vector: new package for rasterizing 2-D graphics.
Updates golang/go#16904 Change-Id: I4e11e4e859c007c3444655a227ac935c27f3f784 Reviewed-on: https://go-review.googlesource.com/28347 Reviewed-by: David Crawshaw <crawshaw@golang.org>
This commit is contained in:
parent
112f996332
commit
714f2e47f7
153
vector/raster_floating.go
Normal file
153
vector/raster_floating.go
Normal file
|
@ -0,0 +1,153 @@
|
|||
// Copyright 2016 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package vector
|
||||
|
||||
// This file contains a floating point math implementation of the vector
|
||||
// graphics rasterizer.
|
||||
|
||||
import (
|
||||
"math"
|
||||
|
||||
"golang.org/x/image/math/f32"
|
||||
)
|
||||
|
||||
func floatingMax(x, y float32) float32 {
|
||||
if x > y {
|
||||
return x
|
||||
}
|
||||
return y
|
||||
}
|
||||
|
||||
func floatingMin(x, y float32) float32 {
|
||||
if x < y {
|
||||
return x
|
||||
}
|
||||
return y
|
||||
}
|
||||
|
||||
func floatingFloor(x float32) int32 { return int32(math.Floor(float64(x))) }
|
||||
func floatingCeil(x float32) int32 { return int32(math.Ceil(float64(x))) }
|
||||
|
||||
func (z *Rasterizer) floatingLineTo(b f32.Vec2) {
|
||||
a := z.pen
|
||||
z.pen = b
|
||||
dir := float32(1)
|
||||
if a[1] > b[1] {
|
||||
dir, a, b = -1, b, a
|
||||
}
|
||||
// Horizontal line segments yield no change in coverage. Almost horizontal
|
||||
// segments would yield some change, in ideal math, but the computation
|
||||
// further below, involving 1 / (b[1] - a[1]), is unstable in floating
|
||||
// point math, so we treat the segment as if it was perfectly horizontal.
|
||||
if b[1]-a[1] <= 0.000001 {
|
||||
return
|
||||
}
|
||||
dxdy := (b[0] - a[0]) / (b[1] - a[1])
|
||||
|
||||
x := a[0]
|
||||
y := floatingFloor(a[1])
|
||||
yMax := floatingCeil(b[1])
|
||||
if yMax > int32(z.size.Y) {
|
||||
yMax = int32(z.size.Y)
|
||||
}
|
||||
width := int32(z.size.X)
|
||||
|
||||
for ; y < yMax; y++ {
|
||||
dy := floatingMin(float32(y+1), b[1]) - floatingMax(float32(y), a[1])
|
||||
xNext := x + dy*dxdy
|
||||
if y < 0 {
|
||||
x = xNext
|
||||
continue
|
||||
}
|
||||
buf := z.area[y*width:]
|
||||
d := dy * dir
|
||||
x0, x1 := x, xNext
|
||||
if x > xNext {
|
||||
x0, x1 = x1, x0
|
||||
}
|
||||
x0i := floatingFloor(x0)
|
||||
x0Floor := float32(x0i)
|
||||
x1i := floatingCeil(x1)
|
||||
x1Ceil := float32(x1i)
|
||||
|
||||
if x1i <= x0i+1 {
|
||||
xmf := 0.5*(x+xNext) - x0Floor
|
||||
if i := clamp(x0i+0, width); i < uint(len(buf)) {
|
||||
buf[i] += d - d*xmf
|
||||
}
|
||||
if i := clamp(x0i+1, width); i < uint(len(buf)) {
|
||||
buf[i] += d * xmf
|
||||
}
|
||||
} else {
|
||||
s := 1 / (x1 - x0)
|
||||
x0f := x0 - x0Floor
|
||||
oneMinusX0f := 1 - x0f
|
||||
a0 := 0.5 * s * oneMinusX0f * oneMinusX0f
|
||||
x1f := x1 - x1Ceil + 1
|
||||
am := 0.5 * s * x1f * x1f
|
||||
|
||||
if i := clamp(x0i, width); i < uint(len(buf)) {
|
||||
buf[i] += d * a0
|
||||
}
|
||||
|
||||
if x1i == x0i+2 {
|
||||
if i := clamp(x0i+1, width); i < uint(len(buf)) {
|
||||
buf[i] += d * (1 - a0 - am)
|
||||
}
|
||||
} else {
|
||||
a1 := s * (1.5 - x0f)
|
||||
if i := clamp(x0i+1, width); i < uint(len(buf)) {
|
||||
buf[i] += d * (a1 - a0)
|
||||
}
|
||||
dTimesS := d * s
|
||||
for xi := x0i + 2; xi < x1i-1; xi++ {
|
||||
if i := clamp(xi, width); i < uint(len(buf)) {
|
||||
buf[i] += dTimesS
|
||||
}
|
||||
}
|
||||
a2 := a1 + s*float32(x1i-x0i-3)
|
||||
if i := clamp(x1i-1, width); i < uint(len(buf)) {
|
||||
buf[i] += d * (1 - a2 - am)
|
||||
}
|
||||
}
|
||||
|
||||
if i := clamp(x1i, width); i < uint(len(buf)) {
|
||||
buf[i] += d * am
|
||||
}
|
||||
}
|
||||
|
||||
x = xNext
|
||||
}
|
||||
}
|
||||
|
||||
func floatingAccumulate(dst []uint8, src []float32) {
|
||||
// almost256 scales a floating point value in the range [0, 1] to a uint8
|
||||
// value in the range [0x00, 0xff].
