math/fixed: add some Point and Rectangle methods.
These are analogous to the image.Point and image.Rectangle methods in the standard library. Change-Id: If8997421a9aeb31d29cfe5eefb79cc481a39df82 Reviewed-on: https://go-review.googlesource.com/34753 Reviewed-by: David Crawshaw <crawshaw@golang.org>
This commit is contained in:
parent
3ba119400e
commit
1ff62c9216
32
font/font.go
32
font/font.go
|
@ -222,7 +222,7 @@ func BoundBytes(f Face, s []byte) (bounds fixed.Rectangle26_6, advance fixed.Int
|
|||
}
|
||||
b.Min.X += advance
|
||||
b.Max.X += advance
|
||||
bounds = grow(bounds, b)
|
||||
bounds = bounds.Union(b)
|
||||
advance += a
|
||||
prevC = c
|
||||
}
|
||||
|
@ -246,41 +246,13 @@ func BoundString(f Face, s string) (bounds fixed.Rectangle26_6, advance fixed.In
|
|||
}
|
||||
b.Min.X += advance
|
||||
b.Max.X += advance
|
||||
bounds = grow(bounds, b)
|
||||
bounds = bounds.Union(b)
|
||||
advance += a
|
||||
prevC = c
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
func empty(r fixed.Rectangle26_6) bool {
|
||||
return r.Min.X >= r.Max.X || r.Min.Y >= r.Max.Y
|
||||
}
|
||||
|
||||
// grow returns the smallest rectangle containing both b and b2.
|
||||
func grow(b, b2 fixed.Rectangle26_6) fixed.Rectangle26_6 {
|
||||
if empty(b) {
|
||||
return b2
|
||||
}
|
||||
if empty(b2) {
|
||||
return b
|
||||
}
|
||||
|
||||
if b.Min.X > b2.Min.X {
|
||||
b.Min.X = b2.Min.X
|
||||
}
|
||||
if b.Min.Y > b2.Min.Y {
|
||||
b.Min.Y = b2.Min.Y
|
||||
}
|
||||
if b.Max.X < b2.Max.X {
|
||||
b.Max.X = b2.Max.X
|
||||
}
|
||||
if b.Max.Y < b2.Max.Y {
|
||||
b.Max.Y = b2.Max.Y
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
// MeasureBytes returns how far dot would advance by drawing s with f.
|
||||
//
|
||||
// It is equivalent to MeasureString(string(s)) but may be more efficient.
|
||||
|
|
|
@ -167,6 +167,11 @@ func (p Point26_6) Div(k Int26_6) Point26_6 {
|
|||
return Point26_6{p.X * 64 / k, p.Y * 64 / k}
|
||||
}
|
||||
|
||||
// In returns whether p is in r.
|
||||
func (p Point26_6) In(r Rectangle26_6) bool {
|
||||
return r.Min.X <= p.X && p.X < r.Max.X && r.Min.Y <= p.Y && p.Y < r.Max.Y
|
||||
}
|
||||
|
||||
// Point52_12 is a 52.12 fixed-point coordinate pair.
|
||||
//
|
||||
// It is analogous to the image.Point type in the standard library.
|
||||
|
@ -194,6 +199,11 @@ func (p Point52_12) Div(k Int52_12) Point52_12 {
|
|||
return Point52_12{p.X * 4096 / k, p.Y * 4096 / k}
|
||||
}
|
||||
|
||||
// In returns whether p is in r.
|
||||
func (p Point52_12) In(r Rectangle52_12) bool {
|
||||
return r.Min.X <= p.X && p.X < r.Max.X && r.Min.Y <= p.Y && p.Y < r.Max.Y
|
||||
}
|
||||
|
||||
// R returns the integer values minX, minY, maxX, maxY as a Rectangle26_6.
|
||||
//
|
||||
// For example, passing the integer values (0, 1, 2, 3) yields
|
||||
|
@ -230,6 +240,86 @@ type Rectangle26_6 struct {
|
|||
Min, Max Point26_6
|
||||
}
|
||||
|
||||
// Add returns the rectangle r translated by p.
