draw: implement NearestNeighbor and ApproxBiLinear Transform.

Change-Id: I70a5e3703dea436354e9591fce7b704ec749c2d1
Reviewed-on: https://go-review.googlesource.com/7541
Reviewed-by: Rob Pike <r@golang.org>
This commit is contained in:
Nigel Tao 2015-03-13 17:44:34 +11:00
parent ab1ce1a88c
commit 87013da148
7 changed files with 1135 additions and 129 deletions

View File

@ -9,7 +9,6 @@ import (
"image"
"image/png"
"log"
"math"
"os"
"golang.org/x/image/draw"
@ -34,19 +33,17 @@ func ExampleDraw() {
draw.ApproxBiLinear,
draw.CatmullRom,
}
c, s := math.Cos(math.Pi/3), math.Sin(math.Pi/3)
const cos60, sin60 = 0.5, 0.866025404
t := &f64.Aff3{
+2 * c, -2 * s, 100,
+2 * s, +2 * c, 100,
+2 * cos60, -2 * sin60, 100,
+2 * sin60, +2 * cos60, 100,
}
draw.Copy(dst, image.Point{20, 30}, src, sr, nil)
for i, q := range qs {
q.Scale(dst, image.Rect(200+10*i, 100*i, 600+10*i, 150+100*i), src, sr, nil)
}
// TODO: delete the "_ = t" and uncomment this when Transform is implemented.
// draw.NearestNeighbor.Transform(dst, t, src, sr, nil)
_ = t
draw.NearestNeighbor.Transform(dst, t, src, sr, nil)
// Change false to true to write the resultant image to disk.
if false {

