0]) * 0x101 s10gu := uint32(src.Pix[s10i+1]) * 0x101 s10bu := uint32(src.Pix[s10i+2]) * 0x101 s10au := uint32(src.Pix[s10i+3]) * 0x101 s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10a := float64(s10au) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s10a = xFrac1*s00a + xFrac0*s10a s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4 s01ru := uint32(src.Pix[s01i+0]) * 0x101 s01gu := uint32(src.Pix[s01i+1]) * 0x101 s01bu := uint32(src.Pix[s01i+2]) * 0x101 s01au := uint32(src.Pix[s01i+3]) * 0x101 s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s01a := float64(s01au) s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4 s11ru := uint32(src.Pix[s11i+0]) * 0x101 s11gu := uint32(src.Pix[s11i+1]) * 0x101 s11bu := uint32(src.Pix[s11i+2]) * 0x101 s11au := uint32(src.Pix[s11i+3]) * 0x101 s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11a := float64(s11au) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11a = xFrac1*s01a + xFrac0*s11a s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b s11a = yFrac1*s10a + yFrac0*s11a dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = uint8(uint32(s11a) >> 8) } } } func (ablInterpolator) transform_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } sx -= 0.5 sx0 := int(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx0 += bias.X sx1 := sx0 + 1 if sx0 < sr.Min.X { sx0, sx1 = sr.Min.X, sr.Min.X xFrac0, xFrac1 = 0, 1 } else if sx1 >= sr.Max.X { sx0, sx1 = sr.Max.X-1, sr.Max.X-1 xFrac0, xFrac1 = 1, 0 } sy -= 0.5 sy0 := int(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy0 += bias.Y sy1 := sy0 + 1 if sy0 < sr.Min.Y { sy0, sy1 = sr.Min.Y, sr.Min.Y yFrac0, yFrac1 = 0, 1 } else if sy1 >= sr.Max.Y { sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 yFrac0, yFrac1 = 1, 0 } s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4 s00ru := uint32(src.Pix[s00i+0]) * 0x101 s00gu := uint32(src.Pix[s00i+1]) * 0x101 s00bu := uint32(src.Pix[s00i+2]) * 0x101 s00au := uint32(src.Pix[s00i+3]) * 0x101 s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s00a := float64(s00au) s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4 s10ru := uint32(src.Pix[s10i+0]) * 0x101 s10gu := uint32(src.Pix[s10i+1]) * 0x101 s10bu := uint32(src.Pix[s10i+2]) * 0x101 s10au := uint32(src.Pix[s10i+3]) * 0x101 s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10a := float64(s10au) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s10a = xFrac1*s00a + xFrac0*s10a s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4 s01ru := uint32(src.Pix[s01i+0]) * 0x101 s01gu := uint32(src.Pix[s01i+1]) * 0x101 s01bu := uint32(src.Pix[s01i+2]) * 0x101 s01au := uint32(src.Pix[s01i+3]) * 0x101 s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s01a := float64(s01au) s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4 s11ru := uint32(src.Pix[s11i+0]) * 0x101 s11gu := uint32(src.Pix[s11i+1]) * 0x101 s11bu := uint32(src.Pix[s11i+2]) * 0x101 s11au := uint32(src.Pix[s11i+3]) * 0x101 s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11a := float64(s11au) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11a = xFrac1*s01a + xFrac0*s11a s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b s11a = yFrac1*s10a + yFrac0*s11a dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = uint8(uint32(s11a) >> 8) } } } func (ablInterpolator) transform_RGBA_YCbCr444_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } sx -= 0.5 sx0 := int(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx0 += bias.X sx1 := sx0 + 1 if sx0 < sr.Min.X { sx0, sx1 = sr.Min.X, sr.Min.X xFrac0, xFrac1 = 0, 1 } else if sx1 >= sr.Max.X { sx0, sx1 = sr.Max.X-1, sr.Max.X-1 xFrac0, xFrac1 = 1, 0 } sy -= 0.5 sy0 := int(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy0 += bias.Y sy1 := sy0 + 1 if sy0 < sr.Min.Y { sy0, sy1 = sr.Min.Y, sr.Min.Y yFrac0, yFrac1 = 0, 1 } else if sy1 >= sr.Max.Y { sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 yFrac0, yFrac1 = 1, 0 } s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) s00j := (sy0-src.Rect.Min.Y)*src.CStride + (sx0 - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s00yy1 := int(src.Y[s00i])<<16 + 1<<15 s00cb1 := int(src.Cb[s00j]) - 128 s00cr1 := int(src.Cr[s00j]) - 128 s00ru := (s00yy1 + 91881*s00cr1) >> 8 s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8 s00bu := (s00yy1 + 116130*s00cb1) >> 8 if s00ru < 0 { s00ru = 0 } else if s00ru > 0xffff { s00ru = 0xffff } if s00gu < 0 { s00gu = 0 } else if s00gu > 0xffff { s00gu = 0xffff } if s00bu < 0 { s00bu = 0 } else if s00bu > 0xffff { s00bu = 0xffff } s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X) s10j := (sy0-src.Rect.Min.Y)*src.CStride + (sx1 - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s10yy1 := int(src.Y[s10i])<<16 + 1<<15 s10cb1 := int(src.Cb[s10j]) - 128 s10cr1 := int(src.Cr[s10j]) - 128 s10ru := (s10yy1 + 91881*s10cr1) >> 8 s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8 s10bu := (s10yy1 + 116130*s10cb1) >> 8 if s10ru < 0 { s10ru = 0 } else if s10ru > 0xffff { s10ru = 0xffff } if s10gu < 0 { s10gu = 0 } else if s10gu > 0xffff { s10gu = 0xffff } if s10bu < 0 { s10bu = 0 } else if s10bu > 0xffff { s10bu = 0xffff } s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) s01j := (sy1-src.Rect.Min.Y)*src.CStride + (sx0 - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s01yy1 := int(src.Y[s01i])<<16 + 1<<15 s01cb1 := int(src.Cb[s01j]) - 128 s01cr1 := int(src.Cr[s01j]) - 128 s01ru := (s01yy1 + 91881*s01cr1) >> 8 s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8 s01bu := (s01yy1 + 116130*s01cb1) >> 8 if s01ru < 0 { s01ru = 0 } else if s01ru > 0xffff { s01ru = 0xffff } if s01gu < 0 { s01gu = 0 } else if s01gu > 0xffff { s01gu = 0xffff } if s01bu < 0 { s01bu = 0 } else if s01bu > 0xffff { s01bu = 0xffff } s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X) s11j := (sy1-src.Rect.Min.Y)*src.CStride + (sx1 - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s11yy1 := int(src.Y[s11i])<<16 + 1<<15 s11cb1 := int(src.Cb[s11j]) - 128 s11cr1 := int(src.Cr[s11j]) - 128 s11ru := (s11yy1 + 91881*s11cr1) >> 8 s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8 s11bu := (s11yy1 + 116130*s11cb1) >> 8 if s11ru < 0 { s11ru = 0 } else if s11ru > 0xffff { s11ru = 0xffff } if s11gu < 0 { s11gu = 0 } else if s11gu > 0xffff { s11gu = 0xffff } if s11bu < 0 { s11bu = 0 } else if s11bu > 0xffff { s11bu = 0xffff } s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = 0xff } } } func (ablInterpolator) transform_RGBA_YCbCr422_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } sx -= 0.5 sx0 := int(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx0 += bias.X sx1 := sx0 + 1 if sx0 < sr.Min.X { sx0, sx1 = sr.Min.X, sr.Min.X xFrac0, xFrac1 = 0, 1 } else if sx1 >= sr.Max.X { sx0, sx1 = sr.Max.X-1, sr.Max.X-1 xFrac0, xFrac1 = 1, 0 } sy -= 0.5 sy0 := int(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy0 += bias.Y sy1 := sy0 + 1 if sy0 < sr.Min.Y { sy0, sy1 = sr.Min.Y, sr.Min.Y yFrac0, yFrac1 = 0, 1 } else if sy1 >= sr.Max.Y { sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 yFrac0, yFrac1 = 1, 0 } s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) s00j := (sy0-src.Rect.Min.Y)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s00yy1 := int(src.Y[s00i])<<16 + 1<<15 s00cb1 := int(src.Cb[s00j]) - 128 s00cr1 := int(src.Cr[s00j]) - 128 s00ru := (s00yy1 + 91881*s00cr1) >> 8 s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8 s00bu := (s00yy1 + 116130*s00cb1) >> 8 if s00ru < 0 { s00ru = 0 } else if s00ru > 0xffff { s00ru = 0xffff } if s00gu < 0 { s00gu = 0 } else if s00gu > 0xffff { s00gu = 0xffff } if s00bu < 0 { s00bu = 0 } else if s00bu > 0xffff { s00bu = 0xffff } s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X) s10j := (sy0-src.Rect.Min.Y)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s10yy1 := int(src.Y[s10i])<<16 + 1<<15 s10cb1 := int(src.Cb[s10j]) - 128 s10cr1 := int(src.Cr[s10j]) - 128 s10ru := (s10yy1 + 91881*s10cr1) >> 8 s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8 s10bu := (s10yy1 + 116130*s10cb1) >> 8 if s10ru < 0 { s10ru = 0 } else if s10ru > 0xffff { s10ru = 0xffff } if s10gu < 0 { s10gu = 0 } else if s10gu > 0xffff { s10gu = 0xffff } if s10bu < 0 { s10bu = 0 } else if s10bu > 0xffff { s10bu = 0xffff } s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) s01j := (sy1-src.Rect.Min.Y)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s01yy1 := int(src.Y[s01i])<<16 + 1<<15 s01cb1 := int(src.Cb[s01j]) - 128 s01cr1 := int(src.Cr[s01j]) - 128 s01ru := (s01yy1 + 91881*s01cr1) >> 8 s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8 s01bu := (s01yy1 + 116130*s01cb1) >> 8 if s01ru < 0 { s01ru = 0 } else if s01ru > 0xffff { s01ru = 0xffff } if s01gu < 0 { s01gu = 0 } else if s01gu > 0xffff { s01gu = 0xffff } if s01bu < 0 { s01bu = 0 } else if s01bu > 0xffff { s01bu = 0xffff } s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X) s11j := (sy1-src.Rect.Min.Y)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s11yy1 := int(src.Y[s11i])<<16 + 1<<15 s11cb1 := int(src.Cb[s11j]) - 128 s11cr1 := int(src.Cr[s11j]) - 128 s11ru := (s11yy1 + 91881*s11cr1) >> 8 s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8 s11bu := (s11yy1 + 116130*s11cb1) >> 8 if s11ru < 0 { s11ru = 0 } else if s11ru > 0xffff { s11ru = 0xffff } if s11gu < 0 { s11gu = 0 } else if s11gu > 0xffff { s11gu = 0xffff } if s11bu < 0 { s11bu = 0 } else if s11bu > 0xffff { s11bu = 0xffff } s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = 0xff } } } func (ablInterpolator) transform_RGBA_YCbCr420_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } sx -= 0.5 sx0 := int(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx0 += bias.X sx1 := sx0 + 1 if sx0 < sr.Min.X { sx0, sx1 = sr.Min.X, sr.Min.X xFrac0, xFrac1 = 0, 1 } else if sx1 >= sr.Max.X { sx0, sx1 = sr.Max.X-1, sr.Max.X-1 xFrac0, xFrac1 = 1, 0 } sy -= 0.5 sy0 := int(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy0 += bias.Y sy1 := sy0 + 1 if sy0 < sr.Min.Y { sy0, sy1 = sr.Min.Y, sr.Min.Y yFrac0, yFrac1 = 0, 1 } else if sy1 >= sr.Max.Y { sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 yFrac0, yFrac1 = 1, 0 } s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) s00j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s00yy1 := int(src.Y[s00i])<<16 + 1<<15 s00cb1 := int(src.Cb[s00j]) - 128 s00cr1 := int(src.Cr[s00j]) - 128 s00ru := (s00yy1 + 91881*s00cr1) >> 8 s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8 s00bu := (s00yy1 + 116130*s00cb1) >> 8 if s00ru < 0 { s00ru = 0 } else if s00ru > 0xffff { s00ru = 0xffff } if s00gu < 0 { s00gu = 0 } else if s00gu > 0xffff { s00gu = 0xffff } if s00bu < 0 { s00bu = 0 } else if s00bu > 0xffff { s00bu = 0xffff } s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X) s10j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s10yy1 := int(src.Y[s10i])<<16 + 1<<15 s10cb1 := int(src.Cb[s10j]) - 128 s10cr1 := int(src.Cr[s10j]) - 128 s10ru := (s10yy1 + 91881*s10cr1) >> 8 s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8 s10bu := (s10yy1 + 116130*s10cb1) >> 8 if s10ru < 0 { s10ru = 0 } else if s10ru > 0xffff { s10ru = 0xffff } if s10gu < 0 { s10gu = 0 } else if s10gu > 