c661e372c6
R=bsiegert CC=golang-dev https://codereview.appspot.com/13965043
1269 lines
30 KiB
Go
1269 lines
30 KiB
Go
// Copyright 2012 The Freetype-Go Authors. All rights reserved.
|
|
// Use of this source code is governed by your choice of either the
|
|
// FreeType License or the GNU General Public License version 2 (or
|
|
// any later version), both of which can be found in the LICENSE file.
|
|
|
|
package truetype
|
|
|
|
// This file implements a Truetype bytecode interpreter.
|
|
// The opcodes are described at https://developer.apple.com/fonts/TTRefMan/RM05/Chap5.html
|
|
|
|
import (
|
|
"errors"
|
|
)
|
|
|
|
// callStackEntry is a bytecode call stack entry.
|
|
type callStackEntry struct {
|
|
program []byte
|
|
pc int
|
|
loopCount int32
|
|
}
|
|
|
|
// Hinter implements bytecode hinting. Pass a Hinter to GlyphBuf.Load to hint
|
|
// the resulting glyph. A Hinter can be re-used to hint a series of glyphs from
|
|
// a Font.
|
|
type Hinter struct {
|
|
stack, store []int32
|
|
|
|
// functions is a map from function number to bytecode.
|
|
functions map[int32][]byte
|
|
|
|
// g, font and scale are the glyph buffer, font and scale last used for
|
|
// this Hinter. Changing the font will require running the new font's
|
|
// fpgm bytecode. Changing either will require running the font's prep
|
|
// bytecode.
|
|
g *GlyphBuf
|
|
font *Font
|
|
scale int32
|
|
|
|
// gs and defaultGS are the current and default graphics state. The
|
|
// default graphics state is the global default graphics state after
|
|
// the font's fpgm and prep programs have been run.
|
|
gs, defaultGS graphicsState
|
|
|
|
// twilightXxx are points created in the twilight zone.
|
|
twilightPoint, twilightUnhinted, twilightInFontUnits []Point
|
|
}
|
|
|
|
// graphicsState is described at https://developer.apple.com/fonts/TTRefMan/RM04/Chap4.html
|
|
type graphicsState struct {
|
|
// Projection vector, freedom vector and dual projection vector.
|
|
pv, fv, dv [2]f2dot14
|
|
// Reference points and zone pointers.
|
|
rp, zp [3]int32
|
|
// Control Value / Single Width Cut-In.
|
|
controlValueCutIn, singleWidthCutIn, singleWidth f26dot6
|
|
// Delta base / shift.
|
|
deltaBase, deltaShift int32
|
|
// Minimum distance.
|
|
minDist f26dot6
|
|
// Loop count.
|
|
loop int32
|
|
// Rounding policy.
|
|
roundPeriod, roundPhase, roundThreshold f26dot6
|
|
// Auto-flip.
|
|
autoFlip bool
|
|
}
|
|
|
|
var globalDefaultGS = graphicsState{
|
|
pv: [2]f2dot14{0x4000, 0}, // Unit vector along the X axis.
|
|
fv: [2]f2dot14{0x4000, 0},
|
|
dv: [2]f2dot14{0x4000, 0},
|
|
zp: [3]int32{1, 1, 1},
|
|
controlValueCutIn: (17 << 6) / 16, // 17/16 as an f26dot6.
|
|
deltaBase: 9,
|
|
deltaShift: 3,
|
|
minDist: 1 << 6, // 1 as an f26dot6.
|
|
loop: 1,
|
|
roundPeriod: 1 << 6, // 1 as an f26dot6.
|
|
roundThreshold: 1 << 5, // 1/2 as an f26dot6.
|
|
autoFlip: true,
|
|
}
|
|
|
|
func resetTwilightPoints(f *Font, p []Point) []Point {
|
|
// TODO: the C Freetype code uses n+4 for the 4 phantom points, but a
|
|
// comment there says "(do we need this?)". Do we need to use n+4 here?
