golang-freetype/raster/stroke.go
Michael Fogleman aed127b02f Fix Capper & Joiner bugs introduced by 856a70c
Some constants were not updated properly when switching
from raster.Point to fixed.26_6
2016-02-18 10:39:21 -05:00

484 lines
15 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2010 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
package raster
import (
"golang.org/x/image/math/fixed"
)
// Two points are considered practically equal if the square of the distance
// between them is less than one quarter (i.e. 1024 / 4096).
const epsilon = fixed.Int52_12(1024)
// A Capper signifies how to begin or end a stroked path.
type Capper interface {
// Cap adds a cap to p given a pivot point and the normal vector of a
// terminal segment. The normal's length is half of the stroke width.
Cap(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6)
}
// The CapperFunc type adapts an ordinary function to be a Capper.
type CapperFunc func(Adder, fixed.Int26_6, fixed.Point26_6, fixed.Point26_6)
func (f CapperFunc) Cap(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
f(p, halfWidth, pivot, n1)
}
// A Joiner signifies how to join interior nodes of a stroked path.
type Joiner interface {
// Join adds a join to the two sides of a stroked path given a pivot
// point and the normal vectors of the trailing and leading segments.
// Both normals have length equal to half of the stroke width.
Join(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6)
}
// The JoinerFunc type adapts an ordinary function to be a Joiner.
type JoinerFunc func(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6)
func (f JoinerFunc) Join(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
f(lhs, rhs, halfWidth, pivot, n0, n1)
}
// RoundCapper adds round caps to a stroked path.
var RoundCapper Capper = CapperFunc(roundCapper)
func roundCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
// The cubic Bézier approximation to a circle involves the magic number
// (√2 - 1) * 4/3, which is approximately 35/64.
const k = 35
e := pRot90CCW(n1)
side := pivot.Add(e)
start, end := pivot.Sub(n1), pivot.Add(n1)
d, e := n1.Mul(k), e.Mul(k)
p.Add3(start.Add(e), side.Sub(d), side)
p.Add3(side.Add(d), end.Add(e), end)
}
// ButtCapper adds butt caps to a stroked path.
var ButtCapper Capper = CapperFunc(buttCapper)
func buttCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
p.Add1(pivot.Add(n1))
}
// SquareCapper adds square caps to a stroked path.
var SquareCapper Capper = CapperFunc(squareCapper)
func squareCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
e := pRot90CCW(n1)
side := pivot.Add(e)
p.Add1(side.Sub(n1))
p.Add1(side.Add(n1))
p.Add1(pivot.Add(n1))
}
// RoundJoiner adds round joins to a stroked path.
var RoundJoiner Joiner = JoinerFunc(roundJoiner)
func roundJoiner(lhs, rhs Adder, haflWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
dot := pDot(pRot90CW(n0), n1)
if dot >= 0 {
addArc(lhs, pivot, n0, n1)
rhs.Add1(pivot.Sub(n1))
} else {
lhs.Add1(pivot.Add(n1))
addArc(rhs, pivot, pNeg(n0), pNeg(n1))
}
}
// BevelJoiner adds bevel joins to a stroked path.
var BevelJoiner Joiner = JoinerFunc(bevelJoiner)
func bevelJoiner(lhs, rhs Adder, haflWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
lhs.Add1(pivot.Add(n1))
rhs.Add1(pivot.Sub(n1))
}
// addArc adds a circular arc from pivot+n0 to pivot+n1 to p. The shorter of
// the two possible arcs is taken, i.e. the one spanning <= 180 degrees. The
// two vectors n0 and n1 must be of equal length.
func addArc(p Adder, pivot, n0, n1 fixed.Point26_6) {
// r2 is the square of the length of n0.
r2 := pDot(n0, n0)
if r2 < epsilon {
// The arc radius is so small that we collapse to a straight line.
p.Add1(pivot.Add(n1))
return
}
// We approximate the arc by 0, 1, 2 or 3 45-degree quadratic segments plus
// a final quadratic segment from s to n1. Each 45-degree segment has
// control points {1, 0}, {1, tan(π/8)} and {1/√2, 1/√2} suitably scaled,
// rotated and translated. tan(π/8) is approximately 27/64.
const tpo8 = 27
var s fixed.Point26_6
// We determine which octant the angle between n0 and n1 is in via three
// dot products. m0, m1 and m2 are n0 rotated clockwise by 45, 90 and 135
// degrees.
m0 := pRot45CW(n0)
m1 := pRot90CW(n0)
m2 := pRot90CW(m0)
if pDot(m1, n1) >= 0 {
if pDot(n0, n1) >= 0 {
if pDot(m2, n1) <= 0 {
// n1 is between 0 and 45 degrees clockwise of n0.