0xffff { s10gu = 0xffff } if s10bu < 0 { s10bu = 0 } else if s10bu > 0xffff { s10bu = 0xffff } s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) s01j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s01yy1 := int(src.Y[s01i])<<16 + 1<<15 s01cb1 := int(src.Cb[s01j]) - 128 s01cr1 := int(src.Cr[s01j]) - 128 s01ru := (s01yy1 + 91881*s01cr1) >> 8 s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8 s01bu := (s01yy1 + 116130*s01cb1) >> 8 if s01ru < 0 { s01ru = 0 } else if s01ru > 0xffff { s01ru = 0xffff } if s01gu < 0 { s01gu = 0 } else if s01gu > 0xffff { s01gu = 0xffff } if s01bu < 0 { s01bu = 0 } else if s01bu > 0xffff { s01bu = 0xffff } s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X) s11j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s11yy1 := int(src.Y[s11i])<<16 + 1<<15 s11cb1 := int(src.Cb[s11j]) - 128 s11cr1 := int(src.Cr[s11j]) - 128 s11ru := (s11yy1 + 91881*s11cr1) >> 8 s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8 s11bu := (s11yy1 + 116130*s11cb1) >> 8 if s11ru < 0 { s11ru = 0 } else if s11ru > 0xffff { s11ru = 0xffff } if s11gu < 0 { s11gu = 0 } else if s11gu > 0xffff { s11gu = 0xffff } if s11bu < 0 { s11bu = 0 } else if s11bu > 0xffff { s11bu = 0xffff } s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = 0xff } } } func (ablInterpolator) transform_RGBA_YCbCr440_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } sx -= 0.5 sx0 := int(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx0 += bias.X sx1 := sx0 + 1 if sx0 < sr.Min.X { sx0, sx1 = sr.Min.X, sr.Min.X xFrac0, xFrac1 = 0, 1 } else if sx1 >= sr.Max.X { sx0, sx1 = sr.Max.X-1, sr.Max.X-1 xFrac0, xFrac1 = 1, 0 } sy -= 0.5 sy0 := int(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy0 += bias.Y sy1 := sy0 + 1 if sy0 < sr.Min.Y { sy0, sy1 = sr.Min.Y, sr.Min.Y yFrac0, yFrac1 = 0, 1 } else if sy1 >= sr.Max.Y { sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 yFrac0, yFrac1 = 1, 0 } s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) s00j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + (sx0 - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s00yy1 := int(src.Y[s00i])<<16 + 1<<15 s00cb1 := int(src.Cb[s00j]) - 128 s00cr1 := int(src.Cr[s00j]) - 128 s00ru := (s00yy1 + 91881*s00cr1) >> 8 s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8 s00bu := (s00yy1 + 116130*s00cb1) >> 8 if s00ru < 0 { s00ru = 0 } else if s00ru > 0xffff { s00ru = 0xffff } if s00gu < 0 { s00gu = 0 } else if s00gu > 0xffff { s00gu = 0xffff } if s00bu < 0 { s00bu = 0 } else if s00bu > 0xffff { s00bu = 0xffff } s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X) s10j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + (sx1 - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s10yy1 := int(src.Y[s10i])<<16 + 1<<15 s10cb1 := int(src.Cb[s10j]) - 128 s10cr1 := int(src.Cr[s10j]) - 128 s10ru := (s10yy1 + 91881*s10cr1) >> 8 s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8 s10bu := (s10yy1 + 116130*s10cb1) >> 8 if s10ru < 0 { s10ru = 0 } else if s10ru > 0xffff { s10ru = 0xffff } if s10gu < 0 { s10gu = 0 } else if s10gu > 0xffff { s10gu = 0xffff } if s10bu < 0 { s10bu = 0 } else if s10bu > 0xffff { s10bu = 0xffff } s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) s01j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + (sx0 - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s01yy1 := int(src.Y[s01i])<<16 + 1<<15 s01cb1 := int(src.Cb[s01j]) - 128 s01cr1 := int(src.Cr[s01j]) - 128 s01ru := (s01yy1 + 91881*s01cr1) >> 8 s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8 s01bu := (s01yy1 + 116130*s01cb1) >> 8 if s01ru < 0 { s01ru = 0 } else if s01ru > 0xffff { s01ru = 0xffff } if s01gu < 0 { s01gu = 0 } else if s01gu > 0xffff { s01gu = 0xffff } if s01bu < 0 { s01bu = 0 } else if s01bu > 0xffff { s01bu = 0xffff } s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X) s11j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + (sx1 - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s11yy1 := int(src.Y[s11i])<<16 + 1<<15 s11cb1 := int(src.Cb[s11j]) - 128 s11cr1 := int(src.Cr[s11j]) - 128 s11ru := (s11yy1 + 91881*s11cr1) >> 8 s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8 s11bu := (s11yy1 + 116130*s11cb1) >> 8 if s11ru < 0 { s11ru = 0 } else if s11ru > 0xffff { s11ru = 0xffff } if s11gu < 0 { s11gu = 0 } else if s11gu > 0xffff { s11gu = 0xffff } if s11bu < 0 { s11bu = 0 } else if s11bu > 0xffff { s11bu = 0xffff } s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = 0xff } } } func (ablInterpolator) transform_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } sx -= 0.5 sx0 := int(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx0 += bias.X sx1 := sx0 + 1 if sx0 < sr.Min.X { sx0, sx1 = sr.Min.X, sr.Min.X xFrac0, xFrac1 = 0, 1 } else if sx1 >= sr.Max.X { sx0, sx1 = sr.Max.X-1, sr.Max.X-1 xFrac0, xFrac1 = 1, 0 } sy -= 0.5 sy0 := int(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy0 += bias.Y sy1 := sy0 + 1 if sy0 < sr.Min.Y { sy0, sy1 = sr.Min.Y, sr.Min.Y yFrac0, yFrac1 = 0, 1 } else if sy1 >= sr.Max.Y { sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 yFrac0, yFrac1 = 1, 0 } s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) s00j := (sy0-src.Rect.Min.Y)*src.CStride + (sx0 - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s00yy1 := int(src.Y[s00i])<<16 + 1<<15 s00cb1 := int(src.Cb[s00j]) - 128 s00cr1 := int(src.Cr[s00j]) - 128 s00ru := (s00yy1 + 91881*s00cr1) >> 8 s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8 s00bu := (s00yy1 + 116130*s00cb1) >> 8 if s00ru < 0 { s00ru = 0 } else if s00ru > 0xffff { s00ru = 0xffff } if s00gu < 0 { s00gu = 0 } else if s00gu > 0xffff { s00gu = 0xffff } if s00bu < 0 { s00bu = 0 } else if s00bu > 0xffff { s00bu = 0xffff } s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X) s10j := (sy0-src.Rect.Min.Y)*src.CStride + (sx1 - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s10yy1 := int(src.Y[s10i])<<16 + 1<<15 s10cb1 := int(src.Cb[s10j]) - 128 s10cr1 := int(src.Cr[s10j]) - 128 s10ru := (s10yy1 + 91881*s10cr1) >> 8 s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8 s10bu := (s10yy1 + 116130*s10cb1) >> 8 if s10ru < 0 { s10ru = 0 } else if s10ru > 0xffff { s10ru = 0xffff } if s10gu < 0 { s10gu = 0 } else if s10gu > 0xffff { s10gu = 0xffff } if s10bu < 0 { s10bu = 0 } else if s10bu > 0xffff { s10bu = 0xffff } s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) s01j := (sy1-src.Rect.Min.Y)*src.CStride + (sx0 - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s01yy1 := int(src.Y[s01i])<<16 + 1<<15 s01cb1 := int(src.Cb[s01j]) - 128 s01cr1 := int(src.Cr[s01j]) - 128 s01ru := (s01yy1 + 91881*s01cr1) >> 8 s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8 s01bu := (s01yy1 + 116130*s01cb1) >> 8 if s01ru < 0 { s01ru = 0 } else if s01ru > 0xffff { s01ru = 0xffff } if s01gu < 0 { s01gu = 0 } else if s01gu > 0xffff { s01gu = 0xffff } if s01bu < 0 { s01bu = 0 } else if s01bu > 0xffff { s01bu = 0xffff } s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X) s11j := (sy1-src.Rect.Min.Y)*src.CStride + (sx1 - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s11yy1 := int(src.Y[s11i])<<16 + 1<<15 s11cb1 := int(src.Cb[s11j]) - 128 s11cr1 := int(src.Cr[s11j]) - 128 s11ru := (s11yy1 + 91881*s11cr1) >> 8 s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8 s11bu := (s11yy1 + 116130*s11cb1) >> 8 if s11ru < 0 { s11ru = 0 } else if s11ru > 0xffff { s11ru = 0xffff } if s11gu < 0 { s11gu = 0 } else if s11gu > 0xffff { s11gu = 0xffff } if s11bu < 0 { s11bu = 0 } else if s11bu > 0xffff { s11bu = 0xffff } s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = 0xff } } } func (ablInterpolator) transform_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } sx -= 0.5 sx0 := int(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx0 += bias.X sx1 := sx0 + 1 if sx0 < sr.Min.X { sx0, sx1 = sr.Min.X, sr.Min.X xFrac0, xFrac1 = 0, 1 } else if sx1 >= sr.Max.X { sx0, sx1 = sr.Max.X-1, sr.Max.X-1 xFrac0, xFrac1 = 1, 0 } sy -= 0.5 sy0 := int(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy0 += bias.Y sy1 := sy0 + 1 if sy0 < sr.Min.Y { sy0, sy1 = sr.Min.Y, sr.Min.Y yFrac0, yFrac1 = 0, 1 } else if sy1 >= sr.Max.Y { sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 yFrac0, yFrac1 = 1, 0 } s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) s00j := (sy0-src.Rect.Min.Y)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s00yy1 := int(src.Y[s00i])<<16 + 1<<15 s00cb1 := int(src.Cb[s00j]) - 128 s00cr1 := int(src.Cr[s00j]) - 128 s00ru := (s00yy1 + 91881*s00cr1) >> 8 s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8 s00bu := (s00yy1 + 116130*s00cb1) >> 8 if s00ru < 0 { s00ru = 0 } else if s00ru > 0xffff { s00ru = 0xffff } if s00gu < 0 { s00gu = 0 } else if s00gu > 0xffff { s00gu = 0xffff } if s00bu < 0 { s00bu = 0 } else if s00bu > 0xffff { s00bu = 0xffff } s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X) s10j := (sy0-src.Rect.Min.Y)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s10yy1 := int(src.Y[s10i])<<16 + 1<<15 s10cb1 := int(src.Cb[s10j]) - 128 s10cr1 := int(src.Cr[s10j]) - 128 s10ru := (s10yy1 + 91881*s10cr1) >> 8 s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8 s10bu := (s10yy1 + 116130*s10cb1) >> 8 if s10ru < 0 { s10ru = 0 } else if s10ru > 0xffff { s10ru = 0xffff } if s10gu < 0 { s10gu = 0 } else if s10gu > 0xffff { s10gu = 0xffff } if s10bu < 0 { s10bu = 0 } else if s10bu > 0xffff { s10bu = 0xffff } s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) s01j := (sy1-src.Rect.Min.Y)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s01yy1 := int(src.Y[s01i])<<16 + 1<<15 s01cb1 := int(src.Cb[s01j]) - 128 s01cr1 := int(src.Cr[s01j]) - 128 s01ru := (s01yy1 + 91881*s01cr1) >> 8 s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8 s01bu := (s01yy1 + 116130*s01cb1) >> 8 if s01ru < 0 { s01ru = 0 } else if s01ru > 0xffff { s01ru = 0xffff } if s01gu < 0 { s01gu = 0 } else if s01gu > 0xffff { s01gu = 0xffff } if s01bu < 0 { s01bu = 0 } else if s01bu > 0xffff { s01bu = 0xffff } s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X) s11j := (sy1-src.Rect.Min.Y)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s11yy1 := int(src.Y[s11i])<<16 + 1<<15 s11cb1 := int(src.Cb[s11j]) - 128 s11cr1 := int(src.Cr[s11j]) - 128 s11ru := (s11yy1 + 91881*s11cr1) >> 8 s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8 s11bu := (s11yy1 + 116130*s11cb1) >> 8 if s11ru < 0 { s11ru = 0 } else if s11ru > 0xffff { s11ru = 0xffff } if s11gu < 0 { s11gu = 0 } else if s11gu > 0xffff { s11gu = 0xffff } if s11bu < 0 { s11bu = 0 } else if s11bu > 0xffff { s11bu = 0xffff } s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = 0xff } } } func (ablInterpolator) transform_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } sx -= 0.5 sx0 := int(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx0 += bias.X sx1 := sx0 + 1 if sx0 < sr.Min.X { sx0, sx1 = sr.Min.X, sr.Min.X xFrac0, xFrac1 = 0, 1 } else if sx1 >= sr.Max.X { sx0, sx1 = sr.Max.X-1, sr.Max.X-1 xFrac0, xFrac1 = 1, 0 } sy -= 0.5 sy0 := int(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy0 += bias.Y sy1 := sy0 + 1 if sy0 < sr.Min.Y { sy0, sy1 = sr.Min.Y, sr.Min.Y yFrac0, yFrac1 = 0, 1 } else if