|
|
if n := int(f.maxTwilightPoints); n <= cap(p) {
|
|
p = p[:n]
|
|
for i := range p {
|
|
p[i] = Point{}
|
|
}
|
|
} else {
|
|
p = make([]Point, n)
|
|
}
|
|
return p
|
|
}
|
|
|
|
func (h *Hinter) init(g *GlyphBuf, f *Font, scale int32) error {
|
|
h.g = g
|
|
h.twilightPoint = resetTwilightPoints(f, h.twilightPoint)
|
|
h.twilightUnhinted = resetTwilightPoints(f, h.twilightUnhinted)
|
|
h.twilightInFontUnits = resetTwilightPoints(f, h.twilightInFontUnits)
|
|
|
|
rescale := h.scale != scale
|
|
if h.font != f {
|
|
h.font, rescale = f, true
|
|
if h.functions == nil {
|
|
h.functions = make(map[int32][]byte)
|
|
} else {
|
|
for k := range h.functions {
|
|
delete(h.functions, k)
|
|
}
|
|
}
|
|
|
|
if x := int(f.maxStackElements); x > len(h.stack) {
|
|
x += 255
|
|
x &^= 255
|
|
h.stack = make([]int32, x)
|
|
}
|
|
if x := int(f.maxStorage); x > len(h.store) {
|
|
x += 15
|
|
x &^= 15
|
|
h.store = make([]int32, x)
|
|
}
|
|
if len(f.fpgm) != 0 {
|
|
if err := h.run(f.fpgm); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
|
|
if rescale {
|
|
h.scale = scale
|
|
|
|
h.defaultGS = globalDefaultGS
|
|
|
|
if len(f.prep) != 0 {
|
|
if err := h.run(f.prep); err != nil {
|
|
return err
|
|
}
|
|
h.defaultGS = h.gs
|
|
// The MS rasterizer doesn't allow the following graphics state
|
|
// variables to be modified by the CVT program.
|
|
h.defaultGS.pv = globalDefaultGS.pv
|
|
h.defaultGS.fv = globalDefaultGS.fv
|
|
h.defaultGS.dv = globalDefaultGS.dv
|
|
h.defaultGS.rp = globalDefaultGS.rp
|
|
h.defaultGS.zp = globalDefaultGS.zp
|
|
h.defaultGS.loop = globalDefaultGS.loop
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (h *Hinter) run(program []byte) error {
|
|
h.gs = h.defaultGS
|
|
|
|
if len(program) > 50000 {
|
|
return errors.New("truetype: hinting: too many instructions")
|
|
}
|
|
var (
|
|
steps, pc, top int
|
|
opcode uint8
|
|
|
|
callStack [32]callStackEntry
|
|
callStackTop int
|
|
)
|
|
|
|
for 0 <= pc && pc < len(program) {
|
|
steps++
|
|
if steps == 100000 {
|
|
return errors.New("truetype: hinting: too many steps")
|
|
}
|
|
opcode = program[pc]
|
|
if popCount[opcode] == q {
|
|
return errors.New("truetype: hinting: unimplemented instruction")
|
|
}
|
|
if top < int(popCount[opcode]) {
|
|
return errors.New("truetype: hinting: stack underflow")
|
|
}
|
|
switch opcode {
|
|
|
|
case opSVTCA0:
|
|
h.gs.pv = [2]f2dot14{0, 0x4000}
|
|
h.gs.fv = [2]f2dot14{0, 0x4000}
|
|
h.gs.dv = [2]f2dot14{0, 0x4000}
|
|
|
|
case opSVTCA1:
|
|
h.gs.pv = [2]f2dot14{0x4000, 0}
|
|
h.gs.fv = [2]f2dot14{0x4000, 0}
|
|
h.gs.dv = [2]f2dot14{0x4000, 0}
|
|
|
|
case opSPVTCA0:
|
|
h.gs.pv = [2]f2dot14{0, 0x4000}
|
|
h.gs.dv = [2]f2dot14{0, 0x4000}
|
|
|
|
case opSPVTCA1:
|
|
h.gs.pv = [2]f2dot14{0x4000, 0}
|
|
h.gs.dv = [2]f2dot14{0x4000, 0}
|
|
|
|
case opSFVTCA0:
|
|
h.gs.fv = [2]f2dot14{0, 0x4000}
|
|
|
|
case opSFVTCA1:
|
|
h.gs.fv = [2]f2dot14{0x4000, 0}
|
|
|
|
case opSPVFS:
|
|
top -= 2
|
|
h.gs.pv[0] = f2dot14(h.stack[top+0])
|
|
h.gs.pv[1] = f2dot14(h.stack[top+1])
|
|
// TODO: normalize h.gs.pv ??