|
||||
//
|
||||
// 255 is too small. Floating point math accumulates rounding errors, so a
|
||||
// fully covered src value that would in ideal math be float32(1) might be
|
||||
// float32(1-ε), and uint8(255 * (1-ε)) would be 0xfe instead of 0xff. The
|
||||
// uint8 conversion rounds to zero, not to nearest.
|
||||
//
|
||||
// 256 is too big. If we multiplied by 256, below, then a fully covered src
|
||||
// value of float32(1) would translate to uint8(256 * 1), which can be 0x00
|
||||
// instead of the maximal value 0xff.
|
||||
//
|
||||
// math.Float32bits(almost256) is 0x437fffff.
|
||||
const almost256 = 255.99998
|
||||
|
||||
acc := float32(0)
|
||||
for i, v := range src {
|
||||
acc += v
|
||||
a := acc
|
||||
if a < 0 {
|
||||
a = -a
|
||||
}
|
||||
if a > 1 {
|
||||
a = 1
|
||||
}
|
||||
dst[i] = uint8(almost256 * a)
|
||||
}
|
||||
}
|
196
vector/vector.go
Normal file
196
vector/vector.go
Normal file
|
@ -0,0 +1,196 @@
|
|||
// Copyright 2016 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package vector provides a rasterizer for 2-D vector graphics.
|
||||
package vector // import "golang.org/x/image/vector"
|
||||
|
||||
// The rasterizer's design follows
|
||||
// https://medium.com/@raphlinus/inside-the-fastest-font-renderer-in-the-world-75ae5270c445
|
||||
//
|
||||
// Proof of concept code is in
|
||||
// https://github.com/google/font-go
|
||||
//
|
||||
// See also:
|
||||
// http://nothings.org/gamedev/rasterize/
|
||||
// http://projects.tuxee.net/cl-vectors/section-the-cl-aa-algorithm
|
||||
// https://people.gnome.org/~mathieu/libart/internals.html#INTERNALS-SCANLINE
|
||||
|
||||
import (
|
||||
"image"
|
||||
"image/draw"
|
||||
"math"
|
||||
|
||||
"golang.org/x/image/math/f32"
|
||||
)
|
||||
|
||||
func midPoint(p, q f32.Vec2) f32.Vec2 {
|
||||
return f32.Vec2{
|
||||
(p[0] + q[0]) * 0.5,
|
||||
(p[1] + q[1]) * 0.5,
|
||||
}
|
||||
}
|
||||
|
||||
func lerp(t float32, p, q f32.Vec2) f32.Vec2 {
|
||||
return f32.Vec2{
|
||||
p[0] + t*(q[0]-p[0]),
|
||||
p[1] + t*(q[1]-p[1]),
|
||||
}
|
||||
}
|
||||
|
||||
func clamp(i, width int32) uint {
|
||||
if i < 0 {
|
||||
return 0
|
||||
}
|
||||
if i < width {
|
||||
return uint(i)
|
||||
}
|
||||
return uint(width)
|
||||
}
|
||||
|
||||
// NewRasterizer returns a new Rasterizer whose rendered mask image is bounded
|
||||
// by the given width and height.
