shiny/font: new package for drawing text on an image.

Package font defines an interface for font faces.

Other packages provide font face implementations. For example, a
truetype package (not part of this CL) would provide one based on .ttf
font files.

This CL also introduces the golang.org/x/exp/shiny/font/plan9font
package, a concrete implementation of the font.Face interface for the
Plan 9 bitmap font format.

Change-Id: Iead8914caaa58c7562b18a86b45002ae47486903
Reviewed-on: https://go-review.googlesource.com/13463
Reviewed-by: Rob Pike <r@golang.org>
This commit is contained in:
Nigel Tao 2015-08-10 18:34:31 +10:00
parent 8ca9b58be9
commit eecb4e626f
3 changed files with 586 additions and 0 deletions

84
example/font/main.go Normal file
View File

@ -0,0 +1,84 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
//
// This build tag means that "go install golang.org/x/exp/shiny/..." doesn't
// install this example program. Use "go run main.go" to run it.
// Font is a basic example of using fonts.
package main
import (
"flag"
"image"
"image/color"
"image/draw"
"image/png"
"io/ioutil"
"log"
"os"
"golang.org/x/exp/shiny/font"
"golang.org/x/exp/shiny/font/plan9font"
"golang.org/x/image/math/fixed"
)
var (
subfont = flag.String("subfont", "", `filename of the Plan 9 subfont file, such as "lucsans/lsr.14"`)
firstRune = flag.Int("firstrune", 0, "the Unicode code point of the first rune in the subfont file")
)
func pt(p fixed.Point26_6) image.Point {
return image.Point{
X: int(p.X+32) >> 6,
Y: int(p.Y+32) >> 6,
}
}
func main() {
flag.Parse()
// TODO: mmap the file.
if *subfont == "" {
flag.Usage()
log.Fatal("no subfont specified")
}
fontData, err := ioutil.ReadFile(*subfont)
if err != nil {
log.Fatal(err)
}
face, err := plan9font.ParseSubfont(fontData, rune(*firstRune))
if err != nil {
log.Fatal(err)
}
dst := image.NewRGBA(image.Rect(0, 0, 800, 100))
draw.Draw(dst, dst.Bounds(), image.Black, image.Point{}, draw.Src)
d := &font.Drawer{
Dst: dst,
Src: image.White,
Face: face,
Dot: fixed.Point26_6{
X: 20 << 6,
Y: 80 << 6,
},
}
dot0 := pt(d.Dot)
d.DrawString("The quick brown fox jumps over the lazy dog.")
dot1 := pt(d.Dot)
dst.SetRGBA(dot0.X, dot0.Y, color.RGBA{0xff, 0x00, 0x00, 0xff})
dst.SetRGBA(dot1.X, dot1.Y, color.RGBA{0x00, 0x00, 0xff, 0xff})
out, err := os.Create("out.png")
if err != nil {
log.Fatal(err)
}
defer out.Close()
if err := png.Encode(out, dst); err != nil {
log.Fatal(err)
}
}