|
|
// TODO: h.gs.dv = h.gs.pv ??
|
|
|
|
case opSFVFS:
|
|
top -= 2
|
|
h.gs.fv[0] = f2dot14(h.stack[top+0])
|
|
h.gs.fv[1] = f2dot14(h.stack[top+1])
|
|
// TODO: normalize h.gs.fv ??
|
|
|
|
case opGPV:
|
|
if top+1 >= len(h.stack) {
|
|
return errors.New("truetype: hinting: stack overflow")
|
|
}
|
|
h.stack[top+0] = int32(h.gs.pv[0])
|
|
h.stack[top+1] = int32(h.gs.pv[1])
|
|
top += 2
|
|
|
|
case opGFV:
|
|
if top+1 >= len(h.stack) {
|
|
return errors.New("truetype: hinting: stack overflow")
|
|
}
|
|
h.stack[top+0] = int32(h.gs.fv[0])
|
|
h.stack[top+1] = int32(h.gs.fv[1])
|
|
top += 2
|
|
|
|
case opSFVTPV:
|
|
h.gs.fv = h.gs.pv
|
|
|
|
case opSRP0, opSRP1, opSRP2:
|
|
top--
|
|
h.gs.rp[opcode-opSRP0] = h.stack[top]
|
|
|
|
case opSZP0, opSZP1, opSZP2:
|
|
top--
|
|
h.gs.zp[opcode-opSZP0] = h.stack[top]
|
|
|
|
case opSZPS:
|
|
top--
|
|
h.gs.zp[0] = h.stack[top]
|
|
h.gs.zp[1] = h.stack[top]
|
|
h.gs.zp[2] = h.stack[top]
|
|
|
|
case opSLOOP:
|
|
top--
|
|
if h.stack[top] <= 0 {
|
|
return errors.New("truetype: hinting: invalid data")
|
|
}
|
|
h.gs.loop = h.stack[top]
|
|
|
|
case opRTG:
|
|
h.gs.roundPeriod = 1 << 6
|
|
h.gs.roundPhase = 0
|
|
h.gs.roundThreshold = 1 << 5
|
|
|
|
case opRTHG:
|
|
h.gs.roundPeriod = 1 << 6
|
|
h.gs.roundPhase = 1 << 5
|
|
h.gs.roundThreshold = 1 << 5
|
|
|
|
case opSMD:
|
|
top--
|
|
h.gs.minDist = f26dot6(h.stack[top])
|
|
|
|
case opELSE:
|
|
opcode = 1
|
|
goto ifelse
|
|
|
|
case opJMPR:
|
|
top--
|
|
pc += int(h.stack[top])
|
|
continue
|
|
|
|
case opSCVTCI:
|
|
top--
|
|
h.gs.controlValueCutIn = f26dot6(h.stack[top])
|
|
|
|
case opSSWCI:
|
|
top--
|
|
h.gs.singleWidthCutIn = f26dot6(h.stack[top])
|
|
|
|
case opSSW:
|
|
top--
|
|
h.gs.singleWidth = f26dot6(h.stack[top])
|
|
|
|
case opDUP:
|
|
if top >= len(h.stack) {
|
|
return errors.New("truetype: hinting: stack overflow")
|
|
}
|
|
h.stack[top] = h.stack[top-1]
|
|
top++
|
|
|
|
case opPOP:
|
|
top--
|
|
|
|
case opCLEAR:
|
|
top = 0
|
|
|
|
case opSWAP:
|
|
h.stack[top-1], h.stack[top-2] = h.stack[top-2], h.stack[top-1]
|
|
|
|
case opDEPTH:
|
|
if top >= len(h.stack) {
|
|
return errors.New("truetype: hinting: stack overflow")
|
|
}
|
|
h.stack[top] = int32(top)
|
|
top++
|
|
|
|
case opCINDEX, opMINDEX:
|
|
x := int(h.stack[top-1])
|
|
if x <= 0 || x >= top {
|
|
return errors.New("truetype: hinting: invalid data")
|
|
}
|
|
h.stack[top-1] = h.stack[top-1-x]
|
|
if opcode == opMINDEX {
|
|
copy(h.stack[top-1-x:top-1], h.stack[top-x:top])
|
|
top--
|
|
}
|
|
|
|
case opLOOPCALL, opCALL:
|
|
if callStackTop >= len(callStack) {
|
|
return errors.New("truetype: hinting: call stack overflow")
|
|
}
|
|
top--
|
|
f, ok := h.functions[h.stack[top]]
|
|
if !ok {
|
|
return errors.New("truetype: hinting: undefined function")
|
|
}
|
|
callStack[callStackTop] = callStackEntry{program, pc, 1}
|
|
if opcode == opLOOPCALL {
|
|
top--
|
|
if h.stack[top] == 0 {
|
|
break
|
|
}
|
|
callStack[callStackTop].loopCount = h.stack[top]
|
|
}
|
|
callStackTop++
|
|
program, pc = f, 0
|
|
continue
|
|
|
|
case opFDEF:
|
|
// Save all bytecode up until the next ENDF.