|
||||
func (r Rectangle26_6) Add(p Point26_6) Rectangle26_6 {
|
||||
return Rectangle26_6{
|
||||
Point26_6{r.Min.X + p.X, r.Min.Y + p.Y},
|
||||
Point26_6{r.Max.X + p.X, r.Max.Y + p.Y},
|
||||
}
|
||||
}
|
||||
|
||||
// Sub returns the rectangle r translated by -p.
|
||||
func (r Rectangle26_6) Sub(p Point26_6) Rectangle26_6 {
|
||||
return Rectangle26_6{
|
||||
Point26_6{r.Min.X - p.X, r.Min.Y - p.Y},
|
||||
Point26_6{r.Max.X - p.X, r.Max.Y - p.Y},
|
||||
}
|
||||
}
|
||||
|
||||
// Intersect returns the largest rectangle contained by both r and s. If the
|
||||
// two rectangles do not overlap then the zero rectangle will be returned.
|
||||
func (r Rectangle26_6) Intersect(s Rectangle26_6) Rectangle26_6 {
|
||||
if r.Min.X < s.Min.X {
|
||||
r.Min.X = s.Min.X
|
||||
}
|
||||
if r.Min.Y < s.Min.Y {
|
||||
r.Min.Y = s.Min.Y
|
||||
}
|
||||
if r.Max.X > s.Max.X {
|
||||
r.Max.X = s.Max.X
|
||||
}
|
||||
if r.Max.Y > s.Max.Y {
|
||||
r.Max.Y = s.Max.Y
|
||||
}
|
||||
// Letting r0 and s0 be the values of r and s at the time that the method
|
||||
// is called, this next line is equivalent to:
|
||||
//
|
||||
// if max(r0.Min.X, s0.Min.X) >= min(r0.Max.X, s0.Max.X) || likewiseForY { etc }
|
||||
if r.Empty() {
|
||||
return Rectangle26_6{}
|
||||
}
|
||||
return r
|
||||
}
|
||||
|
||||
// Union returns the smallest rectangle that contains both r and s.
|
||||
func (r Rectangle26_6) Union(s Rectangle26_6) Rectangle26_6 {
|
||||
if r.Empty() {
|
||||
return s
|
||||
}
|
||||
if s.Empty() {
|
||||
return r
|
||||
}
|
||||
if r.Min.X > s.Min.X {
|
||||
r.Min.X = s.Min.X
|
||||
}
|
||||
if r.Min.Y > s.Min.Y {
|
||||
r.Min.Y = s.Min.Y
|
||||
}
|
||||
if r.Max.X < s.Max.X {
|
||||
r.Max.X = s.Max.X
|
||||
}
|
||||
if r.Max.Y < s.Max.Y {
|
||||
r.Max.Y = s.Max.Y
|
||||
}
|
||||
return r
|
||||
}
|
||||
|
||||
// Empty returns whether the rectangle contains no points.
|
||||
func (r Rectangle26_6) Empty() bool {
|
||||
return r.Min.X >= r.Max.X || r.Min.Y >= r.Max.Y
|
||||
}
|
||||
|
||||
// In returns whether every point in r is in s.
|
||||
func (r Rectangle26_6) In(s Rectangle26_6) bool {
|
||||
if r.Empty() {
|
||||
return true
|
||||
}
|
||||
// Note that r.Max is an exclusive bound for r, so that r.In(s)
|
||||
// does not require that r.Max.In(s).
|
||||
return s.Min.X <= r.Min.X && r.Max.X <= s.Max.X &&
|
||||
s.Min.Y <= r.Min.Y && r.Max.Y <= s.Max.Y
|
||||
}
|
||||
|
||||
// Rectangle52_12 is a 52.12 fixed-point coordinate rectangle. The Min bound is
|
||||
// inclusive and the Max bound is exclusive. It is well-formed if Min.X <=
|
||||
// Max.X and likewise for Y.