114
font/font.go Normal file
View File

@ -0,0 +1,114 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package font defines an interface for font faces, for drawing text on an
// image.
//
// Other packages provide font face implementations. For example, a truetype
// package would provide one based on .ttf font files.
package font
// TODO: move this from golang.org/x/exp to golang.org/x/image ??
import (
"image"
"image/draw"
"io"
"golang.org/x/image/math/fixed"
)
// TODO: who is responsible for caches (glyph images, glyph indices, kerns)?
// The Drawer or the Face?
// Face is a font face. Its glyphs are often derived from a font file, such as
// "Comic_Sans_MS.ttf", but a face has a specific size, style, weight and
// hinting. For example, the 12pt and 18pt versions of Comic Sans are two
// different faces, even if derived from the same font file.
//
// A Face is not safe for concurrent use by multiple goroutines, as its methods
// may re-use implementation-specific caches and mask image buffers.
//
// To create a Face, look to other packages that implement specific font file
// formats.
type Face interface {
io.Closer
// Glyph returns the draw.DrawMask parameters (dr, mask, maskp) to draw r's
// glyph at the sub-pixel destination location dot. It also returns the new
// dot after adding the glyph's advance width. It returns !ok if the face
// does not contain a glyph for r.
//
// The contents of the mask image returned by one Glyph call may change
// after the next Glyph call. Callers that want to cache the mask must make
// a copy.
Glyph(dot fixed.Point26_6, r rune) (
newDot fixed.Point26_6, dr image.Rectangle, mask image.Image, maskp image.Point, ok bool)
// Kern returns the horizontal adjustment for the kerning pair (r0, r1). A
// positive kern means to move the glyphs further apart.
Kern(r0, r1 rune) fixed.Int26_6
// TODO: per-font and per-glyph Metrics.
// TODO: ColoredGlyph for various emoji?
// TODO: Ligatures? Shaping?
}
type MultiFace struct {
// TODO.
}
// TODO: Drawer.Layout or Drawer.Measure methods to measure text without
// drawing?
// Drawer draws text on a destination image.
//
// A Drawer is not safe for concurrent use by multiple goroutines, since its
// Face is not.
type Drawer struct {
// Dst is the destination image.
Dst draw.Image
// Src is the source image.
Src image.Image
// Face provides the glyph mask images.
Face Face
// Dot is the baseline location to draw the next glyph. The majority of the
// affected pixels will be above and to the right of the dot, but some may
// be below or to the left. For example, drawing a 'j' in an italic face
// may affect pixels below and to the left of the dot.
Dot fixed.Point26_6
// TODO: Clip image.Image?
// TODO: SrcP image.Point for Src images other than *image.Uniform? How
// does it get updated during DrawString?
}
// TODO: should DrawString return the last rune drawn, so the next DrawString
// call can kern beforehand? Or should that be the responsibility of the caller
// if they really want to do that, since they have to explicitly shift d.Dot
// anyway?
//
// In general, we'd have a DrawBytes([]byte) and DrawRuneReader(io.RuneReader)
// and the last case can't assume that you can rewind the stream.
//
// TODO: how does this work with line breaking: drawing text up until a
// vertical line? Should DrawString return the number of runes drawn?
// DrawString draws s at the dot and advances the dot's location.
func (d *Drawer) DrawString(s string) {
var prevC rune
for i, c := range s {
if i != 0 {
d.Dot.X += d.Face.Kern(prevC, c)
}
newDot, dr, mask, maskp, ok := d.Face.Glyph(d.Dot, c)
if !ok {
// TODO: is falling back on the U+FFFD glyph the responsibility of
// the Drawer or the Face?
continue
}
draw.DrawMask(d.Dst, dr, d.Src, image.Point{}, mask, maskp, draw.Over)
d.Dot, prevC = newDot, c
}
}