|
|
startPC := pc + 1
|
|
fdefloop:
|
|
for {
|
|
pc++
|
|
if pc >= len(program) {
|
|
return errors.New("truetype: hinting: unbalanced FDEF")
|
|
}
|
|
switch program[pc] {
|
|
case opFDEF:
|
|
return errors.New("truetype: hinting: nested FDEF")
|
|
case opENDF:
|
|
top--
|
|
h.functions[h.stack[top]] = program[startPC : pc+1]
|
|
break fdefloop
|
|
default:
|
|
var ok bool
|
|
pc, ok = skipInstructionPayload(program, pc)
|
|
if !ok {
|
|
return errors.New("truetype: hinting: unbalanced FDEF")
|
|
}
|
|
}
|
|
}
|
|
|
|
case opENDF:
|
|
if callStackTop == 0 {
|
|
return errors.New("truetype: hinting: call stack underflow")
|
|
}
|
|
callStackTop--
|
|
callStack[callStackTop].loopCount--
|
|
if callStack[callStackTop].loopCount != 0 {
|
|
callStackTop++
|
|
pc = 0
|
|
continue
|
|
}
|
|
program, pc = callStack[callStackTop].program, callStack[callStackTop].pc
|
|
|
|
case opMDAP0, opMDAP1:
|
|
top--
|
|
i := h.stack[top]
|
|
p := h.point(0, current, i)
|
|
if p == nil {
|
|
return errors.New("truetype: hinting: point out of range")
|
|
}
|
|
distance := f26dot6(0)
|
|
if opcode == opMDAP1 {
|
|
distance = dotProduct(f26dot6(p.X), f26dot6(p.Y), h.gs.pv)
|
|
// TODO: metrics compensation.
|
|
distance = h.round(distance) - distance
|
|
}
|
|
h.move(p, distance)
|
|
h.gs.rp[0] = i
|
|
h.gs.rp[1] = i
|
|
|
|
case opIUP0, opIUP1:
|
|
iupY, mask := opcode == opIUP0, uint32(flagTouchedX)
|
|
if iupY {
|
|
mask = flagTouchedY
|
|
}
|
|
prevEnd := 0
|
|
for _, end := range h.g.End {
|
|
for i := prevEnd; i < end; i++ {
|
|
for i < end && h.g.Point[i].Flags&mask == 0 {
|
|
i++
|
|
}
|
|
if i == end {
|
|
break
|
|
}
|
|
firstTouched, curTouched := i, i
|
|
i++
|
|
for ; i < end; i++ {
|
|
if h.g.Point[i].Flags&mask != 0 {
|
|
h.iupInterp(iupY, curTouched+1, i-1, curTouched, i)
|
|
curTouched = i
|
|
}
|
|
}
|
|
if curTouched == firstTouched {
|
|
h.iupShift(iupY, prevEnd, end, curTouched)
|
|
} else {
|
|
h.iupInterp(iupY, curTouched+1, end-1, curTouched, firstTouched)
|
|
if firstTouched > 0 {
|
|
h.iupInterp(iupY, prevEnd, firstTouched-1, curTouched, firstTouched)
|
|
}
|
|
}
|
|
}
|
|
prevEnd = end
|
|
}
|
|
|
|
case opIP:
|
|
if top < int(h.gs.loop) {
|
|
return errors.New("truetype: hinting: stack underflow")
|
|
}
|
|
pointType := inFontUnits
|
|