sy1 >= sr.Max.Y { sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 yFrac0, yFrac1 = 1, 0 } s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) s00j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s00yy1 := int(src.Y[s00i])<<16 + 1<<15 s00cb1 := int(src.Cb[s00j]) - 128 s00cr1 := int(src.Cr[s00j]) - 128 s00ru := (s00yy1 + 91881*s00cr1) >> 8 s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8 s00bu := (s00yy1 + 116130*s00cb1) >> 8 if s00ru < 0 { s00ru = 0 } else if s00ru > 0xffff { s00ru = 0xffff } if s00gu < 0 { s00gu = 0 } else if s00gu > 0xffff { s00gu = 0xffff } if s00bu < 0 { s00bu = 0 } else if s00bu > 0xffff { s00bu = 0xffff } s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X) s10j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s10yy1 := int(src.Y[s10i])<<16 + 1<<15 s10cb1 := int(src.Cb[s10j]) - 128 s10cr1 := int(src.Cr[s10j]) - 128 s10ru := (s10yy1 + 91881*s10cr1) >> 8 s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8 s10bu := (s10yy1 + 116130*s10cb1) >> 8 if s10ru < 0 { s10ru = 0 } else if s10ru > 0xffff { s10ru = 0xffff } if s10gu < 0 { s10gu = 0 } else if s10gu > 0xffff { s10gu = 0xffff } if s10bu < 0 { s10bu = 0 } else if s10bu > 0xffff { s10bu = 0xffff } s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) s01j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s01yy1 := int(src.Y[s01i])<<16 + 1<<15 s01cb1 := int(src.Cb[s01j]) - 128 s01cr1 := int(src.Cr[s01j]) - 128 s01ru := (s01yy1 + 91881*s01cr1) >> 8 s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8 s01bu := (s01yy1 + 116130*s01cb1) >> 8 if s01ru < 0 { s01ru = 0 } else if s01ru > 0xffff { s01ru = 0xffff } if s01gu < 0 { s01gu = 0 } else if s01gu > 0xffff { s01gu = 0xffff } if s01bu < 0 { s01bu = 0 } else if s01bu > 0xffff { s01bu = 0xffff } s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X) s11j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s11yy1 := int(src.Y[s11i])<<16 + 1<<15 s11cb1 := int(src.Cb[s11j]) - 128 s11cr1 := int(src.Cr[s11j]) - 128 s11ru := (s11yy1 + 91881*s11cr1) >> 8 s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8 s11bu := (s11yy1 + 116130*s11cb1) >> 8 if s11ru < 0 { s11ru = 0 } else if s11ru > 0xffff { s11ru = 0xffff } if s11gu < 0 { s11gu = 0 } else if s11gu > 0xffff { s11gu = 0xffff } if s11bu < 0 { s11bu = 0 } else if s11bu > 0xffff { s11bu = 0xffff } s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = 0xff } } } func (ablInterpolator) transform_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } sx -= 0.5 sx0 := int(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx0 += bias.X sx1 := sx0 + 1 if sx0 < sr.Min.X { sx0, sx1 = sr.Min.X, sr.Min.X xFrac0, xFrac1 = 0, 1 } else if sx1 >= sr.Max.X { sx0, sx1 = sr.Max.X-1, sr.Max.X-1 xFrac0, xFrac1 = 1, 0 } sy -= 0.5 sy0 := int(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy0 += bias.Y sy1 := sy0 + 1 if sy0 < sr.Min.Y { sy0, sy1 = sr.Min.Y, sr.Min.Y yFrac0, yFrac1 = 0, 1 } else if sy1 >= sr.Max.Y { sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 yFrac0, yFrac1 = 1, 0 } s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) s00j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + (sx0 - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s00yy1 := int(src.Y[s00i])<<16 + 1<<15 s00cb1 := int(src.Cb[s00j]) - 128 s00cr1 := int(src.Cr[s00j]) - 128 s00ru := (s00yy1 + 91881*s00cr1) >> 8 s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8 s00bu := (s00yy1 + 116130*s00cb1) >> 8 if s00ru < 0 { s00ru = 0 } else if s00ru > 0xffff { s00ru = 0xffff } if s00gu < 0 { s00gu = 0 } else if s00gu > 0xffff { s00gu = 0xffff } if s00bu < 0 { s00bu = 0 } else if s00bu > 0xffff { s00bu = 0xffff } s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X) s10j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + (sx1 - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s10yy1 := int(src.Y[s10i])<<16 + 1<<15 s10cb1 := int(src.Cb[s10j]) - 128 s10cr1 := int(src.Cr[s10j]) - 128 s10ru := (s10yy1 + 91881*s10cr1) >> 8 s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8 s10bu := (s10yy1 + 116130*s10cb1) >> 8 if s10ru < 0 { s10ru = 0 } else if s10ru > 0xffff { s10ru = 0xffff } if s10gu < 0 { s10gu = 0 } else if s10gu > 0xffff { s10gu = 0xffff } if s10bu < 0 { s10bu = 0 } else if s10bu > 0xffff { s10bu = 0xffff } s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X) s01j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + (sx0 - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s01yy1 := int(src.Y[s01i])<<16 + 1<<15 s01cb1 := int(src.Cb[s01j]) - 128 s01cr1 := int(src.Cr[s01j]) - 128 s01ru := (s01yy1 + 91881*s01cr1) >> 8 s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8 s01bu := (s01yy1 + 116130*s01cb1) >> 8 if s01ru < 0 { s01ru = 0 } else if s01ru > 0xffff { s01ru = 0xffff } if s01gu < 0 { s01gu = 0 } else if s01gu > 0xffff { s01gu = 0xffff } if s01bu < 0 { s01bu = 0 } else if s01bu > 0xffff { s01bu = 0xffff } s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X) s11j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + (sx1 - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. s11yy1 := int(src.Y[s11i])<<16 + 1<<15 s11cb1 := int(src.Cb[s11j]) - 128 s11cr1 := int(src.Cr[s11j]) - 128 s11ru := (s11yy1 + 91881*s11cr1) >> 8 s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8 s11bu := (s11yy1 + 116130*s11cb1) >> 8 if s11ru < 0 { s11ru = 0 } else if s11ru > 0xffff { s11ru = 0xffff } if s11gu < 0 { s11gu = 0 } else if s11gu > 0xffff { s11gu = 0xffff } if s11bu < 0 { s11bu = 0 } else if s11bu > 0xffff { s11bu = 0xffff } s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = 0xff } } } func (ablInterpolator) transform_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } sx -= 0.5 sx0 := int(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx0 += bias.X sx1 := sx0 + 1 if sx0 < sr.Min.X { sx0, sx1 = sr.Min.X, sr.Min.X xFrac0, xFrac1 = 0, 1 } else if sx1 >= sr.Max.X { sx0, sx1 = sr.Max.X-1, sr.Max.X-1 xFrac0, xFrac1 = 1, 0 } sy -= 0.5 sy0 := int(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy0 += bias.Y sy1 := sy0 + 1 if sy0 < sr.Min.Y { sy0, sy1 = sr.Min.Y, sr.Min.Y yFrac0, yFrac1 = 0, 1 } else if sy1 >= sr.Max.Y { sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 yFrac0, yFrac1 = 1, 0 } s00ru, s00gu, s00bu, s00au := src.At(sx0, sy0).RGBA() s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s00a := float64(s00au) s10ru, s10gu, s10bu, s10au := src.At(sx1, sy0).RGBA() s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10a := float64(s10au) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s10a = xFrac1*s00a + xFrac0*s10a s01ru, s01gu, s01bu, s01au := src.At(sx0, sy1).RGBA() s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s01a := float64(s01au) s11ru, s11gu, s11bu, s11au := src.At(sx1, sy1).RGBA() s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11a := float64(s11au) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11a = xFrac1*s01a + xFrac0*s11a s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b s11a = yFrac1*s10a + yFrac0*s11a dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = uint8(uint32(s11a) >> 8) } } } func (ablInterpolator) transform_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point) { for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } sx -= 0.5 sx0 := int(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx0 += bias.X sx1 := sx0 + 1 if sx0 < sr.Min.X { sx0, sx1 = sr.Min.X, sr.Min.X xFrac0, xFrac1 = 0, 1 } else if sx1 >= sr.Max.X { sx0, sx1 = sr.Max.X-1, sr.Max.X-1 xFrac0, xFrac1 = 1, 0 } sy -= 0.5 sy0 := int(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy0 += bias.Y sy1 := sy0 + 1 if sy0 < sr.Min.Y { sy0, sy1 = sr.Min.Y, sr.Min.Y yFrac0, yFrac1 = 0, 1 } else if sy1 >= sr.Max.Y { sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 yFrac0, yFrac1 = 1, 0 } s00ru, s00gu, s00bu, s00au := src.At(sx0, sy0).RGBA() s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s00a := float64(s00au) s10ru, s10gu, s10bu, s10au := src.At(sx1, sy0).RGBA() s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10a := float64(s10au) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s10a = xFrac1*s00a + xFrac0*s10a s01ru, s01gu, s01bu, s01au := src.At(sx0, sy1).RGBA() s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s01a := float64(s01au) s11ru, s11gu, s11bu, s11au := src.At(sx1, sy1).RGBA() s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11a := float64(s11au) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11a = xFrac1*s01a + xFrac0*s11a s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b s11a = yFrac1*s10a + yFrac0*s11a dst.Pix[d+0] = uint8(uint32(s11r) >> 8) dst.Pix[d+1] = uint8(uint32(s11g) >> 8) dst.Pix[d+2] = uint8(uint32(s11b) >> 8) dst.Pix[d+3] = uint8(uint32(s11a) >> 8) } } } func (ablInterpolator) transform_Image_Image_Over(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point) { dstColorRGBA64 := &color.RGBA64{} dstColor := color.Color(dstColorRGBA64) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } sx -= 0.5 sx0 := int(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx0 += bias.X sx1 := sx0 + 1 if sx0 < sr.Min.X { sx0, sx1 = sr.Min.X, sr.Min.X xFrac0, xFrac1 = 0, 1 } else if sx1 >= sr.Max.X { sx0, sx1 = sr.Max.X-1, sr.Max.X-1 xFrac0, xFrac1 = 1, 0 } sy -= 0.5 sy0 := int(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy0 += bias.Y sy1 := sy0 + 1 if sy0 < sr.Min.Y { sy0, sy1 = sr.Min.Y, sr.Min.Y yFrac0, yFrac1 = 0, 1 } else if sy1 >= sr.Max.Y { sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 yFrac0, yFrac1 = 1, 0 } s00ru, s00gu, s00bu, s00au := src.At(sx0, sy0).RGBA() s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s00a := float64(s00au) s10ru, s10gu, s10bu, s10au := src.At(sx1, sy0).RGBA() s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10a := float64(s10au) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s10a = xFrac1*s00a + xFrac0*s10a s01ru, s01gu, s01bu, s01au := src.At(sx0, sy1).RGBA() s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s01a := float64(s01au) s11ru, s11gu, s11bu, s11au := src.At(sx1, sy1).RGBA() s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11a := float64(s11au) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11a = xFrac1*s01a + xFrac0*s11a s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b s11a = yFrac1*s10a + yFrac0*s11a dstColorRGBA64.R = uint16(s11r) dstColorRGBA64.G = uint16(s11g) dstColorRGBA64.B = uint16(s11b) dstColorRGBA64.A = uint16(s11a) dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) } } } func (ablInterpolator) transform_Image_Image_Src(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point) { dstColorRGBA64 := &color.RGBA64{} dstColor := color.Color(dstColorRGBA64) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } sx -= 0.5 sx0 := int(sx) xFrac0 := sx - float64(sx0) xFrac1 := 1 - xFrac0 sx0 += bias.X sx1 := sx0 + 1 if sx0 < sr.Min.X { sx0, sx1 = sr.Min.X, sr.Min.X xFrac0, xFrac1 = 0, 1 } else if sx1 >= sr.Max.X { sx0, sx1 = sr.Max.X-1, sr.Max.X-1 xFrac0, xFrac1 = 1, 0 } sy -= 0.5 sy0 := int(sy) yFrac0 := sy - float64(sy0) yFrac1 := 1 - yFrac0 sy0 += bias.Y sy1 := sy0 + 1 if sy0 < sr.Min.Y { sy0, sy1 = sr.Min.Y, sr.Min.Y yFrac0, yFrac1 = 0, 1 } else if sy1 >= sr.Max.Y { sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1 yFrac0, yFrac1 = 1, 0 } s00ru, s00gu, s00bu, s00au := src.At(sx0, sy0).RGBA() s00r := float64(s00ru) s00g := float64(s00gu) s00b := float64(s00bu) s00a := float64(s00au) s10ru, s10gu, s10bu, s10au := src.At(sx1, sy0).RGBA() s10r := float64(s10ru) s10g := float64(s10gu) s10b := float64(s10bu) s10a := float64(s10au) s10r = xFrac1*s00r + xFrac0*s10r s10g = xFrac1*s00g + xFrac0*s10g s10b = xFrac1*s00b + xFrac0*s10b s10a = xFrac1*s00a + xFrac0*s10a s01ru, s01gu, s01bu, s01au := src.At(sx0, sy1).RGBA() s01r := float64(s01ru) s01g := float64(s01gu) s01b := float64(s01bu) s01a := float64(s01au) s11ru, s11gu, s11bu, s11au := src.At(sx1, sy1).RGBA() s11r := float64(s11ru) s11g := float64(s11gu) s11b := float64(s11bu) s11a := float64(s11au) s11r = xFrac1*s01r + xFrac0*s11r s11g = xFrac1*s01g + xFrac0*s11g s11b = xFrac1*s01b + xFrac0*s11b s11a = xFrac1*s01a + xFrac0*s11a s11r = yFrac1*s10r + yFrac0*s11r s11g = yFrac1*s10g + yFrac0*s11g s11b = yFrac1*s10b + yFrac0*s11b s11a = yFrac1*s10a + yFrac0*s11a dstColorRGBA64.R = uint16(s11r) dstColorRGBA64.G = uint16(s11g) dstColorRGBA64.B = uint16(s11b) dstColorRGBA64.A = uint16(s11a) dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) } } } func (z *kernelScaler) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) { if z.dw != int32(dr.Dx()) || z.dh != int32(dr.Dy()) || z.sw != int32(sr.Dx()) || z.sh != int32(sr.Dy()) { z.kernel.Scale(dst, dr, src, sr, opts) return } // adr is the affected destination pixels, relative to dr.Min. adr := dst.Bounds().Intersect(dr).Sub(dr.Min) if adr.Empty() || sr.Empty() { return } if _, ok := src.