|
||||
func NewRasterizer(w, h int) *Rasterizer {
|
||||
return &Rasterizer{
|
||||
area: make([]float32, w*h),
|
||||
size: image.Point{w, h},
|
||||
}
|
||||
}
|
||||
|
||||
// Raster is a 2-D vector graphics rasterizer.
|
||||
type Rasterizer struct {
|
||||
area []float32
|
||||
size image.Point
|
||||
first f32.Vec2
|
||||
pen f32.Vec2
|
||||
|
||||
// DrawOp is the operator used for the Draw method.
|
||||
//
|
||||
// The zero value is draw.Over.
|
||||
DrawOp draw.Op
|
||||
|
||||
// TODO: an exported field equivalent to the mask point in the
|
||||
// draw.DrawMask function in the stdlib image/draw package?
|
||||
}
|
||||
|
||||
// Reset resets a Rasterizer as if it was just returned by NewRasterizer.
|
||||
//
|
||||
// This includes setting z.DrawOp to draw.Over.
|
||||
func (z *Rasterizer) Reset(w, h int) {
|
||||
if n := w * h; n > cap(z.area) {
|
||||
z.area = make([]float32, n)
|
||||
} else {
|
||||
z.area = z.area[:n]
|
||||
for i := range z.area {
|
||||
z.area[i] = 0
|
||||
}
|
||||
}
|
||||
z.size = image.Point{w, h}
|
||||
z.first = f32.Vec2{}
|
||||
z.pen = f32.Vec2{}
|
||||
z.DrawOp = draw.Over
|
||||
}
|
||||
|
||||
// Size returns the width and height passed to NewRasterizer or Reset.
|
||||
func (z *Rasterizer) Size() image.Point {
|
||||
return z.size
|
||||
}
|
||||
|
||||
// Bounds returns the rectangle from (0, 0) to the width and height passed to
|
||||
// NewRasterizer or Reset.
|
||||
func (z *Rasterizer) Bounds() image.Rectangle {
|
||||
return image.Rectangle{Max: z.size}
|
||||
}
|
||||
|
||||
// Pen returns the location of the path-drawing pen: the last argument to the
|
||||
// most recent XxxTo call.
|
||||
func (z *Rasterizer) Pen() f32.Vec2 {
|
||||
return z.pen
|
||||
}
|
||||
|
||||
// ClosePath closes the current path.
|
||||
func (z *Rasterizer) ClosePath() {
|
||||
z.LineTo(z.first)
|
||||
}
|
||||
|
||||
// MoveTo starts a new path and moves the pen to a.
|
||||
//
|
||||
// The coordinates are allowed to be out of the Rasterizer's bounds.
|
||||
func (z *Rasterizer) MoveTo(a f32.Vec2) {
|
||||
z.first = a
|
||||
z.pen = a
|
||||
}
|
||||
|
||||
// LineTo adds a line segment, from the pen to b, and moves the pen to b.
|
||||
//
|
||||
// The coordinates are allowed to be out of the Rasterizer's bounds.
|
||||
func (z *Rasterizer) LineTo(b f32.Vec2) {
|
||||
// TODO: add a fixed point math implementation.
|
||||
z.floatingLineTo(b)
|
||||
}
|
||||
|
||||
// QuadTo adds a quadratic Bézier segment, from the pen via b to c, and moves
|
||||
// the pen to c.
|
||||
//
|
||||
// The coordinates are allowed to be out of the Rasterizer's bounds.
|
||||
func (z *Rasterizer) QuadTo(b, c f32.Vec2) {
|
||||
// We make a linear approximation to the curve.
|
||||
// http://lists.nongnu.org/archive/html/freetype-devel/2016-08/msg00080.html
|
||||
// gives the rationale for this evenly spaced heuristic instead of a
|
||||
// recursive de Casteljau approach:
|
||||
//
|
||||
// The reason for the subdivision by n is that I expect the "flatness"
|
||||
// computation to be semi-expensive (it's done once rather than on each
|
||||
// potential subdivision) and also because you'll often get fewer
|
||||
// subdivisions. Taking a circular arc as a simplifying assumption (ie a
|
||||
// spherical cow), where I get n, a recursive approach would get 2^⌈lg n⌉,
|
||||
// which, if I haven't made any horrible mistakes, is expected to be 33%
|
||||
// more in the limit.