twilight := h.gs.zp[0] == 0 || h.gs.zp[1] == 0 || h.gs.zp[2] == 0
|
|
if twilight {
|
|
pointType = unhinted
|
|
}
|
|
p := h.point(1, pointType, h.gs.rp[2])
|
|
oldP := h.point(0, pointType, h.gs.rp[1])
|
|
oldRange := dotProduct(f26dot6(p.X-oldP.X), f26dot6(p.Y-oldP.Y), h.gs.dv)
|
|
|
|
p = h.point(1, current, h.gs.rp[2])
|
|
curP := h.point(0, current, h.gs.rp[1])
|
|
curRange := dotProduct(f26dot6(p.X-curP.X), f26dot6(p.Y-curP.Y), h.gs.pv)
|
|
|
|
for ; h.gs.loop != 0; h.gs.loop-- {
|
|
top--
|
|
i := h.stack[top]
|
|
p = h.point(2, pointType, i)
|
|
oldDist := dotProduct(f26dot6(p.X-oldP.X), f26dot6(p.Y-oldP.Y), h.gs.dv)
|
|
p = h.point(2, current, i)
|
|
curDist := dotProduct(f26dot6(p.X-curP.X), f26dot6(p.Y-curP.Y), h.gs.pv)
|
|
newDist := f26dot6(0)
|
|
if oldDist != 0 {
|
|
if oldRange != 0 {
|
|
newDist = f26dot6(
|
|
(int64(oldDist)*int64(curRange) + int64(oldRange/2)) / int64(oldRange))
|
|
} else {
|
|
newDist = -oldDist
|
|
}
|
|
}
|
|
h.move(p, newDist-curDist)
|
|
}
|
|
h.gs.loop = 1
|
|
|
|
case opALIGNRP:
|
|
if top < int(h.gs.loop) {
|
|
return errors.New("truetype: hinting: stack underflow")
|
|
}
|
|
i := h.gs.rp[0]
|
|
ref := h.point(0, current, i)
|
|
if ref == nil {
|
|
return errors.New("truetype: hinting: point out of range")
|
|
}
|
|
points := h.points(1, current)
|
|
for ; h.gs.loop != 0; h.gs.loop-- {
|
|
top--
|
|
i = h.stack[top]
|
|
if i < 0 || len(points) <= int(i) {
|
|
return errors.New("truetype: hinting: point out of range")
|
|
}
|
|
p := &points[i]
|
|
h.move(p, -dotProduct(f26dot6(p.X-ref.X), f26dot6(p.Y-ref.Y), h.gs.pv))
|
|
}
|
|
h.gs.loop = 1
|
|
|
|
case opRTDG:
|
|
h.gs.roundPeriod = 1 << 5
|
|
h.gs.roundPhase = 0
|
|
h.gs.roundThreshold = 1 << 4
|
|
|
|
case opMIAP0, opMIAP1:
|
|
top -= 2
|
|
i := h.stack[top]
|
|
distance := h.cvt(h.stack[top+1])
|
|
if h.gs.zp[0] == 0 {
|
|
p := h.point(0, unhinted, i)
|
|
q := h.point(0, current, i)
|
|
p.X = int32((int64(distance) * int64(h.gs.fv[0])) >> 14)
|
|
p.Y = int32((int64(distance) * int64(h.gs.fv[1])) >> 14)
|
|
*q = *p
|
|
}
|
|
p := h.point(0, current, i)
|
|
oldDist := dotProduct(f26dot6(p.X), f26dot6(p.Y), h.gs.pv)
|
|
if opcode == opMIAP1 {
|
|
if (distance - oldDist).abs() > h.gs.controlValueCutIn {
|
|
distance = oldDist
|
|
}
|
|
// TODO: metrics compensation.