(*image.Uniform); ok && sr.In(src.Bounds()) { Draw(dst, dr, src, src.Bounds().Min, opts.op()) return } // Create a temporary buffer: // scaleX distributes the source image's columns over the temporary image. // scaleY distributes the temporary image's rows over the destination image. var tmp [][4]float64 if z.pool.New != nil { tmpp := z.pool.Get().(*[][4]float64) defer z.pool.Put(tmpp) tmp = *tmpp } else { tmp = z.makeTmpBuf() } // sr is the source pixels. If it extends beyond the src bounds, // we cannot use the type-specific fast paths, as they access // the Pix fields directly without bounds checking. if !sr.In(src.Bounds()) { z.scaleX_Image(tmp, src, sr) } else { switch src := src.(type) { case *image.Gray: z.scaleX_Gray(tmp, src, sr) case *image.NRGBA: z.scaleX_NRGBA(tmp, src, sr) case *image.RGBA: z.scaleX_RGBA(tmp, src, sr) case *image.YCbCr: switch src.SubsampleRatio { default: z.scaleX_Image(tmp, src, sr) case image.YCbCrSubsampleRatio444: z.scaleX_YCbCr444(tmp, src, sr) case image.YCbCrSubsampleRatio422: z.scaleX_YCbCr422(tmp, src, sr) case image.YCbCrSubsampleRatio420: z.scaleX_YCbCr420(tmp, src, sr) case image.YCbCrSubsampleRatio440: z.scaleX_YCbCr440(tmp, src, sr) } default: z.scaleX_Image(tmp, src, sr) } } switch opts.op() { case Over: switch dst := dst.(type) { case *image.RGBA: z.scaleY_RGBA_Over(dst, dr, adr, tmp) default: z.scaleY_Image_Over(dst, dr, adr, tmp) } case Src: switch dst := dst.(type) { case *image.RGBA: z.scaleY_RGBA_Src(dst, dr, adr, tmp) default: z.scaleY_Image_Src(dst, dr, adr, tmp) } } } func (q *Kernel) Transform(dst Image, s2d *f64.Aff3, src image.Image, sr image.Rectangle, opts *Options) { dr := transformRect(s2d, &sr) // adr is the affected destination pixels. adr := dst.Bounds().Intersect(dr) if adr.Empty() || sr.Empty() { return } d2s := invert(s2d) // bias is a translation of the mapping from dst co-ordinates to // src co-ordinates such that the latter temporarily have // non-negative X and Y co-ordinates. This allows us to write // int(f) instead of int(math.Floor(f)), since "round to zero" and // "round down" are equivalent when f >= 0, but the former is much // cheaper. The X-- and Y-- are because the TransformLeaf methods // have a "sx -= 0.5" adjustment. bias := transformRect(&d2s, &adr).Min bias.X-- bias.Y-- d2s[2] -= float64(bias.X) d2s[5] -= float64(bias.Y) // Make adr relative to dr.Min. adr = adr.Sub(dr.Min) if u, ok := src.(*image.Uniform); ok && sr.In(src.Bounds()) { transform_Uniform(dst, dr, adr, &d2s, u, sr, bias, opts.op()) return } xscale := abs(d2s[0]) if s := abs(d2s[1]); xscale < s { xscale = s } yscale := abs(d2s[3]) if s := abs(d2s[4]); yscale < s { yscale = s } // sr is the source pixels. If it extends beyond the src bounds, // we cannot use the type-specific fast paths, as they access // the Pix fields directly without bounds checking. if !sr.In(src.Bounds()) { switch opts.op() { case Over: q.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale) case Src: q.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale) } } else { switch opts.op() { case Over: switch dst := dst.(type) { case *image.RGBA: switch src := src.(type) { case *image.Gray: q.transform_RGBA_Gray_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale) case *image.NRGBA: q.transform_RGBA_NRGBA_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale) case *image.RGBA: q.transform_RGBA_RGBA_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale) case *image.YCbCr: switch src.SubsampleRatio { default: q.transform_RGBA_Image_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale) case image.YCbCrSubsampleRatio444: q.transform_RGBA_YCbCr444_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale) case image.YCbCrSubsampleRatio422: q.transform_RGBA_YCbCr422_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale) case image.YCbCrSubsampleRatio420: q.transform_RGBA_YCbCr420_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale) case image.YCbCrSubsampleRatio440: q.transform_RGBA_YCbCr440_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale) } default: q.transform_RGBA_Image_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale) } default: switch src := src.(type) { default: q.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale) } } case Src: switch dst := dst.(type) { case *image.RGBA: switch src := src.(type) { case *image.Gray: q.transform_RGBA_Gray_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale) case *image.NRGBA: q.transform_RGBA_NRGBA_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale) case *image.RGBA: q.transform_RGBA_RGBA_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale) case *image.YCbCr: switch src.SubsampleRatio { default: q.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale) case image.YCbCrSubsampleRatio444: q.transform_RGBA_YCbCr444_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale) case image.YCbCrSubsampleRatio422: q.transform_RGBA_YCbCr422_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale) case image.YCbCrSubsampleRatio420: q.transform_RGBA_YCbCr420_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale) case image.YCbCrSubsampleRatio440: q.transform_RGBA_YCbCr440_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale) } default: q.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale) } default: switch src := src.(type) { default: q.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale) } } } } } func (z *kernelScaler) scaleX_Gray(tmp [][4]float64, src *image.Gray, sr image.Rectangle) { t := 0 for y := int32(0); y < z.sh; y++ { for _, s := range z.horizontal.sources { var pr float64 for _, c := range z.horizontal.contribs[s.i:s.j] { pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(c.coord) - src.Rect.Min.X) pru := uint32(src.Pix[pi]) * 0x101 pr += float64(pru) * c.weight } pr *= s.invTotalWeightFFFF tmp[t] = [4]float64{ pr, pr, pr, 1, } t++ } } } func (z *kernelScaler) scaleX_NRGBA(tmp [][4]float64, src *image.NRGBA, sr image.Rectangle) { t := 0 for y := int32(0); y < z.sh; y++ { for _, s := range z.horizontal.sources { var pr, pg, pb, pa float64 for _, c := range z.horizontal.contribs[s.i:s.j] { pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(c.coord)-src.Rect.Min.X)*4 pau := uint32(src.Pix[pi+3]) * 0x101 pru := uint32(src.Pix[pi+0]) * pau / 0xff pgu := uint32(src.Pix[pi+1]) * pau / 0xff pbu := uint32(src.Pix[pi+2]) * pau / 0xff pr += float64(pru) * c.weight pg += float64(pgu) * c.weight pb += float64(pbu) * c.weight pa += float64(pau) * c.weight } tmp[t] = [4]float64{ pr * s.invTotalWeightFFFF, pg * s.invTotalWeightFFFF, pb * s.invTotalWeightFFFF, pa * s.invTotalWeightFFFF, } t++ } } } func (z *kernelScaler) scaleX_RGBA(tmp [][4]float64, src *image.RGBA, sr image.Rectangle) { t := 0 for y := int32(0); y < z.sh; y++ { for _, s := range z.horizontal.sources { var pr, pg, pb, pa float64 for _, c := range z.horizontal.contribs[s.i:s.j] { pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(c.coord)-src.Rect.Min.X)*4 pru := uint32(src.Pix[pi+0]) * 0x101 pgu := uint32(src.Pix[pi+1]) * 0x101 pbu := uint32(src.Pix[pi+2]) * 0x101 pau := uint32(src.Pix[pi+3]) * 0x101 pr += float64(pru) * c.weight pg += float64(pgu) * c.weight pb += float64(pbu) * c.weight pa += float64(pau) * c.weight } tmp[t] = [4]float64{ pr * s.invTotalWeightFFFF, pg * s.invTotalWeightFFFF, pb * s.invTotalWeightFFFF, pa * s.invTotalWeightFFFF, } t++ } } } func (z *kernelScaler) scaleX_YCbCr444(tmp [][4]float64, src *image.YCbCr, sr image.Rectangle) { t := 0 for y := int32(0); y < z.sh; y++ { for _, s := range z.horizontal.sources { var pr, pg, pb float64 for _, c := range z.horizontal.contribs[s.i:s.j] { pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X) pj := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pru := (pyy1 + 91881*pcr1) >> 8 pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pbu := (pyy1 + 116130*pcb1) >> 8 if pru < 0 { pru = 0 } else if pru > 0xffff { pru = 0xffff } if pgu < 0 { pgu = 0 } else if pgu > 0xffff { pgu = 0xffff } if pbu < 0 { pbu = 0 } else if pbu > 0xffff { pbu = 0xffff } pr += float64(pru) * c.weight pg += float64(pgu) * c.weight pb += float64(pbu) * c.weight } tmp[t] = [4]float64{ pr * s.invTotalWeightFFFF, pg * s.invTotalWeightFFFF, pb * s.invTotalWeightFFFF, 1, } t++ } } } func (z *kernelScaler) scaleX_YCbCr422(tmp [][4]float64, src *image.YCbCr, sr image.Rectangle) { t := 0 for y := int32(0); y < z.sh; y++ { for _, s := range z.horizontal.sources { var pr, pg, pb float64 for _, c := range z.horizontal.contribs[s.i:s.j] { pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X) pj := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(c.coord))/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pru := (pyy1 + 91881*pcr1) >> 8 pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pbu := (pyy1 + 116130*pcb1) >> 8 if pru < 0 { pru = 0 } else if pru > 0xffff { pru = 0xffff } if pgu < 0 { pgu = 0 } else if pgu > 0xffff { pgu = 0xffff } if pbu < 0 { pbu = 0 } else if pbu > 0xffff { pbu = 0xffff } pr += float64(pru) * c.weight pg += float64(pgu) * c.weight pb += float64(pbu) * c.weight } tmp[t] = [4]float64{ pr * s.invTotalWeightFFFF, pg * s.invTotalWeightFFFF, pb * s.invTotalWeightFFFF, 1, } t++ } } } func (z *kernelScaler) scaleX_YCbCr420(tmp [][4]float64, src *image.YCbCr, sr image.Rectangle) { t := 0 for y := int32(0); y < z.sh; y++ { for _, s := range z.horizontal.sources { var pr, pg, pb float64 for _, c := range z.horizontal.contribs[s.i:s.j] { pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X) pj := ((sr.Min.Y+int(y))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(c.coord))/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pru := (pyy1 + 91881*pcr1) >> 8 pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pbu := (pyy1 + 116130*pcb1) >> 8 if pru < 0 { pru = 0 } else if pru > 0xffff { pru = 0xffff } if pgu < 0 { pgu = 0 } else if pgu > 0xffff { pgu = 0xffff } if pbu < 0 { pbu = 0 } else if pbu > 0xffff { pbu = 0xffff } pr += float64(pru) * c.weight pg += float64(pgu) * c.weight pb += float64(pbu) * c.weight } tmp[t] = [4]float64{ pr * s.invTotalWeightFFFF, pg * s.invTotalWeightFFFF, pb * s.invTotalWeightFFFF, 1, } t++ } } } func (z *kernelScaler) scaleX_YCbCr440(tmp [][4]float64, src *image.YCbCr, sr image.Rectangle) { t := 0 for y := int32(0); y < z.sh; y++ { for _, s := range z.horizontal.sources { var pr, pg, pb float64 for _, c := range z.horizontal.contribs[s.i:s.j] { pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X) pj := ((sr.Min.Y+int(y))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pru := (pyy1 + 91881*pcr1) >> 8 pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pbu := (pyy1 + 116130*pcb1) >> 8 if pru < 0 { pru = 0 } else if pru > 0xffff { pru = 0xffff } if pgu < 0 { pgu = 0 } else if pgu > 0xffff { pgu = 0xffff } if pbu < 0 { pbu = 0 } else if pbu > 0xffff { pbu = 0xffff } pr += float64(pru) * c.weight pg += float64(pgu) * c.weight pb += float64(pbu) * c.weight } tmp[t] = [4]float64{ pr * s.invTotalWeightFFFF, pg * s.invTotalWeightFFFF, pb * s.invTotalWeightFFFF, 1, } t++ } } } func (z *kernelScaler) scaleX_Image(tmp [][4]float64, src image.Image, sr image.Rectangle) { t := 0 for y := int32(0); y < z.sh; y++ { for _, s := range z.horizontal.sources { var pr, pg, pb, pa float64 for _, c := range z.horizontal.contribs[s.i:s.j] { pru, pgu, pbu, pau := src.At(sr.Min.X+int(c.coord), sr.Min.Y+int(y)).RGBA() pr += float64(pru) * c.weight pg += float64(pgu) * c.weight pb += float64(pbu) * c.weight pa += float64(pau) * c.weight } tmp[t] = [4]float64{ pr * s.invTotalWeightFFFF, pg * s.invTotalWeightFFFF, pb * s.invTotalWeightFFFF, pa * s.invTotalWeightFFFF, } t++ } } } func (z *kernelScaler) scaleY_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, tmp [][4]float64) { for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { d := (dr.Min.Y+adr.Min.Y-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+int(dx)-dst.Rect.Min.X)*4 for _, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] { var pr, pg, pb, pa float64 for _, c := range z.vertical.contribs[s.i:s.j] { p := &tmp[c.coord*z.dw+dx] pr += p[0] * c.weight pg += p[1] * c.weight pb += p[2] * c.weight pa += p[3] * c.weight } dst.Pix[d+0] = uint8(ftou(pr*s.invTotalWeight) >> 8) dst.Pix[d+1] = uint8(ftou(pg*s.invTotalWeight) >> 8) dst.Pix[d+2] = uint8(ftou(pb*s.invTotalWeight) >> 8) dst.Pix[d+3] = uint8(ftou(pa*s.invTotalWeight) >> 8) d += dst.Stride } } } func (z *kernelScaler) scaleY_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, tmp [][4]float64) { for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { d := (dr.Min.Y+adr.Min.Y-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+int(dx)-dst.Rect.Min.X)*4 for _, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] { var pr, pg, pb, pa float64 for _, c := range z.vertical.contribs[s.i:s.j] { p := &tmp[c.coord*z.dw+dx] pr += p[0] * c.weight pg += p[1] * c.weight pb += p[2] * c.weight pa += p[3] * c.weight } dst.Pix[d+0] = uint8(ftou(pr*s.invTotalWeight) >> 8) dst.Pix[d+1] = uint8(ftou(pg*s.invTotalWeight) >> 8) dst.Pix[d+2] = uint8(ftou(pb*s.invTotalWeight) >> 8) dst.Pix[d+3] = uint8(ftou(pa*s.invTotalWeight) >> 8) d += dst.Stride } } } func (z *kernelScaler) scaleY_Image_Over(dst Image, dr, adr image.Rectangle, tmp [][4]float64) { dstColorRGBA64 := &color.RGBA64{} dstColor := color.Color(dstColorRGBA64) for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { for dy, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] { var pr, pg, pb, pa float64 for _, c := range z.vertical.contribs[s.i:s.j] { p := &tmp[c.coord*z.dw+dx] pr += p[0] * c.weight pg += p[1] * c.weight pb += p[2] * c.weight pa += p[3] * c.weight } dstColorRGBA64.R = ftou(pr * s.invTotalWeight) dstColorRGBA64.G = ftou(pg * s.invTotalWeight) dstColorRGBA64.B = ftou(pb * s.invTotalWeight) dstColorRGBA64.A = ftou(pa * s.invTotalWeight) dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(adr.Min.Y+dy), dstColor) } } } func (z *kernelScaler) scaleY_Image_Src(dst Image, dr, adr image.Rectangle, tmp [][4]float64) { dstColorRGBA64 := &color.RGBA64{} dstColor := color.Color(dstColorRGBA64) for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { for dy, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] { var pr, pg, pb, pa float64 for _, c := range z.vertical.contribs[s.i:s.j] { p := &tmp[c.coord*z.dw+dx] pr += p[0] * c.weight pg += p[1] * c.weight pb += p[2] * c.weight pa += p[3] * c.weight } dstColorRGBA64.R = ftou(pr * s.invTotalWeight) dstColorRGBA64.G = ftou(pg * s.invTotalWeight) dstColorRGBA64.B = ftou(pb * s.invTotalWeight) dstColorRGBA64.A = ftou(pa * s.invTotalWeight) dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(adr.Min.Y+dy), dstColor) } } } func (q *Kernel) transform_RGBA_Gray_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Gray, sr image.Rectangle, bias image.Point, xscale, yscale float64) { // When shrinking, broaden the effective kernel support so that we still // visit every source pixel. xHalfWidth, xKernelArgScale := q.Support, 1.0 if xscale > 1 { xHalfWidth *= xscale xKernelArgScale = 1 / xscale } yHalfWidth, yKernelArgScale := q.Support, 1.0 if yscale > 1 { yHalfWidth *= yscale yKernelArgScale = 1 / yscale } xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } // TODO: adjust the bias so that we can use int(f) instead // of math.Floor(f) and math.Ceil(f). sx += float64(bias.X) sx -= 0.5 ix := int(math.Floor(sx - xHalfWidth)) if ix < sr.Min.X { ix = sr.Min.X } jx := int(math.Ceil(sx + xHalfWidth)) if jx > sr.Max.X { jx = sr.Max.X } totalXWeight := 0.0 for kx := ix; kx < jx; kx++ { xWeight := 0.0 if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { xWeight = q.At(t) } xWeights[kx-ix] = xWeight totalXWeight += xWeight } for x := range xWeights[:jx-ix] { xWeights[x] /= totalXWeight } sy += float64(bias.Y) sy -= 0.5 iy := int(math.Floor(sy - yHalfWidth)) if iy < sr.Min.Y { iy = sr.Min.Y } jy := int(math.Ceil(sy + yHalfWidth)) if jy > sr.Max.Y { jy = sr.Max.Y } totalYWeight := 0.0 for ky := iy; ky < jy; ky++ { yWeight := 0.0 if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { yWeight = q.At(t) } yWeights[ky-iy] = yWeight totalYWeight += yWeight } for y := range yWeights[:jy-iy] { yWeights[y] /= totalYWeight } var pr float64 for ky := iy; ky < jy; ky++ { if yWeight := yWeights[ky-iy]; yWeight != 0 { for kx := ix; kx < jx; kx++ { if w := xWeights[kx-ix] * yWeight; w != 0 { pi := (ky-src.Rect.Min.Y)*src.Stride + (kx - src.Rect.Min.X) pru := uint32(src.Pix[pi]) * 0x101 pr += float64(pru) * w } } } } out := uint8(fffftou(pr) >> 8) dst.Pix[d+0] = out dst.Pix[d+1] = out dst.Pix[d+2] = out dst.Pix[d+3] = 0xff } } } func (q *Kernel) transform_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Gray, sr image.Rectangle, bias image.Point, xscale, yscale float64) { // When shrinking, broaden the effective kernel support so that we still // visit every source pixel. xHalfWidth, xKernelArgScale := q.Support, 1.0 if xscale > 1 { xHalfWidth *= xscale xKernelArgScale = 1 / xscale } yHalfWidth, yKernelArgScale := q.Support, 1.0 if yscale > 1 { yHalfWidth *= yscale yKernelArgScale = 1 / yscale } xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } // TODO: adjust the bias so that we can use int(f) instead // of math.Floor(f) and math.Ceil(f). sx += float64(bias.X) sx -= 0.5 ix := int(math.Floor(sx - xHalfWidth)) if ix < sr.Min.X { ix = sr.Min.X } jx := int(math.Ceil(sx + xHalfWidth)) if jx > sr.Max.X { jx = sr.Max.X } totalXWeight := 0.0 for kx := ix; kx < jx; kx++ { xWeight := 0.0 if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { xWeight = q.At(t) } xWeights[kx-ix] = xWeight totalXWeight += xWeight } for x := range xWeights[:jx-ix] { xWeights[x] /= totalXWeight } sy += float64(bias.Y) sy -= 0.5 iy := int(math.Floor(sy - yHalfWidth)) if iy < sr.Min.Y { iy = sr.Min.Y } jy := int(math.Ceil(sy + yHalfWidth)) if jy > sr.Max.Y { jy = sr.Max.Y } totalYWeight := 0.0 for ky := iy; ky < jy; ky++ { yWeight := 0.0 if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { yWeight = q.At(t) } yWeights[ky-iy] = yWeight totalYWeight += yWeight } for y := range yWeights[:jy-iy] { yWeights[y] /= totalYWeight } var pr float64 for ky := iy; ky < jy; ky++ { if yWeight := yWeights[ky-iy]; yWeight != 0 { for kx := ix; kx < jx; kx++ { if w := xWeights[kx-ix] * yWeight; w != 0 { pi := (ky-src.Rect.Min.Y)*src.Stride + (kx - src.Rect.Min.X) pru := uint32(src.Pix[pi]) * 0x101 pr += float64(pru) * w } } } } out := uint8(fffftou(pr) >> 8) dst.Pix[d+0] = out dst.Pix[d+1] = out dst.Pix[d+2] = out dst.Pix[d+3] = 0xff } } } func (q *Kernel) transform_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, xscale, yscale float64) { // When shrinking, broaden the effective kernel support so that we still // visit every source pixel. xHalfWidth, xKernelArgScale := q.Support, 1.0 if xscale > 1 { xHalfWidth *= xscale xKernelArgScale = 1 / xscale } yHalfWidth, yKernelArgScale := q.Support, 1.0 if yscale > 1 { yHalfWidth *= yscale yKernelArgScale = 1 / yscale } xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } // TODO: adjust the bias so that we can use int(f) instead // of math.Floor(f) and math.Ceil(f). sx += float64(bias.X) sx -= 0.5 ix := int(math.Floor(sx - xHalfWidth)) if ix < sr.Min.X { ix = sr.Min.X } jx := int(math.Ceil(sx + xHalfWidth)) if jx > sr.Max.X { jx = sr.Max.X } totalXWeight := 0.0 for kx := ix; kx < jx; kx++ { xWeight := 0.0 if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { xWeight = q.At(t) } xWeights[kx-ix] = xWeight totalXWeight += xWeight } for x := range xWeights[:jx-ix] { xWeights[x] /= totalXWeight } sy += float64(bias.Y) sy -= 0.5 iy := int(math.Floor(sy - yHalfWidth)) if iy < sr.Min.Y { iy = sr.Min.Y } jy := int(math.Ceil(sy + yHalfWidth)) if jy > sr.Max.Y { jy = sr.Max.Y } totalYWeight := 0.0 for ky := iy; ky < jy; ky++ { yWeight := 0.0 if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { yWeight = q.At(t) } yWeights[ky-iy] = yWeight totalYWeight += yWeight } for y := range yWeights[:jy-iy] { yWeights[y] /= totalYWeight } var pr, pg, pb, pa float64 for ky := iy; ky < jy; ky++ { if yWeight := yWeights[ky-iy]; yWeight != 0 { for kx := ix; kx < jx; kx++ { if w := xWeights[kx-ix] * yWeight; w != 0 { pi := (ky-src.Rect.Min.Y)*src.Stride + (kx-src.Rect.Min.X)*4 pau := uint32(src.Pix[pi+3]) * 0x101 pru := uint32(src.Pix[pi+0]) * pau / 0xff pgu := uint32(src.Pix[pi+1]) * pau / 0xff pbu := uint32(src.Pix[pi+2]) * pau / 0xff pr += float64(pru) * w pg += float64(pgu) * w pb += float64(pbu) * w pa += float64(pau) * w } } } } dst.Pix[d+0] = uint8(fffftou(pr) >> 8) dst.Pix[d+1] = uint8(fffftou(pg) >> 8) dst.Pix[d+2] = uint8(fffftou(pb) >> 8) dst.Pix[d+3] = uint8(fffftou(pa) >> 