View File

@ -27,12 +27,13 @@ func main() {
"package draw\n\nimport (\n" +
"\"image\"\n" +
"\"image/color\"\n" +
"\"math\"\n" +
"\n" +
"\"golang.org/x/image/math/f64\"\n" +
")\n")
gen(w, "nnInterpolator", codeNNScaleLeaf)
gen(w, "ablInterpolator", codeABLScaleLeaf)
gen(w, "nnInterpolator", codeNNScaleLeaf, codeNNTransformLeaf)
gen(w, "ablInterpolator", codeABLScaleLeaf, codeABLTransformLeaf)
genKernel(w)
if *debug {
@ -90,8 +91,9 @@ type data struct {
receiver string
}
func gen(w *bytes.Buffer, receiver string, code string) {
func gen(w *bytes.Buffer, receiver string, codes ...string) {
expn(w, codeRoot, &data{receiver: receiver})
for _, code := range codes {
for _, t := range dsTypes {
expn(w, code, &data{
dType: t.dType,
@ -99,6 +101,7 @@ func gen(w *bytes.Buffer, receiver string, code string) {
receiver: receiver,
})
}
}
}
func genKernel(w *bytes.Buffer) {
@ -227,7 +230,7 @@ func expnDollar(prefix, dollar, suffix string, d *data) string {
"dstColorRGBA64.G = uint16(%sg)\n"+
"dstColorRGBA64.B = uint16(%sb)\n"+
"dstColorRGBA64.A = uint16(%sa)\n"+
"dst.Set(dr.Min.X+int(%s), dr.Min.Y+int(%s), dstColor)",
"dst.Set(%s, %s, dstColor)",
args[2], args[2], args[2], args[2],
args[0], args[1],
)
@ -236,8 +239,7 @@ func expnDollar(prefix, dollar, suffix string, d *data) string {
"dst.Pix[d+0] = uint8(uint32(%sr) >> 8)\n"+
"dst.Pix[d+1] = uint8(uint32(%sg) >> 8)\n"+
"dst.Pix[d+2] = uint8(uint32(%sb) >> 8)\n"+
"dst.Pix[d+3] = uint8(uint32(%sa) >> 8)\n"+
"d += 4",
"dst.Pix[d+3] = uint8(uint32(%sa) >> 8)",
args[2], args[2], args[2], args[2],
)
}
@ -256,7 +258,7 @@ func expnDollar(prefix, dollar, suffix string, d *data) string {
"dstColorRGBA64.G = ftou(%sg * %s)\n"+
"dstColorRGBA64.B = ftou(%sb * %s)\n"+
"dstColorRGBA64.A = ftou(%sa * %s)\n"+
"dst.Set(dr.Min.X+int(%s), dr.Min.Y+int(%s), dstColor)",
"dst.Set(%s, %s, dstColor)",
args[2], args[3], args[2], args[3], args[2], args[3], args[2], args[3],
args[0], args[1],
)
@ -292,14 +294,14 @@ func expnDollar(prefix, dollar, suffix string, d *data) string {
log.Fatalf("bad sType %q", d.sType)
case "image.Image", "*image.Gray", "*image.NRGBA", "*image.Uniform", "*image.YCbCr": // TODO: separate code for concrete types.
fmt.Fprintf(buf, "%sr%s, %sg%s, %sb%s, %sa%s := "+
"src.At(sr.Min.X + int(%s), sr.Min.Y+int(%s)).RGBA()\n",
"src.At(%s, %s).RGBA()\n",
lhs, tmp, lhs, tmp, lhs, tmp, lhs, tmp,
args[0], args[1],
)
case "*image.RGBA":
// TODO: there's no need to multiply by 0x101 if the next thing
// we're going to do is shift right by 8.
fmt.Fprintf(buf, "%si := src.PixOffset(sr.Min.X + int(%s), sr.Min.Y+int(%s))\n"+
fmt.Fprintf(buf, "%si := src.PixOffset(%s, %s)\n"+
"%sr%s := uint32(src.Pix[%si+0]) * 0x101\n"+
"%sg%s := uint32(src.Pix[%si+1]) * 0x101\n"+
"%sb%s := uint32(src.Pix[%si+2]) * 0x101\n"+
@ -327,6 +329,12 @@ func expnDollar(prefix, dollar, suffix string, d *data) string {
return strings.TrimSpace(buf.String())
case "tweakDx":
if d.dType == "*image.RGBA" {
return strings.Replace(suffix, "dx++", "dx, d = dx+1, d+4", 1)
}
return suffix
case "tweakDy":
if d.dType == "*image.RGBA" {
return strings.Replace(suffix, "for dy, s", "for _, s", 1)
@ -428,8 +436,15 @@ const (
}
}
func (z $receiver) Transform(dst Image, m *f64.Aff3, src image.Image, sr image.Rectangle, opts *Options) {
panic("unimplemented")
func (z $receiver) Transform(dst Image, s2d *f64.Aff3, src image.Image, sr image.Rectangle, opts *Options) {
dr := transformRect(s2d, &sr)
// adr is the affected destination pixels, relative to dr.Min.
adr := dst.Bounds().Intersect(dr).Sub(dr.Min)
if adr.Empty() || sr.Empty() {
return
}
d2s := invert(s2d)
z.transform_Image_Image(dst, dr, adr, &d2s, src, sr)
}
`
@ -443,10 +458,30 @@ const (
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
$preInner
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
$tweakDx for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
sx := (2*uint64(dx) + 1) * sw / dw2
p := $srcu[sx, sy]
$outputu[dx, dy, p]
p := $srcu[sr.Min.X + int(sx), sr.Min.Y + int(sy)]
$outputu[dr.Min.X + int(dx), dr.Min.Y + int(dy), p]
}
}
}
`
codeNNTransformLeaf = `
func (nnInterpolator) transform_$dTypeRN_$sTypeRN(dst $dType, dr, adr image.Rectangle, d2s *f64.Aff3, src $sType, sr image.Rectangle) {
$preOuter
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y + int(dy)) + 0.5
$preInner