388
font/plan9font/plan9font.go Normal file
View File

@ -0,0 +1,388 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package plan9font implements font faces for the Plan 9 font file format.
package plan9font
// TODO: have a face use an *image.Alpha instead of plan9Image implementing the
// image.Image interface? The image/draw code has a fast path for *image.Alpha
// masks.
import (
"bytes"
"errors"
"fmt"
"image"
"image/color"
"io"
"strings"
"golang.org/x/exp/shiny/font"
"golang.org/x/image/math/fixed"
)
// fontchar describes one character glyph in a subfont.
//
// For more detail, look for "struct Fontchar" in
// http://plan9.bell-labs.com/magic/man2html/2/cachechars
type fontchar struct {
x uint32 // X position in the image holding the glyphs.
top uint8 // First non-zero scan line.
bottom uint8 // Last non-zero scan line.
left int8 // Offset of baseline.
width uint8 // Width of baseline.
}
func parseFontchars(p []byte) []fontchar {
fc := make([]fontchar, len(p)/6)
for i := range fc {
fc[i] = fontchar{
x: uint32(p[0]) | uint32(p[1])<<8,
top: uint8(p[2]),
bottom: uint8(p[3]),
left: int8(p[4]),
width: uint8(p[5]),
}
p = p[6:]
}
return fc
}
// face implements font.Face.
type face struct {
firstRune rune // First rune in the subfont.
n int // Number of characters in the subfont.
height int // Inter-line spacing.
ascent int // Height above the baseline.
fontchars []fontchar // Character descriptions.
img *plan9Image // Image holding the glyphs.
}
func (f *face) Close() error { return nil }
func (f *face) Kern(r0, r1 rune) fixed.Int26_6 { return 0 }
func (f *face) Glyph(dot fixed.Point26_6, r rune) (
newDot fixed.Point26_6, dr image.Rectangle, mask image.Image, maskp image.Point, ok bool) {
r -= f.firstRune
if r < 0 || f.n <= int(r) {
return fixed.Point26_6{}, image.Rectangle{}, nil, image.Point{}, false
}
i := &f.fontchars[r+0]
j := &f.fontchars[r+1]
newDot = fixed.Point26_6{
X: dot.X + fixed.Int26_6(i.width)<<6,
Y: dot.Y,
}
minX := int(dot.X+32)>>6 + int(i.left)
minY := int(dot.Y+32)>>6 + int(i.top) - f.ascent
dr = image.Rectangle{
Min: image.Point{
X: minX,
Y: minY,
},
Max: image.Point{
X: minX + int(j.x-i.x),
Y: minY + int(i.bottom) - int(i.top),
},
}
return newDot, dr, f.img, image.Point{int(i.x), int(i.top)}, true
}
// ParseFont parses a Plan 9 font file.
func ParseFont(data []byte, openFunc func(name string) (io.ReadCloser, error)) (*font.MultiFace, error) {
panic("TODO")
}
// ParseSubfont parses a Plan 9 subfont file.
//
// firstRune is the first rune in the subfont file. For example, the
// Phonetic.6.0 subfont, containing glyphs in the range U+0250 to U+02E9, would
// set firstRune to '\u0250'.
func ParseSubfont(data []byte, firstRune rune) (font.Face, error) {
data, m, err := parseImage(data)
if err != nil {
return nil, err
}
if len(data) < 3*12 {
return nil, errors.New("plan9font: invalid subfont: header too short")
}
n := atoi(data[0*12:])
height := atoi(data[1*12:])
ascent := atoi(data[2*12:])
data = data[3*12:]
if len(data) != 6*(n+1) {
return nil, errors.New("plan9font: invalid subfont: data length mismatch")
}
return &face{
firstRune: firstRune,
n: n,
height: height,
ascent: ascent,
fontchars: parseFontchars(data),
img: m,
}, nil
}
// plan9Image implements that subset of the Plan 9 image feature set that is
// used by this font file format.
//
// Some features, such as the repl bit and a clip rectangle, are omitted for
// simplicity.
type plan9Image struct {
depth int // Depth of the pixels in bits.
width int // Width in bytes of a single scan line.
rect image.Rectangle // Extent of the image.
pix []byte // Pixel bits.
}
func (m *plan9Image) byteoffset(x, y int) int {
a := y * m.width
if m.depth < 8 {
// We need to always round down, but Go rounds toward zero.
np := 8 / m.depth
if x < 0 {
return a + (x-np+1)/np
}
return a + x/np
}
return a + x*(m.depth/8)
}
func (m *plan9Image) Bounds() image.Rectangle { return m.rect }
func (m *plan9Image) ColorModel() color.Model { return color.AlphaModel }
func (m *plan9Image) At(x, y int) color.Color {
if (image.Point{x, y}).In(m.rect) {
b := m.pix[m.byteoffset(x, y)]
switch m.depth {
case 1:
// CGrey, 1.
mask := uint8(1 << uint8(7-x&7))
if (b & mask) != 0 {
return color.Alpha{0xff}
}
return color.Alpha{0x00}
case 2:
// CGrey, 2.
shift := uint(x&3) << 1
// Place pixel at top of word.
y := b << shift
y &= 0xc0
// Replicate throughout.
y |= y >> 2
y |= y >> 4
return color.Alpha{y}