|
|
distance = h.round(distance)
|
|
}
|
|
h.move(p, distance-oldDist)
|
|
h.gs.rp[0] = i
|
|
h.gs.rp[1] = i
|
|
|
|
case opNPUSHB:
|
|
opcode = 0
|
|
goto push
|
|
|
|
case opNPUSHW:
|
|
opcode = 0x80
|
|
goto push
|
|
|
|
case opWS:
|
|
top -= 2
|
|
i := int(h.stack[top])
|
|
if i < 0 || len(h.store) <= i {
|
|
return errors.New("truetype: hinting: invalid data")
|
|
}
|
|
h.store[i] = h.stack[top+1]
|
|
|
|
case opRS:
|
|
i := int(h.stack[top-1])
|
|
if i < 0 || len(h.store) <= i {
|
|
return errors.New("truetype: hinting: invalid data")
|
|
}
|
|
h.stack[top-1] = h.store[i]
|
|
|
|
case opMPPEM, opMPS:
|
|
if top >= len(h.stack) {
|
|
return errors.New("truetype: hinting: stack overflow")
|
|
}
|
|
// For MPS, point size should be irrelevant; we return the PPEM.
|
|
h.stack[top] = h.scale >> 6
|
|
top++
|
|
|
|
case opFLIPON, opFLIPOFF:
|
|
h.gs.autoFlip = opcode == opFLIPON
|
|
|
|
case opDEBUG:
|
|
// No-op.
|
|
|
|
case opLT:
|
|
top--
|
|
h.stack[top-1] = bool2int32(h.stack[top-1] < h.stack[top])
|
|
|
|
case opLTEQ:
|
|
top--
|
|
h.stack[top-1] = bool2int32(h.stack[top-1] <= h.stack[top])
|
|
|
|
case opGT:
|
|
top--
|
|
h.stack[top-1] = bool2int32(h.stack[top-1] > h.stack[top])
|
|
|
|
case opGTEQ:
|
|
top--
|
|
h.stack[top-1] = bool2int32(h.stack[top-1] >= h.stack[top])
|
|
|
|
case opEQ:
|
|
top--
|
|
h.stack[top-1] = bool2int32(h.stack[top-1] == h.stack[top])
|
|
|
|
case opNEQ:
|
|
top--
|
|
h.stack[top-1] = bool2int32(h.stack[top-1] != h.stack[top])
|
|
|
|
case opODD, opEVEN:
|
|
i := h.round(f26dot6(h.stack[top-1])) >> 6
|
|
h.stack[top-1] = int32(i&1) ^ int32(opcode-opODD)
|
|
|
|
case opIF:
|
|
top--
|
|
if h.stack[top] == 0 {
|
|
opcode = 0
|
|
goto ifelse
|
|
}
|
|
|
|
case opEIF:
|
|
// No-op.
|
|
|
|
case opAND:
|
|
top--
|
|
h.stack[top-1] = bool2int32(h.stack[top-1] != 0 && h.stack[top] != 0)
|
|
|
|
case opOR:
|
|
top--
|
|
h.stack[top-1] = bool2int32(h.stack[top-1]|h.stack[top] != 0)
|
|
|
|
case opNOT:
|
|
h.stack[top-1] = bool2int32(h.stack[top-1] == 0)
|
|
|
|
case opSDB:
|
|
top--
|
|
h.gs.deltaBase = h.stack[top]
|
|
|
|
case opSDS:
|
|
top--
|
|
h.gs.deltaShift = h.stack[top]
|
|
|
|
case opADD:
|
|
top--
|
|
h.stack[top-1] += h.stack[top]
|
|
|
|
case opSUB:
|
|
top--
|
|
h.stack[top-1] -= h.stack[top]
|
|
|
|
case opDIV:
|
|
top--
|
|
if h.stack[top] == 0 {
|
|
return errors.New("truetype: hinting: division by zero")
|
|
}
|
|
h.stack[top-1] = int32(f26dot6(h.stack[top-1]).div(f26dot6(h.stack[top])))
|
|
|
|
case opMUL:
|
|
top--
|
|
h.stack[top-1] = int32(f26dot6(h.stack[top-1]).mul(f26dot6(h.stack[top])))
|
|
|
|
case opABS:
|
|
if h.stack[top-1] < 0 {
|
|
h.stack[top-1] = -h.stack[top-1]
|
|
}
|
|
|
|
case opNEG:
|
|
h.stack[top-1] = -h.stack[top-1]
|
|
|
|
case opFLOOR:
|
|
h.stack[top-1] &^= 63
|
|
|
|
case opCEILING:
|
|
h.stack[top-1] += 63
|
|
h.stack[top-1] &^= 63
|
|
|
|
case opROUND00, opROUND01, opROUND10, opROUND11:
|
|
// The four flavors of opROUND are equivalent. See the comment below on
|
|
// opNROUND for the rationale.
