// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package vector // This file contains a floating point math implementation of the vector // graphics rasterizer. import ( "math" "golang.org/x/image/math/f32" ) func floatingMax(x, y float32) float32 { if x > y { return x } return y } func floatingMin(x, y float32) float32 { if x < y { return x } return y } func floatingFloor(x float32) int32 { return int32(math.Floor(float64(x))) } func floatingCeil(x float32) int32 { return int32(math.Ceil(float64(x))) } func (z *Rasterizer) floatingLineTo(b f32.Vec2) { a := z.pen z.pen = b dir := float32(1) if a[1] > b[1] { dir, a, b = -1, b, a } // Horizontal line segments yield no change in coverage. Almost horizontal // segments would yield some change, in ideal math, but the computation // further below, involving 1 / (b[1] - a[1]), is unstable in floating // point math, so we treat the segment as if it was perfectly horizontal. if b[1]-a[1] <= 0.000001 { return } dxdy := (b[0] - a[0]) / (b[1] - a[1]) x := a[0] y := floatingFloor(a[1]) yMax := floatingCeil(b[1]) if yMax > int32(z.size.Y) { yMax = int32(z.size.Y) } width := int32(z.size.X) for ; y < yMax; y++ { dy := floatingMin(float32(y+1), b[1]) - floatingMax(float32(y), a[1]) xNext := x + dy*dxdy if y < 0 { x = xNext continue } buf := z.area[y*width:] d := dy * dir x0, x1 := x, xNext if x > xNext { x0, x1 = x1, x0 } x0i := floatingFloor(x0) x0Floor := float32(x0i) x1i := floatingCeil(x1) x1Ceil := float32(x1i) if x1i <= x0i+1 { xmf := 0.5*(x+xNext) - x0Floor if i := clamp(x0i+0, width); i < uint(len(buf)) { buf[i] += d - d*xmf } if i := clamp(x0i+1, width); i < uint(len(buf)) { buf[i] += d * xmf } } else { s := 1 / (x1 - x0) x0f := x0 - x0Floor oneMinusX0f := 1 - x0f a0 := 0.5 * s * oneMinusX0f * oneMinusX0f x1f := x1 - x1Ceil + 1 am := 0.5 * s * x1f * x1f if i := clamp(x0i, width); i < uint(len(buf)) { buf[i] += d * a0 } if x1i == x0i+2 { if i := clamp(x0i+1, width); i < uint(len(buf)) { buf[i] += d * (1 - a0 - am) } } else { a1 := s * (1.5 - x0f) if i := clamp(x0i+1, width); i < uint(len(buf)) { buf[i] += d * (a1 - a0) } dTimesS := d * s for xi := x0i + 2; xi < x1i-1; xi++ { if i := clamp(xi, width); i < uint(len(buf)) { buf[i] += dTimesS } } a2 := a1 + s*float32(x1i-x0i-3) if i := clamp(x1i-1, width); i < uint(len(buf)) { buf[i] += d * (1 - a2 - am) } } if i := clamp(x1i, width); i < uint(len(buf)) { buf[i] += d * am } } x = xNext } } const ( // almost256 scales a floating point value in the range [0, 1] to a uint8 // value in the range [0x00, 0xff]. // // 255 is too small. Floating point math accumulates rounding errors, so a // fully covered src value that would in ideal math be float32(1) might be // float32(1-ε), and uint8(255 * (1-ε)) would be 0xfe instead of 0xff. The // uint8 conversion rounds to zero, not to nearest. // // 256 is too big. If we multiplied by 256, below, then a fully covered src // value of float32(1) would translate to uint8(256 * 1), which can be 0x00 // instead of the maximal value 0xff. // // math.Float32bits(almost256) is 0x437fffff. almost256 = 255.99998 // almost65536 scales a floating point value in the range [0, 1] to a // uint16 value in the range [0x0000, 0xffff]. // // math.Float32bits(almost65536) is 0x477fffff. almost65536 = almost256 * 256 ) func floatingAccumulateOpSrc(dst []uint8, src []float32) { acc := float32(0) for i, v := range src { acc += v a := acc if a < 0 { a = -a } if a > 1 { a = 1 } dst[i] = uint8(almost256 * a) } } func floatingAccumulateOpOver(dst []uint8, src []float32) { acc := float32(0) for i, v := range src { acc += v a := acc if a < 0 { a = -a } if a > 1 { a = 1 } // This algorithm comes from the standard library's image/draw package. dstA := uint32(dst[i]) * 0x101 maskA := uint32(almost65536 * a) outA := dstA*(0xffff-maskA)/0xffff + maskA dst[i] = uint8(outA >> 8) } }