}
}
return color.Alpha{0x00}
}
var compressed = []byte("compressed\n")
func parseImage(data []byte) (remainingData []byte, m *plan9Image, retErr error) {
if !bytes.HasPrefix(data, compressed) {
return nil, nil, errors.New("plan9font: unsupported uncompressed format")
}
data = data[len(compressed):]
const hdrSize = 5 * 12
if len(data) < hdrSize {
return nil, nil, errors.New("plan9font: invalid image: header too short")
}
hdr, data := data[:hdrSize], data[hdrSize:]
// Distinguish new channel descriptor from old ldepth. Channel descriptors
// have letters as well as numbers, while ldepths are a single digit
// formatted as %-11d.
new := false
for m := 0; m < 10; m++ {
if hdr[m] != ' ' {
new = true
break
}
}
if hdr[11] != ' ' {
return nil, nil, errors.New("plan9font: invalid image: bad header")
}
if !new {
return nil, nil, errors.New("plan9font: unsupported ldepth format")
}
depth := 0
switch s := strings.TrimSpace(string(hdr[:1*12])); s {
default:
return nil, nil, fmt.Errorf("plan9font: unsupported pixel format %q", s)
case "k1":
depth = 1
case "k2":
depth = 2
}
r := ator(hdr[1*12:])
if r.Min.X > r.Max.X || r.Min.Y > r.Max.Y {
return nil, nil, errors.New("plan9font: invalid image: bad rectangle")
}
width := bytesPerLine(r, depth)
m = &plan9Image{
depth: depth,
width: width,
rect: r,
pix: make([]byte, width*r.Dy()),
}
miny := r.Min.Y
for miny != r.Max.Y {
if len(data) < 2*12 {
return nil, nil, errors.New("plan9font: invalid image: data band too short")
}
maxy := atoi(data[0*12:])
nb := atoi(data[1*12:])
data = data[2*12:]
if len(data) < nb {
return nil, nil, errors.New("plan9font: invalid image: data band length mismatch")
}
buf := data[:nb]
data = data[nb:]
if maxy <= miny || r.Max.Y < maxy {
return nil, nil, fmt.Errorf("plan9font: bad maxy %d", maxy)
}
// An old-format image would flip the bits here, but we don't support
// the old format.
rr := r
rr.Min.Y = miny
rr.Max.Y = maxy
if err := decompress(m, rr, buf); err != nil {
return nil, nil, err
}
miny = maxy
}
return data, m, nil
}
// Compressed data are sequences of byte codes. If the first byte b has the
// 0x80 bit set, the next (b^0x80)+1 bytes are data. Otherwise, these two bytes
// specify a previous string to repeat.
const (
compShortestMatch = 3 // shortest match possible.
compWindowSize = 1024 // window size.
)
var (
errDecompressBufferTooSmall = errors.New("plan9font: decompress: buffer too small")
errDecompressPhaseError = errors.New("plan9font: decompress: phase error")
)
func decompress(m *plan9Image, r image.Rectangle, data []byte) error {
if !r.In(m.rect) {
return errors.New("plan9font: decompress: bad rectangle")
}
bpl := bytesPerLine(r, m.depth)
mem := make([]byte, compWindowSize)
memi := 0
omemi := -1
y := r.Min.Y
linei := m.byteoffset(r.Min.X, y)
eline := linei + bpl
datai := 0
for {
if linei == eline {
y++
if y == r.Max.Y {
break
}
linei = m.byteoffset(r.Min.X, y)
eline = linei + bpl
}
if datai == len(data) {
return errDecompressBufferTooSmall
}
c := data[datai]
datai++
if c >= 128 {
for cnt := c - 128 + 1; cnt != 0; cnt-- {
if datai == len(data) {
return errDecompressBufferTooSmall
}
if linei == eline {
return errDecompressPhaseError
}
m.pix[linei] = data[datai]
linei++
mem[memi] = data[datai]
memi++
datai++
if memi == len(mem) {
memi = 0
}
}
} else {
if datai == len(data) {
return errDecompressBufferTooSmall
}
offs := int(data[datai]) + ((int(c) & 3) << 8) + 1
datai++
if memi < offs {
omemi = memi + (compWindowSize - offs)
} else {
omemi = memi - offs
}
for cnt := (c >> 2) + compShortestMatch; cnt != 0; cnt-- {
if linei == eline {
return errDecompressPhaseError
}
m.pix[linei] = mem[omemi]
linei++
mem[memi] = mem[omemi]
memi++
omemi++
if omemi == len(mem) {
omemi = 0
}
if memi == len(mem) {
memi = 0
}
}
}
}
return nil
}
func ator(b []byte) image.Rectangle {
return image.Rectangle{atop(b), atop(b[2*12:])}
}
func atop(b []byte) image.Point {
return image.Pt(atoi(b), atoi(b[12:]))
}
func atoi(b []byte) int {
i := 0
for ; i < len(b) && b[i] == ' '; i++ {
}
n := 0
for ; i < len(b) && '0' <= b[i] && b[i] <= '9'; i++ {
n = n*10 + int(b[i]) - '0'
}
return n
}
func bytesPerLine(r image.Rectangle, depth int) int {
if depth <= 0 || 32 < depth {
panic("invalid depth")
}
var l int
if r.Min.X >= 0 {
l = (r.Max.X*depth + 7) / 8
l -= (r.Min.X * depth) / 8
} else {
// Make positive before divide.
t := (-r.Min.X*depth + 7) / 8
l = t + (r.Max.X*depth+7)/8
}
return l
}