|
|
h.stack[top-1] = int32(h.round(f26dot6(h.stack[top-1])))
|
|
|
|
case opNROUND00, opNROUND01, opNROUND10, opNROUND11:
|
|
// No-op. The spec says to add one of four "compensations for the engine
|
|
// characteristics", to cater for things like "different dot-size printers".
|
|
// https://developer.apple.com/fonts/TTRefMan/RM02/Chap2.html#engine_compensation
|
|
// This code does not implement engine compensation, as we don't expect to
|
|
// be used to output on dot-matrix printers.
|
|
|
|
case opSROUND, opS45ROUND:
|
|
top--
|
|
switch (h.stack[top] >> 6) & 0x03 {
|
|
case 0:
|
|
h.gs.roundPeriod = 1 << 5
|
|
case 1, 3:
|
|
h.gs.roundPeriod = 1 << 6
|
|
case 2:
|
|
h.gs.roundPeriod = 1 << 7
|
|
}
|
|
if opcode == opS45ROUND {
|
|
// The spec says to multiply by √2, but the C Freetype code says 1/√2.
|
|
// We go with 1/√2.
|
|
h.gs.roundPeriod *= 46341
|
|
h.gs.roundPeriod /= 65536
|
|
}
|
|
h.gs.roundPhase = h.gs.roundPeriod * f26dot6((h.stack[top]>>4)&0x03) / 4
|
|
if x := h.stack[top] & 0x0f; x != 0 {
|
|
h.gs.roundThreshold = h.gs.roundPeriod * f26dot6(x-4) / 8
|
|
} else {
|
|
h.gs.roundThreshold = h.gs.roundPeriod - 1
|
|
}
|
|
|
|
case opJROT:
|
|
top -= 2
|
|
if h.stack[top+1] != 0 {
|
|
pc += int(h.stack[top])
|
|
continue
|
|
}
|
|
|
|
case opJROF:
|
|
top -= 2
|
|
if h.stack[top+1] == 0 {
|
|
pc += int(h.stack[top])
|
|
continue
|
|
}
|
|
|
|
case opROFF:
|
|
h.gs.roundPeriod = 0
|
|
h.gs.roundPhase = 0
|
|
h.gs.roundThreshold = 0
|
|
|
|
case opRUTG:
|
|
h.gs.roundPeriod = 1 << 6
|
|
h.gs.roundPhase = 0
|
|
h.gs.roundThreshold = 1<<6 - 1
|
|
|
|
case opRDTG:
|
|
h.gs.roundPeriod = 1 << 6
|
|
h.gs.roundPhase = 0
|
|
h.gs.roundThreshold = 0
|
|
|
|
case opSANGW, opAA:
|
|
// These ops are "anachronistic" and no longer used.
|
|
top--
|
|
|
|
case opSCANCTRL:
|
|
// We do not support dropout control, as we always rasterize grayscale glyphs.
|
|
top--
|
|
|
|
case opGETINFO:
|
|
res := int32(0)
|
|
if h.stack[top-1]&(1<<0) != 0 {
|
|
// Set the engine version. We hard-code this to 35, the same as
|
|
// the C freetype code, which says that "Version~35 corresponds
|
|
// to MS rasterizer v.1.7 as used e.g. in Windows~98".
|
|
res |= 35
|
|
}
|
|
if h.stack[top-1]&(1<<5) != 0 {
|
|
// Set that we support grayscale.
|
|
res |= 1 << 12
|
|
}
|
|
// We set no other bits, as we do not support rotated or stretched glyphs.
|
|
h.stack[top-1] = res
|
|
|
|
case opIDEF:
|
|
// IDEF is for ancient versions of the bytecode interpreter, and is no longer used.