|
||||
a := z.pen
|
||||
devx := a[0] - 2*b[0] + c[0]
|
||||
devy := a[1] - 2*b[1] + c[1]
|
||||
devsq := devx*devx + devy*devy
|
||||
if devsq >= 0.333 {
|
||||
const tol = 3
|
||||
n := 1 + int(math.Sqrt(math.Sqrt(tol*float64(devsq))))
|
||||
t, nInv := float32(0), 1/float32(n)
|
||||
for i := 0; i < n-1; i++ {
|
||||
t += nInv
|
||||
z.LineTo(lerp(t, lerp(t, a, b), lerp(t, b, c)))
|
||||
}
|
||||
}
|
||||
z.LineTo(c)
|
||||
}
|
||||
|
||||
// TODO: CubeTo for cubic Béziers.
|
||||
|
||||
// Draw implements the Drawer interface from the standard library's image/draw
|
||||
// package.
|
||||
//
|
||||
// The vector paths previously added via the XxxTo calls become the mask for
|
||||
// drawing src onto dst.
|
||||
func (z *Rasterizer) Draw(dst draw.Image, r image.Rectangle, src image.Image, sp image.Point) {
|
||||
if src, ok := src.(*image.Uniform); ok {
|
||||
_, _, _, srcA := src.RGBA()
|
||||
switch dst := dst.(type) {
|
||||
case *image.Alpha:
|
||||
// Fast path for glyph rendering.
|
||||
if srcA == 0xffff && z.DrawOp == draw.Src {
|
||||
z.rasterizeDstAlphaSrcOpaqueOpSrc(dst, r)
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
println("TODO: the general case")
|
||||
}
|
||||
|
||||
func (z *Rasterizer) rasterizeDstAlphaSrcOpaqueOpSrc(dst *image.Alpha, r image.Rectangle) {
|
||||
// TODO: add SIMD implementations.
|
||||
// TODO: add a fixed point math implementation.
|
||||
// TODO: non-zero vs even-odd winding?
|
||||
if r == dst.Bounds() && r == z.Bounds() {
|
||||
floatingAccumulate(dst.Pix, z.area)
|
||||
return
|
||||
}
|
||||
println("TODO: the general case")
|
||||
}
|
59
vector/vector_test.go
Normal file
59
vector/vector_test.go
Normal file
|
@ -0,0 +1,59 @@
|
|||
// Copyright 2016 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package vector
|
||||
|
||||
// TODO: add tests for NaN and Inf coordinates.
|
||||
|
||||
import (
|
||||
"image"
|
||||
"image/draw"
|
||||
"testing"
|
||||
|
||||
"golang.org/x/image/math/f32"
|
||||
)
|
||||
|
||||
func TestBasicPath(t *testing.T) {
|
||||
want := []byte{
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0xd4, 0xdd, 0xc5, 0xab, 0x63, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x9f, 0xff, 0xff, 0xff, 0xff, 0xfb, 0xb3, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x60, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf1, 0x5b, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x1f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x5b, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0xdf, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf1, 0x20, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x9f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xb3, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x5f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfb, 0x12, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x1f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x63, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0xdf, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xab, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x9f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc5, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x5f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xdd, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x1f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf4, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
}
|
||||
|
||||
z := NewRasterizer(16, 16)
|
||||
z.MoveTo(f32.Vec2{2, 2})
|
||||
z.QuadTo(f32.Vec2{14, 2}, f32.Vec2{14, 14})
|
||||
z.LineTo(f32.Vec2{5, 14})
|
||||
z.ClosePath()
|
||||
|
||||
dst := image.NewAlpha(z.Bounds())
|
||||
z.DrawOp = draw.Src
|
||||
z.Draw(dst, dst.Bounds(), image.Opaque, image.Point{})
|
||||
|
||||
got := dst.Pix
|
||||
if len(got) != len(want) {
|
||||
t.Fatalf("len(got)=%d and len(want)=%d differ", len(got), len(want))
|
||||
}
|
||||
for i := range got {
|
||||
delta := int(got[i]) - int(want[i])
|
||||
// The +/- 2 allows different implementations to give different
|
||||
// rounding errors.
|
||||
if delta < -2 || +2 < delta {
|
||||
t.Errorf("i=%d: got %#02x, want %#02x", i, got[i], want[i])
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user