$tweakDx for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
dxf := float64(dr.Min.X + int(dx)) + 0.5
sx0 := int(math.Floor(d2s[0]*dxf + d2s[1]*dyf + d2s[2]))
sy0 := int(math.Floor(d2s[3]*dxf + d2s[4]*dyf + d2s[5]))
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
p := $srcu[sx0, sy0]
$outputu[dr.Min.X + int(dx), dr.Min.Y + int(dy), p]
}
}
}
@ -458,9 +493,14 @@ const (
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw - 1, sh - 1
$preOuter
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
@ -468,12 +508,13 @@ const (
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sh {
sy1 = sy0
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
$preInner
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
$tweakDx for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
@ -482,10 +523,66 @@ const (
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sw {
sx1 = sx0
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00 := $srcf[sr.Min.X + int(sx0), sr.Min.Y + int(sy0)]
s10 := $srcf[sr.Min.X + int(sx1), sr.Min.Y + int(sy0)]
$blend[xFrac1, s00, xFrac0, s10]
s01 := $srcf[sr.Min.X + int(sx0), sr.Min.Y + int(sy1)]
s11 := $srcf[sr.Min.X + int(sx1), sr.Min.Y + int(sy1)]
$blend[xFrac1, s01, xFrac0, s11]
$blend[yFrac1, s10, yFrac0, s11]
$outputu[dr.Min.X + int(dx), dr.Min.Y + int(dy), s11]
}
}
}
`
codeABLTransformLeaf = `
func (ablInterpolator) transform_$dTypeRN_$sTypeRN(dst $dType, dr, adr image.Rectangle, d2s *f64.Aff3, src $sType, sr image.Rectangle) {
$preOuter
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y + int(dy)) + 0.5
$preInner
$tweakDx for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
dxf := float64(dr.Min.X + int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(math.Floor(sx)), int(math.Floor(sy))}).In(sr) {
continue
}
sx -= 0.5
sxf := math.Floor(sx)
xFrac0 := sx - sxf
xFrac1 := 1 - xFrac0
sx0 := int(sxf)
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
syf := math.Floor(sy)
yFrac0 := sy - syf
yFrac1 := 1 - yFrac0
sy0 := int(syf)
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00 := $srcf[sx0, sy0]
s10 := $srcf[sx1, sy0]
$blend[xFrac1, s00, xFrac0, s10]
@ -493,7 +590,7 @@ const (
s11 := $srcf[sx1, sy1]
$blend[xFrac1, s01, xFrac0, s11]
$blend[yFrac1, s10, yFrac0, s11]
$outputu[dx, dy, s11]
$outputu[dr.Min.X + int(dx), dr.Min.Y + int(dy), s11]
}
}
}
@ -540,7 +637,7 @@ const (
for _, s := range z.horizontal.sources {
var pr, pg, pb, pa float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
p += $srcf[c.coord, y] * c.weight
p += $srcf[sr.Min.X + int(c.coord), sr.Min.Y + int(y)] * c.weight
}
tmp[t] = [4]float64{
pr * s.invTotalWeightFFFF,
@ -568,7 +665,7 @@ const (
pb += p[2] * c.weight
pa += p[3] * c.weight
}
$outputf[dx, adr.Min.Y+dy, p, s.invTotalWeight]
$outputf[dr.Min.X + int(dx), dr.Min.Y + int(adr.Min.Y + dy), p, s.invTotalWeight]
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -249,3 +249,72 @@ func ftou(f float64) uint16 {
}
return 0
}
// invert returns the inverse of m.
//
// TODO: move this into the f64 package, once we work out the convention for
// matrix methods in that package: do they modify the receiver, take a dst
// pointer argument, or return a new value?
func invert(m *f64.Aff3) f64.Aff3 {
m00 := +m[3*1+1]
m01 := -m[3*0+1]
m02 := +m[3*1+2]*m[3*0+1] - m[3*1+1]*m[3*0+2]
m10 := -m[3*1+0]
m11 := +m[3*0+0]
m12 := +m[3*1+0]*m[3*0+2] - m[3*1+2]*m[3*0+0]
det := m00*m11 - m10*m01
return f64.Aff3{
m00 / det,
m01 / det,
m02 / det,
m10 / det,
m11 / det,
m12 / det,
}
}
// transformRect returns a rectangle dr that contains sr transformed by s2d.
func transformRect(s2d *f64.Aff3, sr *image.Rectangle) (dr image.Rectangle) {
ps := [...]image.Point{
{sr.Min.X, sr.Min.Y},
{sr.Max.X, sr.Min.Y},
{sr.Min.X, sr.Max.Y},
{sr.Max.X, sr.Max.Y},
}
for i, p := range ps {
sxf := float64(p.X)
syf := float64(p.Y)
dx := int(math.Floor(s2d[0]*sxf + s2d[1]*syf + s2d[2]))
dy := int(math.Floor(s2d[3]*sxf + s2d[4]*syf + s2d[5]))
// The +1 adjustments below are because an image.Rectangle is inclusive
// on the low end but exclusive on the high end.
if i == 0 {
dr = image.Rectangle{
Min: image.Point{dx + 0, dy + 0},
Max: image.Point{dx + 1, dy + 1},
}
continue
}
if dr.Min.X > dx {
dr.Min.X = dx
}
dx++
if dr.Max.X < dx {
dr.Max.X = dx
}
if dr.Min.Y > dy {
dr.Min.Y = dy
}
dy++
if dr.Max.Y < dy {
dr.Max.Y = dy
}
}
return dr
}