s = n0
} else {
// n1 is between 45 and 90 degrees clockwise of n0.
p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0))
s = m0
}
} else {
pm1, n0t := pivot.Add(m1), n0.Mul(tpo8)
p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0))
p.Add2(pm1.Add(n0t), pm1)
if pDot(m0, n1) >= 0 {
// n1 is between 90 and 135 degrees clockwise of n0.
s = m1
} else {
// n1 is between 135 and 180 degrees clockwise of n0.
p.Add2(pm1.Sub(n0t), pivot.Add(m2))
s = m2
}
}
} else {
if pDot(n0, n1) >= 0 {
if pDot(m0, n1) >= 0 {
// n1 is between 0 and 45 degrees counter-clockwise of n0.
s = n0
} else {
// n1 is between 45 and 90 degrees counter-clockwise of n0.
p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2))
s = pNeg(m2)
}
} else {
pm1, n0t := pivot.Sub(m1), n0.Mul(tpo8)
p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2))
p.Add2(pm1.Add(n0t), pm1)
if pDot(m2, n1) <= 0 {
// n1 is between 90 and 135 degrees counter-clockwise of n0.
s = pNeg(m1)
} else {
// n1 is between 135 and 180 degrees counter-clockwise of n0.
p.Add2(pm1.Sub(n0t), pivot.Sub(m0))
s = pNeg(m0)
}
}
}
// The final quadratic segment has two endpoints s and n1 and the middle
// control point is a multiple of s.Add(n1), i.e. it is on the angle
// bisector of those two points. The multiple ranges between 128/256 and
// 150/256 as the angle between s and n1 ranges between 0 and 45 degrees.
//
// When the angle is 0 degrees (i.e. s and n1 are coincident) then
// s.Add(n1) is twice s and so the middle control point of the degenerate
// quadratic segment should be half s.Add(n1), and half = 128/256.
//
// When the angle is 45 degrees then 150/256 is the ratio of the lengths of
// the two vectors {1, tan(π/8)} and {1 + 1/√2, 1/√2}.
//
// d is the normalized dot product between s and n1. Since the angle ranges
// between 0 and 45 degrees then d ranges between 256/256 and 181/256.
d := 256 * pDot(s, n1) / r2
multiple := fixed.Int26_6(150-(150-128)*(d-181)/(256-181)) >> 2
p.Add2(pivot.Add(s.Add(n1).Mul(multiple)), pivot.Add(n1))
}
// midpoint returns the midpoint of two Points.
func midpoint(a, b fixed.Point26_6) fixed.Point26_6 {
return fixed.Point26_6{(a.X + b.X) / 2, (a.Y + b.Y) / 2}
}
// angleGreaterThan45 returns whether the angle between two vectors is more
// than 45 degrees.
func angleGreaterThan45(v0, v1 fixed.Point26_6) bool {
v := pRot45CCW(v0)
return pDot(v, v1) < 0 || pDot(pRot90CW(v), v1) < 0
}
// interpolate returns the point (1-t)*a + t*b.
func interpolate(a, b fixed.Point26_6, t fixed.Int52_12) fixed.Point26_6 {
s := 1<<12 - t
x := s*fixed.Int52_12(a.X) + t*fixed.Int52_12(b.X)
y := s*fixed.Int52_12(a.Y) + t*fixed.Int52_12(b.Y)
return fixed.Point26_6{fixed.Int26_6(x >> 12), fixed.Int26_6(y >> 12)}
}
// curviest2 returns the value of t for which the quadratic parametric curve
// (1-t)²*a + 2*t*(1-t).b + t²*c has maximum curvature.
//
// The curvature of the parametric curve f(t) = (x(t), y(t)) is
// |xy″-yx″| / (x²+y²)^(3/2).
//
// Let d = b-a and e = c-2*b+a, so that f(t) = 2*d+2*e*t and f″(t) = 2*e.
// The curvature's numerator is (2*dx+2*ex*t)*(2*ey)-(2*dy+2*ey*t)*(2*ex),
// which simplifies to 4*dx*ey-4*dy*ex, which is constant with respect to t.
//
// Thus, curvature is extreme where the denominator is extreme, i.e. where
// (x²+y²) is extreme. The first order condition is that
// 2*x*x″+2*y*y″ = 0, or (dx+ex*t)*ex + (dy+ey*t)*ey = 0.