8) } } } func (q *Kernel) transform_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, xscale, yscale float64) { // When shrinking, broaden the effective kernel support so that we still // visit every source pixel. xHalfWidth, xKernelArgScale := q.Support, 1.0 if xscale > 1 { xHalfWidth *= xscale xKernelArgScale = 1 / xscale } yHalfWidth, yKernelArgScale := q.Support, 1.0 if yscale > 1 { yHalfWidth *= yscale yKernelArgScale = 1 / yscale } xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } // TODO: adjust the bias so that we can use int(f) instead // of math.Floor(f) and math.Ceil(f). sx += float64(bias.X) sx -= 0.5 ix := int(math.Floor(sx - xHalfWidth)) if ix < sr.Min.X { ix = sr.Min.X } jx := int(math.Ceil(sx + xHalfWidth)) if jx > sr.Max.X { jx = sr.Max.X } totalXWeight := 0.0 for kx := ix; kx < jx; kx++ { xWeight := 0.0 if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { xWeight = q.At(t) } xWeights[kx-ix] = xWeight totalXWeight += xWeight } for x := range xWeights[:jx-ix] { xWeights[x] /= totalXWeight } sy += float64(bias.Y) sy -= 0.5 iy := int(math.Floor(sy - yHalfWidth)) if iy < sr.Min.Y { iy = sr.Min.Y } jy := int(math.Ceil(sy + yHalfWidth)) if jy > sr.Max.Y { jy = sr.Max.Y } totalYWeight := 0.0 for ky := iy; ky < jy; ky++ { yWeight := 0.0 if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { yWeight = q.At(t) } yWeights[ky-iy] = yWeight totalYWeight += yWeight } for y := range yWeights[:jy-iy] { yWeights[y] /= totalYWeight } var pr, pg, pb, pa float64 for ky := iy; ky < jy; ky++ { if yWeight := yWeights[ky-iy]; yWeight != 0 { for kx := ix; kx < jx; kx++ { if w := xWeights[kx-ix] * yWeight; w != 0 { pi := (ky-src.Rect.Min.Y)*src.Stride + (kx-src.Rect.Min.X)*4 pau := uint32(src.Pix[pi+3]) * 0x101 pru := uint32(src.Pix[pi+0]) * pau / 0xff pgu := uint32(src.Pix[pi+1]) * pau / 0xff pbu := uint32(src.Pix[pi+2]) * pau / 0xff pr += float64(pru) * w pg += float64(pgu) * w pb += float64(pbu) * w pa += float64(pau) * w } } } } dst.Pix[d+0] = uint8(fffftou(pr) >> 8) dst.Pix[d+1] = uint8(fffftou(pg) >> 8) dst.Pix[d+2] = uint8(fffftou(pb) >> 8) dst.Pix[d+3] = uint8(fffftou(pa) >> 8) } } } func (q *Kernel) transform_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, xscale, yscale float64) { // When shrinking, broaden the effective kernel support so that we still // visit every source pixel. xHalfWidth, xKernelArgScale := q.Support, 1.0 if xscale > 1 { xHalfWidth *= xscale xKernelArgScale = 1 / xscale } yHalfWidth, yKernelArgScale := q.Support, 1.0 if yscale > 1 { yHalfWidth *= yscale yKernelArgScale = 1 / yscale } xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } // TODO: adjust the bias so that we can use int(f) instead // of math.Floor(f) and math.Ceil(f). sx += float64(bias.X) sx -= 0.5 ix := int(math.Floor(sx - xHalfWidth)) if ix < sr.Min.X { ix = sr.Min.X } jx := int(math.Ceil(sx + xHalfWidth)) if jx > sr.Max.X { jx = sr.Max.X } totalXWeight := 0.0 for kx := ix; kx < jx; kx++ { xWeight := 0.0 if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { xWeight = q.At(t) } xWeights[kx-ix] = xWeight totalXWeight += xWeight } for x := range xWeights[:jx-ix] { xWeights[x] /= totalXWeight } sy += float64(bias.Y) sy -= 0.5 iy := int(math.Floor(sy - yHalfWidth)) if iy < sr.Min.Y { iy = sr.Min.Y } jy := int(math.Ceil(sy + yHalfWidth)) if jy > sr.Max.Y { jy = sr.Max.Y } totalYWeight := 0.0 for ky := iy; ky < jy; ky++ { yWeight := 0.0 if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { yWeight = q.At(t) } yWeights[ky-iy] = yWeight totalYWeight += yWeight } for y := range yWeights[:jy-iy] { yWeights[y] /= totalYWeight } var pr, pg, pb, pa float64 for ky := iy; ky < jy; ky++ { if yWeight := yWeights[ky-iy]; yWeight != 0 { for kx := ix; kx < jx; kx++ { if w := xWeights[kx-ix] * yWeight; w != 0 { pi := (ky-src.Rect.Min.Y)*src.Stride + (kx-src.Rect.Min.X)*4 pru := uint32(src.Pix[pi+0]) * 0x101 pgu := uint32(src.Pix[pi+1]) * 0x101 pbu := uint32(src.Pix[pi+2]) * 0x101 pau := uint32(src.Pix[pi+3]) * 0x101 pr += float64(pru) * w pg += float64(pgu) * w pb += float64(pbu) * w pa += float64(pau) * w } } } } dst.Pix[d+0] = uint8(fffftou(pr) >> 8) dst.Pix[d+1] = uint8(fffftou(pg) >> 8) dst.Pix[d+2] = uint8(fffftou(pb) >> 8) dst.Pix[d+3] = uint8(fffftou(pa) >> 8) } } } func (q *Kernel) transform_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, xscale, yscale float64) { // When shrinking, broaden the effective kernel support so that we still // visit every source pixel. xHalfWidth, xKernelArgScale := q.Support, 1.0 if xscale > 1 { xHalfWidth *= xscale xKernelArgScale = 1 / xscale } yHalfWidth, yKernelArgScale := q.Support, 1.0 if yscale > 1 { yHalfWidth *= yscale yKernelArgScale = 1 / yscale } xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } // TODO: adjust the bias so that we can use int(f) instead // of math.Floor(f) and math.Ceil(f). sx += float64(bias.X) sx -= 0.5 ix := int(math.Floor(sx - xHalfWidth)) if ix < sr.Min.X { ix = sr.Min.X } jx := int(math.Ceil(sx + xHalfWidth)) if jx > sr.Max.X { jx = sr.Max.X } totalXWeight := 0.0 for kx := ix; kx < jx; kx++ { xWeight := 0.0 if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { xWeight = q.At(t) } xWeights[kx-ix] = xWeight totalXWeight += xWeight } for x := range xWeights[:jx-ix] { xWeights[x] /= totalXWeight } sy += float64(bias.Y) sy -= 0.5 iy := int(math.Floor(sy - yHalfWidth)) if iy < sr.Min.Y { iy = sr.Min.Y } jy := int(math.Ceil(sy + yHalfWidth)) if jy > sr.Max.Y { jy = sr.Max.Y } totalYWeight := 0.0 for ky := iy; ky < jy; ky++ { yWeight := 0.0 if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { yWeight = q.At(t) } yWeights[ky-iy] = yWeight totalYWeight += yWeight } for y := range yWeights[:jy-iy] { yWeights[y] /= totalYWeight } var pr, pg, pb, pa float64 for ky := iy; ky < jy; ky++ { if yWeight := yWeights[ky-iy]; yWeight != 0 { for kx := ix; kx < jx; kx++ { if w := xWeights[kx-ix] * yWeight; w != 0 { pi := (ky-src.Rect.Min.Y)*src.Stride + (kx-src.Rect.Min.X)*4 pru := uint32(src.Pix[pi+0]) * 0x101 pgu := uint32(src.Pix[pi+1]) * 0x101 pbu := uint32(src.Pix[pi+2]) * 0x101 pau := uint32(src.Pix[pi+3]) * 0x101 pr += float64(pru) * w pg += float64(pgu) * w pb += float64(pbu) * w pa += float64(pau) * w } } } } dst.Pix[d+0] = uint8(fffftou(pr) >> 8) dst.Pix[d+1] = uint8(fffftou(pg) >> 8) dst.Pix[d+2] = uint8(fffftou(pb) >> 8) dst.Pix[d+3] = uint8(fffftou(pa) >> 8) } } } func (q *Kernel) transform_RGBA_YCbCr444_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64) { // When shrinking, broaden the effective kernel support so that we still // visit every source pixel. xHalfWidth, xKernelArgScale := q.Support, 1.0 if xscale > 1 { xHalfWidth *= xscale xKernelArgScale = 1 / xscale } yHalfWidth, yKernelArgScale := q.Support, 1.0 if yscale > 1 { yHalfWidth *= yscale yKernelArgScale = 1 / yscale } xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } // TODO: adjust the bias so that we can use int(f) instead // of math.Floor(f) and math.Ceil(f). sx += float64(bias.X) sx -= 0.5 ix := int(math.Floor(sx - xHalfWidth)) if ix < sr.Min.X { ix = sr.Min.X } jx := int(math.Ceil(sx + xHalfWidth)) if jx > sr.Max.X { jx = sr.Max.X } totalXWeight := 0.0 for kx := ix; kx < jx; kx++ { xWeight := 0.0 if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { xWeight = q.At(t) } xWeights[kx-ix] = xWeight totalXWeight += xWeight } for x := range xWeights[:jx-ix] { xWeights[x] /= totalXWeight } sy += float64(bias.Y) sy -= 0.5 iy := int(math.Floor(sy - yHalfWidth)) if iy < sr.Min.Y { iy = sr.Min.Y } jy := int(math.Ceil(sy + yHalfWidth)) if jy > sr.Max.Y { jy = sr.Max.Y } totalYWeight := 0.0 for ky := iy; ky < jy; ky++ { yWeight := 0.0 if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { yWeight = q.At(t) } yWeights[ky-iy] = yWeight totalYWeight += yWeight } for y := range yWeights[:jy-iy] { yWeights[y] /= totalYWeight } var pr, pg, pb float64 for ky := iy; ky < jy; ky++ { if yWeight := yWeights[ky-iy]; yWeight != 0 { for kx := ix; kx < jx; kx++ { if w := xWeights[kx-ix] * yWeight; w != 0 { pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X) pj := (ky-src.Rect.Min.Y)*src.CStride + (kx - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pru := (pyy1 + 91881*pcr1) >> 8 pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pbu := (pyy1 + 116130*pcb1) >> 8 if pru < 0 { pru = 0 } else if pru > 0xffff { pru = 0xffff } if pgu < 0 { pgu = 0 } else if pgu > 0xffff { pgu = 0xffff } if pbu < 0 { pbu = 0 } else if pbu > 0xffff { pbu = 0xffff } pr += float64(pru) * w pg += float64(pgu) * w pb += float64(pbu) * w } } } } dst.Pix[d+0] = uint8(fffftou(pr) >> 8) dst.Pix[d+1] = uint8(fffftou(pg) >> 8) dst.Pix[d+2] = uint8(fffftou(pb) >> 8) dst.Pix[d+3] = 0xff } } } func (q *Kernel) transform_RGBA_YCbCr422_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64) { // When shrinking, broaden the effective kernel support so that we still // visit every source pixel. xHalfWidth, xKernelArgScale := q.Support, 1.0 if xscale > 1 { xHalfWidth *= xscale xKernelArgScale = 1 / xscale } yHalfWidth, yKernelArgScale := q.Support, 1.0 if yscale > 1 { yHalfWidth *= yscale yKernelArgScale = 1 / yscale } xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } // TODO: adjust the bias so that we can use int(f) instead // of math.Floor(f) and math.Ceil(f). sx += float64(bias.X) sx -= 0.5 ix := int(math.Floor(sx - xHalfWidth)) if ix < sr.Min.X { ix = sr.Min.X } jx := int(math.Ceil(sx + xHalfWidth)) if jx > sr.Max.X { jx = sr.Max.X } totalXWeight := 0.0 for kx := ix; kx < jx; kx++ { xWeight := 0.0 if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { xWeight = q.At(t) } xWeights[kx-ix] = xWeight totalXWeight += xWeight } for x := range xWeights[:jx-ix] { xWeights[x] /= totalXWeight } sy += float64(bias.Y) sy -= 0.5 iy := int(math.Floor(sy - yHalfWidth)) if iy < sr.Min.Y { iy = sr.Min.Y } jy := int(math.Ceil(sy + yHalfWidth)) if jy > sr.Max.Y { jy = sr.Max.Y } totalYWeight := 0.0 for ky := iy; ky < jy; ky++ { yWeight := 0.0 if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { yWeight = q.At(t) } yWeights[ky-iy] = yWeight totalYWeight += yWeight } for y := range yWeights[:jy-iy] { yWeights[y] /= totalYWeight } var pr, pg, pb float64 for ky := iy; ky < jy; ky++ { if yWeight := yWeights[ky-iy]; yWeight != 0 { for kx := ix; kx < jx; kx++ { if w := xWeights[kx-ix] * yWeight; w != 0 { pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X) pj := (ky-src.Rect.Min.Y)*src.CStride + ((kx)/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pru := (pyy1 + 91881*pcr1) >> 8 pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pbu := (pyy1 + 116130*pcb1) >> 8 if pru < 0 { pru = 0 } else if pru > 0xffff { pru = 0xffff } if pgu < 0 { pgu = 0 } else if pgu > 0xffff { pgu = 0xffff } if pbu < 0 { pbu = 0 } else if pbu > 0xffff { pbu = 0xffff } pr += float64(pru) * w pg += float64(pgu) * w pb += float64(pbu) * w } } } } dst.Pix[d+0] = uint8(fffftou(pr) >> 8) dst.Pix[d+1] = uint8(fffftou(pg) >> 8) dst.Pix[d+2] = uint8(fffftou(pb) >> 8) dst.Pix[d+3] = 0xff } } } func (q *Kernel) transform_RGBA_YCbCr420_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64) { // When shrinking, broaden the effective kernel support so that we still // visit every source pixel. xHalfWidth, xKernelArgScale := q.Support, 1.0 if xscale > 1 { xHalfWidth *= xscale xKernelArgScale = 1 / xscale } yHalfWidth, yKernelArgScale := q.Support, 1.0 if yscale > 1 { yHalfWidth *= yscale yKernelArgScale = 1 / yscale } xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } // TODO: adjust the bias so that we can use int(f) instead // of math.Floor(f) and math.Ceil(f). sx += float64(bias.X) sx -= 0.5 ix := int(math.Floor(sx - xHalfWidth)) if ix < sr.Min.X { ix = sr.Min.X } jx := int(math.Ceil(sx + xHalfWidth)) if jx > sr.Max.X { jx = sr.Max.X } totalXWeight := 0.0 for kx := ix; kx < jx; kx++ { xWeight := 0.0 if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { xWeight = q.At(t) } xWeights[kx-ix] = xWeight totalXWeight += xWeight } for x := range xWeights[:jx-ix] { xWeights[x] /= totalXWeight } sy += float64(bias.Y) sy -= 0.5 iy := int(math.Floor(sy - yHalfWidth)) if iy < sr.Min.Y { iy = sr.Min.Y } jy := int(math.Ceil(sy + yHalfWidth)) if jy > sr.Max.Y { jy = sr.Max.Y } totalYWeight := 0.0 for ky := iy; ky < jy; ky++ { yWeight := 0.0 if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { yWeight = q.At(t) } yWeights[ky-iy] = yWeight totalYWeight += yWeight } for y := range yWeights[:jy-iy] { yWeights[y] /= totalYWeight } var pr, pg, pb float64 for ky := iy; ky < jy; ky++ { if yWeight := yWeights[ky-iy]; yWeight != 0 { for kx := ix; kx < jx; kx++ { if w := xWeights[kx-ix] * yWeight; w != 0 { pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X) pj := ((ky)/2-src.Rect.Min.Y/2)*src.CStride + ((kx)/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pru := (pyy1 + 91881*pcr1) >> 8 pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pbu := (pyy1 + 116130*pcb1) >> 8 if pru < 0 { pru = 0 } else if pru > 0xffff { pru = 0xffff } if pgu < 0 { pgu = 0 } else if pgu > 0xffff { pgu = 0xffff } if pbu < 0 { pbu = 0 } else if pbu > 0xffff { pbu = 0xffff } pr += float64(pru) * w pg += float64(pgu) * w pb += float64(pbu) * w } } } } dst.Pix[d+0] = uint8(fffftou(pr) >> 8) dst.Pix[d+1] = uint8(fffftou(pg) >> 8) dst.Pix[d+2] = uint8(fffftou(pb) >> 8) dst.Pix[d+3] = 0xff } } } func (q *Kernel) transform_RGBA_YCbCr440_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64) { // When shrinking, broaden the effective kernel support so that we still // visit every source pixel. xHalfWidth, xKernelArgScale := q.Support, 1.0 if xscale > 1 { xHalfWidth *= xscale xKernelArgScale = 1 / xscale } yHalfWidth, yKernelArgScale := q.Support, 1.0 if yscale > 1 { yHalfWidth *= yscale yKernelArgScale = 1 / yscale } xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } // TODO: adjust the bias so that we can use int(f) instead // of math.Floor(f) and math.Ceil(f). sx += float64(bias.X) sx -= 0.5 ix := int(math.Floor(sx - xHalfWidth)) if ix < sr.Min.X { ix = sr.Min.X } jx := int(math.Ceil(sx + xHalfWidth)) if jx > sr.Max.X { jx = sr.Max.X } totalXWeight := 0.0 for kx := ix; kx < jx; kx++ { xWeight := 0.0 if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { xWeight = q.At(t) } xWeights[kx-ix] = xWeight totalXWeight += xWeight } for x := range xWeights[:jx-ix] { xWeights[x] /= totalXWeight } sy += float64(bias.Y) sy -= 0.5 iy := int(math.Floor(sy - yHalfWidth)) if iy < sr.Min.Y { iy = sr.Min.Y } jy := int(math.Ceil(sy + yHalfWidth)) if jy > sr.Max.Y { jy = sr.Max.Y } totalYWeight := 0.0 for ky := iy; ky < jy; ky++ { yWeight := 0.0 if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { yWeight = q.At(t) } yWeights[ky-iy] = yWeight totalYWeight += yWeight } for y := range yWeights[:jy-iy] { yWeights[y] /= totalYWeight } var pr, pg, pb float64 for ky := iy; ky < jy; ky++ { if yWeight := yWeights[ky-iy]; yWeight != 0 { for kx := ix; kx < jx; kx++ { if w := xWeights[kx-ix] * yWeight; w != 0 { pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X) pj := ((ky)/2-src.Rect.Min.Y/2)*src.CStride + (kx - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pru := (pyy1 + 91881*pcr1) >> 8 pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pbu := (pyy1 + 116130*pcb1) >> 8 if pru < 0 { pru = 0 } else if pru > 0xffff { pru = 0xffff } if pgu < 0 { pgu = 0 } else if pgu > 0xffff { pgu = 0xffff } if pbu < 0 { pbu = 0 } else if pbu > 0xffff { pbu = 0xffff } pr += float64(pru) * w pg += float64(pgu) * w pb += float64(pbu) * w } } } } dst.Pix[d+0] = uint8(fffftou(pr) >> 8) dst.Pix[d+1] = uint8(fffftou(pg) >> 8) dst.Pix[d+2] = uint8(fffftou(pb) >> 8) dst.Pix[d+3] = 0xff } } } func (q *Kernel) transform_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64) { // When shrinking, broaden the effective kernel support so that we still // visit every source pixel. xHalfWidth, xKernelArgScale := q.Support, 1.0 if xscale > 1 { xHalfWidth *= xscale xKernelArgScale = 1 / xscale } yHalfWidth, yKernelArgScale := q.Support, 1.0 if yscale > 1 { yHalfWidth *= yscale yKernelArgScale = 1 / yscale } xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } // TODO: adjust the bias so that we can use int(f) instead // of math.Floor(f) and math.Ceil(f). sx += float64(bias.X) sx -= 0.5 ix := int(math.Floor(sx - xHalfWidth)) if ix < sr.Min.X { ix = sr.Min.X } jx := int(math.Ceil(sx + xHalfWidth)) if jx > sr.Max.X { jx = sr.Max.X } totalXWeight := 0.0 for kx := ix; kx < jx; kx++ { xWeight := 0.0 if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { xWeight = q.At(t) } xWeights[kx-ix] = xWeight totalXWeight += xWeight } for x := range xWeights[:jx-ix] { xWeights[x] /= totalXWeight } sy += float64(bias.Y) sy -= 0.5 iy := int(math.Floor(sy - yHalfWidth)) if iy < sr.Min.Y { iy = sr.Min.Y } jy := int(math.Ceil(sy + yHalfWidth)) if jy > sr.Max.Y { jy = sr.Max.Y } totalYWeight := 0.0 for ky := iy; ky < jy; ky++ { yWeight := 0.0 if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { yWeight = q.At(t) } yWeights[ky-iy] = yWeight totalYWeight += yWeight } for y := range yWeights[:jy-iy] { yWeights[y] /= totalYWeight } var pr, pg, pb float64 for ky := iy; ky < jy; ky++ { if yWeight := yWeights[ky-iy]; yWeight != 0 { for kx := ix; kx < jx; kx++ { if w := xWeights[kx-ix] * yWeight; w != 0 { pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X) pj := (ky-src.Rect.Min.Y)*src.CStride + (kx - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pru := (pyy1 + 91881*pcr1) >> 8 pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pbu := (pyy1 + 116130*pcb1) >> 8 if pru < 0 { pru = 0 } else if pru > 0xffff { pru = 0xffff } if pgu < 0 { pgu = 0 } else if pgu > 0xffff { pgu = 0xffff } if pbu < 0 { pbu = 0 } else if pbu > 0xffff { pbu = 0xffff } pr += float64(pru) * w pg += float64(pgu) * w pb += float64(pbu) * w } } } } dst.Pix[d+0] = uint8(fffftou(pr) >> 8) dst.Pix[d+1] = uint8(fffftou(pg) >> 8) dst.Pix[d+2] = uint8(fffftou(pb) >> 8) dst.Pix[d+3] = 0xff } } } func (q *Kernel) transform_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64) { // When shrinking, broaden the effective kernel support so that we still // visit every source pixel. xHalfWidth, xKernelArgScale := q.Support, 1.0 if xscale > 1 { xHalfWidth *= xscale xKernelArgScale = 1 / xscale } yHalfWidth, yKernelArgScale := q.Support, 1.0 if yscale > 1 { yHalfWidth *= yscale yKernelArgScale = 1 / yscale } xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } // TODO: adjust the bias so that we can use int(f) instead // of math.Floor(f) and math.Ceil(f). sx += float64(bias.X) sx -= 0.5 ix := int(math.Floor(sx - xHalfWidth)) if ix < sr.Min.X { ix = sr.Min.X } jx := int(math.Ceil(sx + xHalfWidth)) if jx > sr.Max.X { jx = sr.Max.X } totalXWeight := 0.0 for kx := ix; kx < jx; kx++ { xWeight := 0.0 if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { xWeight = q.At(t) } xWeights[kx-ix] = xWeight totalXWeight += xWeight } for x := range xWeights[:jx-ix] { xWeights[x] /= totalXWeight } sy += float64(bias.Y) sy -= 0.5 iy := int(math.Floor(sy - yHalfWidth)) if iy < sr.Min.Y { iy = sr.Min.Y } jy := int(math.Ceil(sy + yHalfWidth)) if jy > sr.Max.Y { jy = sr.Max.Y } totalYWeight := 0.0 for ky := iy; ky < jy; ky++ { yWeight := 0.0 if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { yWeight = q.At(t) } yWeights[ky-iy] = yWeight totalYWeight += yWeight } for y := range yWeights[:jy-iy] { yWeights[y] /= totalYWeight } var pr, pg, pb float64 for ky := iy; ky < jy; ky++ { if yWeight := yWeights[ky-iy]; yWeight != 0 { for kx := ix; kx < jx; kx++ { if w := xWeights[kx-ix] * yWeight; w != 0 { pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X) pj := (ky-src.Rect.Min.Y)*src.CStride + ((kx)/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pru := (pyy1 + 91881*pcr1) >> 8 pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pbu := (pyy1 + 116130*pcb1) >> 8 if pru < 0 { pru = 0 } else if pru > 0xffff { pru = 0xffff } if pgu < 0 { pgu = 0 } else if pgu > 0xffff { pgu = 0xffff } if pbu < 0 { pbu = 0 } else if pbu > 0xffff { pbu = 0xffff } pr += float64(pru) * w pg += float64(pgu) * w pb += float64(pbu) * w } } } } dst.Pix[d+0] = uint8(fffftou(pr) >> 8) dst.Pix[d+1] = uint8(fffftou(pg) >> 8) dst.Pix[d+2] = uint8(fffftou(pb) >> 8) dst.Pix[d+3] = 0xff } } } func (q *Kernel) transform_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64) { // When shrinking, broaden the effective kernel support so that we still // visit every source pixel. xHalfWidth, xKernelArgScale := q.Support, 1.0 if xscale > 1 { xHalfWidth *= xscale xKernelArgScale = 1 / xscale } yHalfWidth, yKernelArgScale := q.Support, 1.0 if yscale > 1 { yHalfWidth *= yscale yKernelArgScale = 1 / yscale } xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } // TODO: adjust the bias so that we can use int(f) instead // of math.Floor(f) and math.Ceil(f). sx += float64(bias.X) sx -= 0.5 ix := int(math.Floor(sx - xHalfWidth)) if ix < sr.Min.X { ix = sr.Min.X } jx := int(math.Ceil(sx + xHalfWidth)) if jx > sr.Max.X { jx = sr.Max.X } totalXWeight := 0.0 for kx := ix; kx < jx; kx++ { xWeight := 0.0 if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { xWeight = q.At(t) } xWeights[kx-ix] = xWeight totalXWeight += xWeight } for x := range xWeights[:jx-ix] { xWeights[x] /= totalXWeight } sy += float64(bias.Y) sy -= 0.5 iy := int(math.Floor(sy - yHalfWidth)) if iy < sr.Min.Y { iy = sr.Min.Y } jy := int(math.Ceil(sy + yHalfWidth)) if jy > sr.Max.Y { jy = sr.Max.Y } totalYWeight := 0.0 for ky := iy; ky < jy; ky++ { yWeight := 0.0 if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { yWeight = q.At(t) } yWeights[ky-iy] = yWeight totalYWeight += yWeight } for y := range yWeights[:jy-iy] { yWeights[y] /= totalYWeight } var pr, pg, pb float64 for ky := iy; ky < jy; ky++ { if yWeight := yWeights[ky-iy]; yWeight != 0 { for kx := ix; kx < jx; kx++ { if w := xWeights[kx-ix] * yWeight; w != 0 { pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X) pj := ((ky)/2-src.Rect.Min.Y/2)*src.CStride + ((kx)/2 - src.Rect.Min.X/2) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pru := (pyy1 + 91881*pcr1) >> 8 pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pbu := (pyy1 + 116130*pcb1) >> 8 if pru < 0 { pru = 0 } else if pru > 0xffff { pru = 0xffff } if pgu < 0 { pgu = 0 } else if pgu > 0xffff { pgu = 0xffff } if pbu < 0 { pbu = 0 } else if pbu > 0xffff { pbu = 0xffff } pr += float64(pru) * w