diff --git a/draw/scale_test.go b/draw/scale_test.go index 6d4baac..0404d8e 100644 --- a/draw/scale_test.go +++ b/draw/scale_test.go @@ -5,10 +5,13 @@ package draw import ( + "bytes" "flag" "fmt" "image" + "image/color" "image/png" + "math/rand" "os" "reflect" "testing" @@ -81,33 +84,123 @@ func testScale(t *testing.T, w int, h int, direction, srcFilename string) { func TestScaleDown(t *testing.T) { testScale(t, 100, 100, "down", "280x360.jpeg") } func TestScaleUp(t *testing.T) { testScale(t, 75, 100, "up", "14x18.png") } -// TODO: test that scaling concrete types like *image.RGBA and *image.YCbCr -// give the same results as scaling those images wrapped in another Image or -// image.Image type that would skip the fast-path type switch. +// The fooWrapper types wrap the dst or src image to avoid triggering the +// type-specific fast path implementations. +type ( + dstWrapper struct{ Image } + srcWrapper struct{ image.Image } +) -func srcNRGBA() (image.Image, error) { - return image.NewNRGBA(image.Rect(0, 0, 1024, 768)), nil +// TestFastPaths tests that the fast path implementations produce identical +// results to the generic implementation. +func TestFastPaths(t *testing.T) { + drs := []image.Rectangle{ + image.Rect(0, 0, 10, 10), // The dst bounds. + image.Rect(3, 4, 8, 6), // A strict subset of the dst bounds. + image.Rect(-3, -5, 2, 4), // Partial out-of-bounds #0. + image.Rect(4, -2, 6, 12), // Partial out-of-bounds #1. + image.Rect(12, 14, 23, 45), // Complete out-of-bounds. + image.Rect(5, 5, 5, 5), // Empty. + } + srs := []image.Rectangle{ + image.Rect(0, 0, 12, 9), // The src bounds. + image.Rect(2, 2, 10, 8), // A strict subset of the src bounds. + image.Rect(10, 5, 20, 20), // Partial out-of-bounds #0. + image.Rect(-40, 0, 40, 8), // Partial out-of-bounds #1. + image.Rect(-8, -8, -4, -4), // Complete out-of-bounds. + image.Rect(5, 5, 5, 5), // Empty. + } + srcfs := []func(image.Rectangle) (image.Image, error){ + srcNRGBA, + srcRGBA, + srcUniform, + srcYCbCr, + } + var srcs []image.Image + for _, srcf := range srcfs { + src, err := srcf(srs[0]) + if err != nil { + t.Fatal(err) + } + srcs = append(srcs, src) + } + qs := []Interpolator{ + NearestNeighbor, + ApproxBiLinear, + CatmullRom, + } + blue := image.NewUniform(color.RGBA{0x11, 0x22, 0x44, 0x7f}) + + for _, dr := range drs { + for _, src := range srcs { + for _, sr := range srs { + for _, q := range qs { + dst0 := image.NewRGBA(drs[0]) + dst1 := image.NewRGBA(drs[0]) + Draw(dst0, dst0.Bounds(), blue, image.Point{}, Src) + Draw(dstWrapper{dst1}, dst1.Bounds(), srcWrapper{blue}, image.Point{}, Src) + Scale(dst0, dr, src, sr, q) + Scale(dstWrapper{dst1}, dr, srcWrapper{src}, sr, q) + if !bytes.Equal(dst0.Pix, dst1.Pix) { + t.Errorf("pix differ for dr=%v, src=%T, sr=%v, q=%T", dr, src, sr, q) + } + } + } + } + } } -func srcRGBA() (image.Image, error) { - return image.NewRGBA(image.Rect(0, 0, 1024, 768)), nil +func srcNRGBA(boundsHint image.Rectangle) (image.Image, error) { + m := image.NewNRGBA(boundsHint) + r := rand.New(rand.NewSource(1)) + for i := range m.Pix { + m.Pix[i] = uint8(r.Intn(256)) + } + return m, nil } -func srcUniform() (image.Image, error) { - return image.White, nil +func srcRGBA(boundsHint image.Rectangle) (image.Image, error) { + m := image.NewRGBA(boundsHint) + r := rand.New(rand.NewSource(2)) + for i := range m.Pix { + m.Pix[i] = uint8(r.Intn(256)) + } + // RGBA is alpha-premultiplied, so the R, G and B values should + // be <= the A values. + for i := 0; i < len(m.Pix); i += 4 { + m.Pix[i+0] = uint8(uint32(m.Pix[i+0]) * uint32(m.Pix[i+3]) / 0xff) + m.Pix[i+1] = uint8(uint32(m.Pix[i+1]) * uint32(m.Pix[i+3]) / 0xff) + m.Pix[i+2] = uint8(uint32(m.Pix[i+2]) * uint32(m.Pix[i+3]) / 0xff) + } + return m, nil } -func srcYCbCr() (image.Image, error) { - return image.NewYCbCr(image.Rect(0, 0, 1024, 768), image.YCbCrSubsampleRatio420), nil +func srcUniform(boundsHint image.Rectangle) (image.Image, error) { + return image.NewUniform(color.RGBA64{0x1234, 0x5555, 0x9181, 0xbeef}), nil } -func srcYCbCrLarge() (image.Image, error) { +func srcYCbCr(boundsHint image.Rectangle) (image.Image, error) { + m := image.NewYCbCr(boundsHint, image.YCbCrSubsampleRatio420) + r := rand.New(rand.NewSource(3)) + for i := range m.Y { + m.Y[i] = uint8(r.Intn(256)) + } + for i := range m.Cb { + m.Cb[i] = uint8(r.Intn(256)) + } + for i := range m.Cr { + m.Cr[i] = uint8(r.Intn(256)) + } + return m, nil +} + +func srcYCbCrLarge(boundsHint image.Rectangle) (image.Image, error) { // 3072 x 2304 is over 7 million pixels at 4:3, comparable to a // 2015 smart-phone camera's output. - return image.NewYCbCr(image.Rect(0, 0, 3072, 2304), image.YCbCrSubsampleRatio420), nil + return srcYCbCr(image.Rect(0, 0, 3072, 2304)) } -func srcTux() (image.Image, error) { +func srcTux(boundsHint image.Rectangle) (image.Image, error) { // tux.png is a 386 x 395 image. f, err := os.Open("../testdata/tux.png") if err != nil { @@ -121,9 +214,9 @@ func srcTux() (image.Image, error) { return src, nil } -func benchScale(b *testing.B, srcf func() (image.Image, error), w int, h int, q Interpolator) { +func benchScale(b *testing.B, srcf func(image.Rectangle) (image.Image, error), w int, h int, q Interpolator) { dst := image.NewRGBA(image.Rect(0, 0, w, h)) - src, err := srcf() + src, err := srcf(image.Rect(0, 0, 1024, 768)) if err != nil { b.Fatal(err) }