// Solving for t gives t = -(dx*ex+dy*ey) / (ex*ex+ey*ey).
func curviest2(a, b, c fixed.Point26_6) fixed.Int52_12 {
dx := int64(b.X - a.X)
dy := int64(b.Y - a.Y)
ex := int64(c.X - 2*b.X + a.X)
ey := int64(c.Y - 2*b.Y + a.Y)
if ex == 0 && ey == 0 {
return 2048
}
return fixed.Int52_12(-4096 * (dx*ex + dy*ey) / (ex*ex + ey*ey))
}
// A stroker holds state for stroking a path.
type stroker struct {
// p is the destination that records the stroked path.
p Adder
// u is the half-width of the stroke.
u fixed.Int26_6
// cr and jr specify how to end and connect path segments.
cr Capper
jr Joiner
// r is the reverse path. Stroking a path involves constructing two
// parallel paths 2*u apart. The first path is added immediately to p,
// the second path is accumulated in r and eventually added in reverse.
r Path
// a is the most recent segment point. anorm is the segment normal of
// length u at that point.
a, anorm fixed.Point26_6
}
// addNonCurvy2 adds a quadratic segment to the stroker, where the segment
// defined by (k.a, b, c) achieves maximum curvature at either k.a or c.
func (k *stroker) addNonCurvy2(b, c fixed.Point26_6) {
// We repeatedly divide the segment at its middle until it is straight
// enough to approximate the stroke by just translating the control points.
// ds and ps are stacks of depths and points. t is the top of the stack.
const maxDepth = 5
var (
ds [maxDepth + 1]int
ps [2*maxDepth + 3]fixed.Point26_6
t int
)
// Initially the ps stack has one quadratic segment of depth zero.
ds[0] = 0
ps[2] = k.a
ps[1] = b
ps[0] = c
anorm := k.anorm
var cnorm fixed.Point26_6
for {
depth := ds[t]
a := ps[2*t+2]
b := ps[2*t+1]
c := ps[2*t+0]
ab := b.Sub(a)
bc := c.Sub(b)
abIsSmall := pDot(ab, ab) < fixed.Int52_12(1<<12)
bcIsSmall := pDot(bc, bc) < fixed.Int52_12(1<<12)
if abIsSmall && bcIsSmall {
// Approximate the segment by a circular arc.
cnorm = pRot90CCW(pNorm(bc, k.u))
mac := midpoint(a, c)
addArc(k.p, mac, anorm, cnorm)
addArc(&k.r, mac, pNeg(anorm), pNeg(cnorm))
} else if depth < maxDepth && angleGreaterThan45(ab, bc) {
// Divide the segment in two and push both halves on the stack.
mab := midpoint(a, b)
mbc := midpoint(b, c)
t++
ds[t+0] = depth + 1
ds[t-1] = depth + 1
ps[2*t+2] = a
ps[2*t+1] = mab
ps[2*t+0] = midpoint(mab, mbc)
ps[2*t-1] = mbc
continue
} else {
// Translate the control points.
bnorm := pRot90CCW(pNorm(c.Sub(a), k.u))
cnorm = pRot90CCW(pNorm(bc, k.u))
k.p.Add2(b.Add(bnorm), c.Add(cnorm))
k.r.Add2(b.Sub(bnorm), c.Sub(cnorm))
}
if t == 0 {
k.a, k.anorm = c, cnorm
return
}
t--
anorm = cnorm
}
panic("unreachable")
}
// Add1 adds a linear segment to the stroker.
func (k *stroker) Add1(b fixed.Point26_6) {
bnorm := pRot90CCW(pNorm(b.Sub(k.a), k.u))
if len(k.r) == 0 {
k.p.Start(k.a.Add(bnorm))
k.r.Start(k.a.Sub(bnorm))
} else {
k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, bnorm)
}
k.p.Add1(b.Add(bnorm))
k.r.Add1(b.Sub(bnorm))
k.a, k.anorm = b, bnorm
}
// Add2 adds a quadratic segment to the stroker.
func (k *stroker) Add2(b, c fixed.Point26_6) {
ab := b.Sub(k.a)
bc := c.Sub(b)
abnorm := pRot90CCW(pNorm(ab, k.u))
if len(k.r) == 0 {
k.p.Start(k.a.Add(abnorm))
k.r.Start(k.a.Sub(abnorm))
} else {
k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, abnorm)
}
// Approximate nearly-degenerate quadratics by linear segments.
abIsSmall := pDot(ab, ab) < epsilon
bcIsSmall := pDot(bc, bc) < epsilon
if abIsSmall || bcIsSmall {
acnorm := pRot90CCW(pNorm(c.Sub(k.a), k.u))
k.p.Add1(c.Add(acnorm))
k.r.Add1(c.Sub(acnorm))
k.a, k.anorm = c, acnorm
return
}
// The quadratic segment (k.a, b, c) has a point of maximum curvature.