View File

@ -16,18 +16,28 @@ import (
"reflect"
"testing"
"golang.org/x/image/math/f64"
_ "image/jpeg"
)
var genScaleFiles = flag.Bool("gen_scale_files", false, "whether to generate the TestScaleXxx golden files.")
var genGoldenFiles = flag.Bool("gen_golden_files", false, "whether to generate the TestXxx golden files.")
// testScale tests that scaling the source image gives the exact destination
// image. This is to ensure that any refactoring or optimization of the scaling
// code doesn't change the scaling behavior. Changing the actual algorithm or
// kernel used by any particular quality setting will obviously change the
// resultant pixels. In such a case, use the gen_scale_files flag to regenerate
// the golden files.
func testScale(t *testing.T, w int, h int, direction, srcFilename string) {
var transformMatrix = func() *f64.Aff3 {
const scale, cos30, sin30 = 3.75, 0.866025404, 0.5
return &f64.Aff3{
+scale * cos30, -scale * sin30, 40,
+scale * sin30, +scale * cos30, 10,
}
}()
// testInterp tests that interpolating the source image gives the exact
// destination image. This is to ensure that any refactoring or optimization of
// the interpolation code doesn't change the behavior. Changing the actual
// algorithm or kernel used by any particular quality setting will obviously
// change the resultant pixels. In such a case, use the gen_golden_files flag
// to regenerate the golden files.
func testInterp(t *testing.T, w int, h int, direction, srcFilename string) {
f, err := os.Open("../testdata/go-turns-two-" + srcFilename)
if err != nil {
t.Fatalf("Open: %v", err)
@ -44,12 +54,21 @@ func testScale(t *testing.T, w int, h int, direction, srcFilename string) {
"cr": CatmullRom,
}
for name, q := range testCases {
gotFilename := fmt.Sprintf("../testdata/go-turns-two-%s-%s.png", direction, name)
goldenFilename := fmt.Sprintf("../testdata/go-turns-two-%s-%s.png", direction, name)
got := image.NewRGBA(image.Rect(0, 0, w, h))
if direction == "rotate" {
if name == "bl" || name == "cr" {
// TODO: implement Kernel.Transform.
continue
}
q.Transform(got, transformMatrix, src, src.Bounds(), nil)
} else {
q.Scale(got, got.Bounds(), src, src.Bounds(), nil)
if *genScaleFiles {
g, err := os.Create(gotFilename)
}
if *genGoldenFiles {
g, err := os.Create(goldenFilename)
if err != nil {
t.Errorf("Create: %v", err)
continue
@ -62,27 +81,35 @@ func testScale(t *testing.T, w int, h int, direction, srcFilename string) {
continue
}
g, err := os.Open(gotFilename)
g, err := os.Open(goldenFilename)
if err != nil {
t.Errorf("Open: %v", err)
continue
}
defer g.Close()
want, err := png.Decode(g)
wantRaw, err := png.Decode(g)
if err != nil {
t.Errorf("Decode: %v", err)
continue
}
// convert wantRaw to RGBA.
want, ok := wantRaw.(*image.RGBA)
if !ok {
b := wantRaw.Bounds()
want = image.NewRGBA(b)
Draw(want, b, wantRaw, b.Min, Src)
}
if !reflect.DeepEqual(got, want) {
t.Errorf("%s: actual image differs from golden image", gotFilename)
t.Errorf("%s: actual image differs from golden image", goldenFilename)
continue
}
}
}
func TestScaleDown(t *testing.T) { testScale(t, 100, 100, "down", "280x360.jpeg") }
func TestScaleUp(t *testing.T) { testScale(t, 75, 100, "up", "14x18.png") }
func TestScaleDown(t *testing.T) { testInterp(t, 100, 100, "down", "280x360.jpeg") }
func TestScaleUp(t *testing.T) { testInterp(t, 75, 100, "up", "14x18.png") }
func TestTransform(t *testing.T) { testInterp(t, 100, 100, "rotate", "14x18.png") }
func fillPix(r *rand.Rand, pixs ...[]byte) {
for _, pix := range pixs {
@ -92,7 +119,7 @@ func fillPix(r *rand.Rand, pixs ...[]byte) {
}
}