pg += float64(pgu) * w pb += float64(pbu) * w } } } } dst.Pix[d+0] = uint8(fffftou(pr) >> 8) dst.Pix[d+1] = uint8(fffftou(pg) >> 8) dst.Pix[d+2] = uint8(fffftou(pb) >> 8) dst.Pix[d+3] = 0xff } } } func (q *Kernel) transform_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64) { // When shrinking, broaden the effective kernel support so that we still // visit every source pixel. xHalfWidth, xKernelArgScale := q.Support, 1.0 if xscale > 1 { xHalfWidth *= xscale xKernelArgScale = 1 / xscale } yHalfWidth, yKernelArgScale := q.Support, 1.0 if yscale > 1 { yHalfWidth *= yscale yKernelArgScale = 1 / yscale } xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } // TODO: adjust the bias so that we can use int(f) instead // of math.Floor(f) and math.Ceil(f). sx += float64(bias.X) sx -= 0.5 ix := int(math.Floor(sx - xHalfWidth)) if ix < sr.Min.X { ix = sr.Min.X } jx := int(math.Ceil(sx + xHalfWidth)) if jx > sr.Max.X { jx = sr.Max.X } totalXWeight := 0.0 for kx := ix; kx < jx; kx++ { xWeight := 0.0 if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { xWeight = q.At(t) } xWeights[kx-ix] = xWeight totalXWeight += xWeight } for x := range xWeights[:jx-ix] { xWeights[x] /= totalXWeight } sy += float64(bias.Y) sy -= 0.5 iy := int(math.Floor(sy - yHalfWidth)) if iy < sr.Min.Y { iy = sr.Min.Y } jy := int(math.Ceil(sy + yHalfWidth)) if jy > sr.Max.Y { jy = sr.Max.Y } totalYWeight := 0.0 for ky := iy; ky < jy; ky++ { yWeight := 0.0 if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { yWeight = q.At(t) } yWeights[ky-iy] = yWeight totalYWeight += yWeight } for y := range yWeights[:jy-iy] { yWeights[y] /= totalYWeight } var pr, pg, pb float64 for ky := iy; ky < jy; ky++ { if yWeight := yWeights[ky-iy]; yWeight != 0 { for kx := ix; kx < jx; kx++ { if w := xWeights[kx-ix] * yWeight; w != 0 { pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X) pj := ((ky)/2-src.Rect.Min.Y/2)*src.CStride + (kx - src.Rect.Min.X) // This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method. pyy1 := int(src.Y[pi])<<16 + 1<<15 pcb1 := int(src.Cb[pj]) - 128 pcr1 := int(src.Cr[pj]) - 128 pru := (pyy1 + 91881*pcr1) >> 8 pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8 pbu := (pyy1 + 116130*pcb1) >> 8 if pru < 0 { pru = 0 } else if pru > 0xffff { pru = 0xffff } if pgu < 0 { pgu = 0 } else if pgu > 0xffff { pgu = 0xffff } if pbu < 0 { pbu = 0 } else if pbu > 0xffff { pbu = 0xffff } pr += float64(pru) * w pg += float64(pgu) * w pb += float64(pbu) * w } } } } dst.Pix[d+0] = uint8(fffftou(pr) >> 8) dst.Pix[d+1] = uint8(fffftou(pg) >> 8) dst.Pix[d+2] = uint8(fffftou(pb) >> 8) dst.Pix[d+3] = 0xff } } } func (q *Kernel) transform_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, xscale, yscale float64) { // When shrinking, broaden the effective kernel support so that we still // visit every source pixel. xHalfWidth, xKernelArgScale := q.Support, 1.0 if xscale > 1 { xHalfWidth *= xscale xKernelArgScale = 1 / xscale } yHalfWidth, yKernelArgScale := q.Support, 1.0 if yscale > 1 { yHalfWidth *= yscale yKernelArgScale = 1 / yscale } xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } // TODO: adjust the bias so that we can use int(f) instead // of math.Floor(f) and math.Ceil(f). sx += float64(bias.X) sx -= 0.5 ix := int(math.Floor(sx - xHalfWidth)) if ix < sr.Min.X { ix = sr.Min.X } jx := int(math.Ceil(sx + xHalfWidth)) if jx > sr.Max.X { jx = sr.Max.X } totalXWeight := 0.0 for kx := ix; kx < jx; kx++ { xWeight := 0.0 if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { xWeight = q.At(t) } xWeights[kx-ix] = xWeight totalXWeight += xWeight } for x := range xWeights[:jx-ix] { xWeights[x] /= totalXWeight } sy += float64(bias.Y) sy -= 0.5 iy := int(math.Floor(sy - yHalfWidth)) if iy < sr.Min.Y { iy = sr.Min.Y } jy := int(math.Ceil(sy + yHalfWidth)) if jy > sr.Max.Y { jy = sr.Max.Y } totalYWeight := 0.0 for ky := iy; ky < jy; ky++ { yWeight := 0.0 if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { yWeight = q.At(t) } yWeights[ky-iy] = yWeight totalYWeight += yWeight } for y := range yWeights[:jy-iy] { yWeights[y] /= totalYWeight } var pr, pg, pb, pa float64 for ky := iy; ky < jy; ky++ { if yWeight := yWeights[ky-iy]; yWeight != 0 { for kx := ix; kx < jx; kx++ { if w := xWeights[kx-ix] * yWeight; w != 0 { pru, pgu, pbu, pau := src.At(kx, ky).RGBA() pr += float64(pru) * w pg += float64(pgu) * w pb += float64(pbu) * w pa += float64(pau) * w } } } } dst.Pix[d+0] = uint8(fffftou(pr) >> 8) dst.Pix[d+1] = uint8(fffftou(pg) >> 8) dst.Pix[d+2] = uint8(fffftou(pb) >> 8) dst.Pix[d+3] = uint8(fffftou(pa) >> 8) } } } func (q *Kernel) transform_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, xscale, yscale float64) { // When shrinking, broaden the effective kernel support so that we still // visit every source pixel. xHalfWidth, xKernelArgScale := q.Support, 1.0 if xscale > 1 { xHalfWidth *= xscale xKernelArgScale = 1 / xscale } yHalfWidth, yKernelArgScale := q.Support, 1.0 if yscale > 1 { yHalfWidth *= yscale yKernelArgScale = 1 / yscale } xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } // TODO: adjust the bias so that we can use int(f) instead // of math.Floor(f) and math.Ceil(f). sx += float64(bias.X) sx -= 0.5 ix := int(math.Floor(sx - xHalfWidth)) if ix < sr.Min.X { ix = sr.Min.X } jx := int(math.Ceil(sx + xHalfWidth)) if jx > sr.Max.X { jx = sr.Max.X } totalXWeight := 0.0 for kx := ix; kx < jx; kx++ { xWeight := 0.0 if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { xWeight = q.At(t) } xWeights[kx-ix] = xWeight totalXWeight += xWeight } for x := range xWeights[:jx-ix] { xWeights[x] /= totalXWeight } sy += float64(bias.Y) sy -= 0.5 iy := int(math.Floor(sy - yHalfWidth)) if iy < sr.Min.Y { iy = sr.Min.Y } jy := int(math.Ceil(sy + yHalfWidth)) if jy > sr.Max.Y { jy = sr.Max.Y } totalYWeight := 0.0 for ky := iy; ky < jy; ky++ { yWeight := 0.0 if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { yWeight = q.At(t) } yWeights[ky-iy] = yWeight totalYWeight += yWeight } for y := range yWeights[:jy-iy] { yWeights[y] /= totalYWeight } var pr, pg, pb, pa float64 for ky := iy; ky < jy; ky++ { if yWeight := yWeights[ky-iy]; yWeight != 0 { for kx := ix; kx < jx; kx++ { if w := xWeights[kx-ix] * yWeight; w != 0 { pru, pgu, pbu, pau := src.At(kx, ky).RGBA() pr += float64(pru) * w pg += float64(pgu) * w pb += float64(pbu) * w pa += float64(pau) * w } } } } dst.Pix[d+0] = uint8(fffftou(pr) >> 8) dst.Pix[d+1] = uint8(fffftou(pg) >> 8) dst.Pix[d+2] = uint8(fffftou(pb) >> 8) dst.Pix[d+3] = uint8(fffftou(pa) >> 8) } } } func (q *Kernel) transform_Image_Image_Over(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, xscale, yscale float64) { // When shrinking, broaden the effective kernel support so that we still // visit every source pixel. xHalfWidth, xKernelArgScale := q.Support, 1.0 if xscale > 1 { xHalfWidth *= xscale xKernelArgScale = 1 / xscale } yHalfWidth, yKernelArgScale := q.Support, 1.0 if yscale > 1 { yHalfWidth *= yscale yKernelArgScale = 1 / yscale } xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) dstColorRGBA64 := &color.RGBA64{} dstColor := color.Color(dstColorRGBA64) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } // TODO: adjust the bias so that we can use int(f) instead // of math.Floor(f) and math.Ceil(f). sx += float64(bias.X) sx -= 0.5 ix := int(math.Floor(sx - xHalfWidth)) if ix < sr.Min.X { ix = sr.Min.X } jx := int(math.Ceil(sx + xHalfWidth)) if jx > sr.Max.X { jx = sr.Max.X } totalXWeight := 0.0 for kx := ix; kx < jx; kx++ { xWeight := 0.0 if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { xWeight = q.At(t) } xWeights[kx-ix] = xWeight totalXWeight += xWeight } for x := range xWeights[:jx-ix] { xWeights[x] /= totalXWeight } sy += float64(bias.Y) sy -= 0.5 iy := int(math.Floor(sy - yHalfWidth)) if iy < sr.Min.Y { iy = sr.Min.Y } jy := int(math.Ceil(sy + yHalfWidth)) if jy > sr.Max.Y { jy = sr.Max.Y } totalYWeight := 0.0 for ky := iy; ky < jy; ky++ { yWeight := 0.0 if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { yWeight = q.At(t) } yWeights[ky-iy] = yWeight totalYWeight += yWeight } for y := range yWeights[:jy-iy] { yWeights[y] /= totalYWeight } var pr, pg, pb, pa float64 for ky := iy; ky < jy; ky++ { if yWeight := yWeights[ky-iy]; yWeight != 0 { for kx := ix; kx < jx; kx++ { if w := xWeights[kx-ix] * yWeight; w != 0 { pru, pgu, pbu, pau := src.At(kx, ky).RGBA() pr += float64(pru) * w pg += float64(pgu) * w pb += float64(pbu) * w pa += float64(pau) * w } } } } dstColorRGBA64.R = fffftou(pr) dstColorRGBA64.G = fffftou(pg) dstColorRGBA64.B = fffftou(pb) dstColorRGBA64.A = fffftou(pa) dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) } } } func (q *Kernel) transform_Image_Image_Src(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, xscale, yscale float64) { // When shrinking, broaden the effective kernel support so that we still // visit every source pixel. xHalfWidth, xKernelArgScale := q.Support, 1.0 if xscale > 1 { xHalfWidth *= xscale xKernelArgScale = 1 / xscale } yHalfWidth, yKernelArgScale := q.Support, 1.0 if yscale > 1 { yHalfWidth *= yscale yKernelArgScale = 1 / yscale } xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth))) yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth))) dstColorRGBA64 := &color.RGBA64{} dstColor := color.Color(dstColorRGBA64) for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ { dyf := float64(dr.Min.Y+int(dy)) + 0.5 for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ { dxf := float64(dr.Min.X+int(dx)) + 0.5 sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2] sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5] if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) { continue } // TODO: adjust the bias so that we can use int(f) instead // of math.Floor(f) and math.Ceil(f). sx += float64(bias.X) sx -= 0.5 ix := int(math.Floor(sx - xHalfWidth)) if ix < sr.Min.X { ix = sr.Min.X } jx := int(math.Ceil(sx + xHalfWidth)) if jx > sr.Max.X { jx = sr.Max.X } totalXWeight := 0.0 for kx := ix; kx < jx; kx++ { xWeight := 0.0 if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support { xWeight = q.At(t) } xWeights[kx-ix] = xWeight totalXWeight += xWeight } for x := range xWeights[:jx-ix] { xWeights[x] /= totalXWeight } sy += float64(bias.Y) sy -= 0.5 iy := int(math.Floor(sy - yHalfWidth)) if iy < sr.Min.Y { iy = sr.Min.Y } jy := int(math.Ceil(sy + yHalfWidth)) if jy > sr.Max.Y { jy = sr.Max.Y } totalYWeight := 0.0 for ky := iy; ky < jy; ky++ { yWeight := 0.0 if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support { yWeight = q.At(t) } yWeights[ky-iy] = yWeight totalYWeight += yWeight } for y := range yWeights[:jy-iy] { yWeights[y] /= totalYWeight } var pr, pg, pb, pa float64 for ky := iy; ky < jy; ky++ { if yWeight := yWeights[ky-iy]; yWeight != 0 { for kx := ix; kx < jx; kx++ { if w := xWeights[kx-ix] * yWeight; w != 0 { pru, pgu, pbu, pau := src.At(kx, ky).RGBA() pr += float64(pru) * w pg += float64(pgu) * w pb += float64(pbu) * w pa += float64(pau) * w } } } } dstColorRGBA64.R = fffftou(pr) dstColorRGBA64.G = fffftou(pg) dstColorRGBA64.B = fffftou(pb) dstColorRGBA64.A = fffftou(pa) dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor) } } }