// If this occurs at an end point, we process the segment as a whole.
t := curviest2(k.a, b, c)
if t <= 0 || 4096 <= t {
k.addNonCurvy2(b, c)
return
}
// Otherwise, we perform a de Casteljau decomposition at the point of
// maximum curvature and process the two straighter parts.
mab := interpolate(k.a, b, t)
mbc := interpolate(b, c, t)
mabc := interpolate(mab, mbc, t)
// If the vectors ab and bc are close to being in opposite directions,
// then the decomposition can become unstable, so we approximate the
// quadratic segment by two linear segments joined by an arc.
bcnorm := pRot90CCW(pNorm(bc, k.u))
if pDot(abnorm, bcnorm) < -fixed.Int52_12(k.u)*fixed.Int52_12(k.u)*2047/2048 {
pArc := pDot(abnorm, bc) < 0
k.p.Add1(mabc.Add(abnorm))
if pArc {
z := pRot90CW(abnorm)
addArc(k.p, mabc, abnorm, z)
addArc(k.p, mabc, z, bcnorm)
}
k.p.Add1(mabc.Add(bcnorm))
k.p.Add1(c.Add(bcnorm))
k.r.Add1(mabc.Sub(abnorm))
if !pArc {
z := pRot90CW(abnorm)
addArc(&k.r, mabc, pNeg(abnorm), z)
addArc(&k.r, mabc, z, pNeg(bcnorm))
}
k.r.Add1(mabc.Sub(bcnorm))
k.r.Add1(c.Sub(bcnorm))
k.a, k.anorm = c, bcnorm
return
}
// Process the decomposed parts.
k.addNonCurvy2(mab, mabc)
k.addNonCurvy2(mbc, c)
}
// Add3 adds a cubic segment to the stroker.
func (k *stroker) Add3(b, c, d fixed.Point26_6) {
panic("freetype/raster: stroke unimplemented for cubic segments")
}
// stroke adds the stroked Path q to p, where q consists of exactly one curve.
func (k *stroker) stroke(q Path) {
// Stroking is implemented by deriving two paths each k.u apart from q.
// The left-hand-side path is added immediately to k.p; the right-hand-side
// path is accumulated in k.r. Once we've finished adding the LHS to k.p,
// we add the RHS in reverse order.
k.r = make(Path, 0, len(q))
k.a = fixed.Point26_6{q[1], q[2]}
for i := 4; i < len(q); {
switch q[i] {
case 1:
k.Add1(
fixed.Point26_6{q[i+1], q[i+2]},
)
i += 4
case 2:
k.Add2(
fixed.Point26_6{q[i+1], q[i+2]},
fixed.Point26_6{q[i+3], q[i+4]},
)
i += 6
case 3:
k.Add3(
fixed.Point26_6{q[i+1], q[i+2]},
fixed.Point26_6{q[i+3], q[i+4]},
fixed.Point26_6{q[i+5], q[i+6]},
)
i += 8
default:
panic("freetype/raster: bad path")
}
}
if len(k.r) == 0 {
return
}
// TODO(nigeltao): if q is a closed curve then we should join the first and
// last segments instead of capping them.
k.cr.Cap(k.p, k.u, q.lastPoint(), pNeg(k.anorm))
addPathReversed(k.p, k.r)
pivot := q.firstPoint()
k.cr.Cap(k.p, k.u, pivot, pivot.Sub(fixed.Point26_6{k.r[1], k.r[2]}))
}
// Stroke adds q stroked with the given width to p. The result is typically
// self-intersecting and should be rasterized with UseNonZeroWinding.
// cr and jr may be nil, which defaults to a RoundCapper or RoundJoiner.
func Stroke(p Adder, q Path, width fixed.Int26_6, cr Capper, jr Joiner) {
if len(q) == 0 {
return
}
if cr == nil {
cr = RoundCapper
}
if jr == nil {
jr = RoundJoiner
}
if q[0] != 0 {
panic("freetype/raster: bad path")
}
s := stroker{p: p, u: width / 2, cr: cr, jr: jr}
i := 0
for j := 4; j < len(q); {
switch q[j] {
case 0:
s.stroke(q[i:j])
i, j = j, j+4
case 1:
j += 4
case 2:
j += 6
case 3:
j += 8
default:
panic("freetype/raster: bad path")
}
}
s.stroke(q[i:])
}