|
||||
|
@ -238,3 +328,83 @@ type Rectangle26_6 struct {
|
|||
type Rectangle52_12 struct {
|
||||
Min, Max Point52_12
|
||||
}
|
||||
|
||||
// Add returns the rectangle r translated by p.
|
||||
func (r Rectangle52_12) Add(p Point52_12) Rectangle52_12 {
|
||||
return Rectangle52_12{
|
||||
Point52_12{r.Min.X + p.X, r.Min.Y + p.Y},
|
||||
Point52_12{r.Max.X + p.X, r.Max.Y + p.Y},
|
||||
}
|
||||
}
|
||||
|
||||
// Sub returns the rectangle r translated by -p.
|
||||
func (r Rectangle52_12) Sub(p Point52_12) Rectangle52_12 {
|
||||
return Rectangle52_12{
|
||||
Point52_12{r.Min.X - p.X, r.Min.Y - p.Y},
|
||||
Point52_12{r.Max.X - p.X, r.Max.Y - p.Y},
|
||||
}
|
||||
}
|
||||
|
||||
// Intersect returns the largest rectangle contained by both r and s. If the
|
||||
// two rectangles do not overlap then the zero rectangle will be returned.
|
||||
func (r Rectangle52_12) Intersect(s Rectangle52_12) Rectangle52_12 {
|
||||
if r.Min.X < s.Min.X {
|
||||
r.Min.X = s.Min.X
|
||||
}
|
||||
if r.Min.Y < s.Min.Y {
|
||||
r.Min.Y = s.Min.Y
|
||||
}
|
||||
if r.Max.X > s.Max.X {
|
||||
r.Max.X = s.Max.X
|
||||
}
|
||||
if r.Max.Y > s.Max.Y {
|
||||
r.Max.Y = s.Max.Y
|
||||
}
|
||||
// Letting r0 and s0 be the values of r and s at the time that the method
|
||||
// is called, this next line is equivalent to:
|
||||
//
|
||||
// if max(r0.Min.X, s0.Min.X) >= min(r0.Max.X, s0.Max.X) || likewiseForY { etc }
|
||||
if r.Empty() {
|
||||
return Rectangle52_12{}
|
||||
}
|
||||
return r
|
||||
}
|
||||
|
||||
// Union returns the smallest rectangle that contains both r and s.
|
||||
func (r Rectangle52_12) Union(s Rectangle52_12) Rectangle52_12 {
|
||||
if r.Empty() {
|
||||
return s
|
||||
}
|
||||
if s.Empty() {
|
||||
return r
|
||||
}
|
||||
if r.Min.X > s.Min.X {
|
||||
r.Min.X = s.Min.X
|
||||
}
|
||||
if r.Min.Y > s.Min.Y {
|
||||
r.Min.Y = s.Min.Y
|
||||
}
|
||||
if r.Max.X < s.Max.X {
|
||||
r.Max.X = s.Max.X
|
||||
}
|
||||
if r.Max.Y < s.Max.Y {
|
||||
r.Max.Y = s.Max.Y
|
||||
}
|
||||
return r
|
||||
}
|
||||
|
||||
// Empty returns whether the rectangle contains no points.
|
||||
func (r Rectangle52_12) Empty() bool {
|
||||
return r.Min.X >= r.Max.X || r.Min.Y >= r.Max.Y
|
||||
}
|
||||
|
||||
// In returns whether every point in r is in s.
|
||||
func (r Rectangle52_12) In(s Rectangle52_12) bool {
|
||||
if r.Empty() {
|
||||
return true
|
||||
}
|
||||
// Note that r.Max is an exclusive bound for r, so that r.In(s)
|
||||
// does not require that r.Max.In(s).
|
||||
return s.Min.X <= r.Min.X && r.Max.X <= s.Max.X &&
|
||||
s.Min.Y <= r.Min.Y && r.Max.Y <= s.Max.Y
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue
Block a user