func TestScaleClipCommute(t *testing.T) {
func TestInterpClipCommute(t *testing.T) {
src := image.NewNRGBA(image.Rect(0, 0, 20, 20))
fillPix(rand.New(rand.NewSource(0)), src.Pix)
@ -103,7 +130,13 @@ func TestScaleClipCommute(t *testing.T) {
ApproxBiLinear,
CatmullRom,
}
for _, transform := range []bool{false, true} {
for _, q := range qs {
if transform && q == CatmullRom {
// TODO: implement Kernel.Transform.
continue
}
dst0 := image.NewRGBA(image.Rect(1, 1, 10, 10))
dst1 := image.NewRGBA(image.Rect(1, 1, 10, 10))
for i := range dst0.Pix {
@ -111,13 +144,24 @@ func TestScaleClipCommute(t *testing.T) {
dst1.Pix[i] = uint8(i / 4)
}
// Scale then clip.
q.Scale(dst0, outer, src, src.Bounds(), nil)
var interp func(dst *image.RGBA)
if transform {
interp = func(dst *image.RGBA) {
q.Transform(dst, transformMatrix, src, src.Bounds(), nil)
}
} else {
interp = func(dst *image.RGBA) {
q.Scale(dst, outer, src, src.Bounds(), nil)
}
}
// Interpolate then clip.
interp(dst0)
dst0 = dst0.SubImage(inner).(*image.RGBA)
// Clip then scale.
// Clip then interpolate.
dst1 = dst1.SubImage(inner).(*image.RGBA)
q.Scale(dst1, outer, src, src.Bounds(), nil)
interp(dst1)
loop:
for y := inner.Min.Y; y < inner.Max.Y; y++ {
@ -129,6 +173,7 @@ func TestScaleClipCommute(t *testing.T) {
}
}
}
}
}
// translatedImage is an image m translated by t.
@ -184,7 +229,7 @@ func TestSrcTranslationInvariance(t *testing.T) {
t.Errorf("pix differ for delta=%v, q=%T", delta, q)
}
// TODO: Transform.
// TODO: Transform, once Kernel.Transform is implemented.
}
}
}
@ -250,6 +295,8 @@ func TestFastPaths(t *testing.T) {
if !bytes.Equal(dst0.Pix, dst1.Pix) {
t.Errorf("pix differ for dr=%v, src=%T, sr=%v, q=%T", dr, src, sr, q)
}
// TODO: Transform, once Kernel.Transform is implemented.
}
}
}
@ -331,6 +378,20 @@ func benchScale(b *testing.B, srcf func(image.Rectangle) (image.Image, error), w
}
}
func benchTform(b *testing.B, srcf func(image.Rectangle) (image.Image, error), w int, h int, q Interpolator) {
dst := image.NewRGBA(image.Rect(0, 0, w, h))
src, err := srcf(image.Rect(0, 0, 1024, 768))
if err != nil {
b.Fatal(err)
}
sr := src.Bounds()
b.ResetTimer()
for i := 0; i < b.N; i++ {
q.Transform(dst, transformMatrix, src, sr, nil)
}
}
func BenchmarkScaleLargeDownNN(b *testing.B) { benchScale(b, srcYCbCrLarge, 200, 150, NearestNeighbor) }
func BenchmarkScaleLargeDownAB(b *testing.B) { benchScale(b, srcYCbCrLarge, 200, 150, ApproxBiLinear) }
func BenchmarkScaleLargeDownBL(b *testing.B) { benchScale(b, srcYCbCrLarge, 200, 150, BiLinear) }
@ -351,3 +412,9 @@ func BenchmarkScaleSrcNRGBA(b *testing.B) { benchScale(b, srcNRGBA, 200, 150,
func BenchmarkScaleSrcRGBA(b *testing.B) { benchScale(b, srcRGBA, 200, 150, ApproxBiLinear) }
func BenchmarkScaleSrcUniform(b *testing.B) { benchScale(b, srcUniform, 200, 150, ApproxBiLinear) }
func BenchmarkScaleSrcYCbCr(b *testing.B) { benchScale(b, srcYCbCr, 200, 150, ApproxBiLinear) }
func BenchmarkTformSrcGray(b *testing.B) { benchTform(b, srcGray, 200, 150, ApproxBiLinear) }
func BenchmarkTformSrcNRGBA(b *testing.B) { benchTform(b, srcNRGBA, 200, 150, ApproxBiLinear) }
func BenchmarkTformSrcRGBA(b *testing.B) { benchTform(b, srcRGBA, 200, 150, ApproxBiLinear) }
func BenchmarkTformSrcUniform(b *testing.B) { benchTform(b, srcUniform, 200, 150, ApproxBiLinear) }
func BenchmarkTformSrcYCbCr(b *testing.B) { benchTform(b, srcYCbCr, 200, 150, ApproxBiLinear) }

BIN
testdata/go-turns-two-rotate-ab.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.6 KiB

BIN
testdata/go-turns-two-rotate-nn.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.9 KiB