|
|
return errors.New("truetype: hinting: unsupported IDEF instruction")
|
|
|
|
case opROLL:
|
|
h.stack[top-1], h.stack[top-3], h.stack[top-2] =
|
|
h.stack[top-3], h.stack[top-2], h.stack[top-1]
|
|
|
|
case opMAX:
|
|
top--
|
|
if h.stack[top-1] < h.stack[top] {
|
|
h.stack[top-1] = h.stack[top]
|
|
}
|
|
|
|
case opMIN:
|
|
top--
|
|
if h.stack[top-1] > h.stack[top] {
|
|
h.stack[top-1] = h.stack[top]
|
|
}
|
|
|
|
case opSCANTYPE:
|
|
// We do not support dropout control, as we always rasterize grayscale glyphs.
|
|
top--
|
|
|
|
case opPUSHB000, opPUSHB001, opPUSHB010, opPUSHB011,
|
|
opPUSHB100, opPUSHB101, opPUSHB110, opPUSHB111:
|
|
|
|
opcode -= opPUSHB000 - 1
|
|
goto push
|
|
|
|
case opPUSHW000, opPUSHW001, opPUSHW010, opPUSHW011,
|
|
opPUSHW100, opPUSHW101, opPUSHW110, opPUSHW111:
|
|
|
|
opcode -= opPUSHW000 - 1
|
|
opcode += 0x80
|
|
goto push
|
|
|
|
case opMDRP00000, opMDRP00001, opMDRP00010, opMDRP00011,
|
|
opMDRP00100, opMDRP00101, opMDRP00110, opMDRP00111,
|
|
opMDRP01000, opMDRP01001, opMDRP01010, opMDRP01011,
|
|
opMDRP01100, opMDRP01101, opMDRP01110, opMDRP01111,
|
|
opMDRP10000, opMDRP10001, opMDRP10010, opMDRP10011,
|
|
opMDRP10100, opMDRP10101, opMDRP10110, opMDRP10111,
|
|
opMDRP11000, opMDRP11001, opMDRP11010, opMDRP11011,
|
|
opMDRP11100, opMDRP11101, opMDRP11110, opMDRP11111:
|
|
|
|
top--
|
|
i := h.stack[top]
|
|
ref := h.point(0, current, h.gs.rp[0])
|
|
p := h.point(1, current, i)
|
|
if ref == nil || p == nil {
|
|
return errors.New("truetype: hinting: point out of range")
|
|
}
|
|
|
|
oldDist := f26dot6(0)
|
|
if h.gs.zp[0] == 0 || h.gs.zp[1] == 0 {
|
|
p0 := h.point(1, unhinted, i)
|
|
p1 := h.point(0, unhinted, h.gs.rp[0])
|
|
oldDist = dotProduct(f26dot6(p0.X-p1.X), f26dot6(p0.Y-p1.Y), h.gs.dv)
|
|
} else {
|
|
p0 := h.point(1, inFontUnits, i)
|
|
p1 := h.point(0, inFontUnits, h.gs.rp[0])
|
|
oldDist = dotProduct(f26dot6(p0.X-p1.X), f26dot6(p0.Y-p1.Y), h.gs.dv)
|
|
oldDist = f26dot6(h.font.scale(h.scale * int32(oldDist)))
|
|
}
|
|
|
|
// Single-width cut-in test.
|
|
if x := (oldDist - h.gs.singleWidth).abs(); x < h.gs.singleWidthCutIn {
|
|
if oldDist >= 0 {
|
|
oldDist = h.gs.singleWidthCutIn
|
|
} else {
|
|
oldDist = -h.gs.singleWidthCutIn
|
|
}
|
|
}
|
|
|
|
// Rounding bit.
|
|
// TODO: metrics compensation.
|
|
distance := oldDist
|
|
if opcode&0x04 != 0 {
|
|
distance = h.round(oldDist)
|
|
}
|
|
|
|
// Minimum distance bit.
|
|
if opcode&0x08 != 0 {
|
|
if oldDist >= 0 {
|
|
if distance < h.gs.minDist {
|
|
distance = h.gs.minDist
|
|
}
|
|
} else {
|
|
if distance > -h.gs.minDist {
|
|
distance = -h.gs.minDist
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set-RP0 bit.
|
|
if opcode&0x10 != 0 {
|
|
h.gs.rp[0] = i
|
|
}
|
|
h.gs.rp[1] = h.gs.rp[0]
|
|
h.gs.rp[2] = i
|
|
|
|
// Move the point.
|
|
oldDist = dotProduct(f26dot6(p.X-ref.X), f26dot6(p.Y-ref.Y), h.gs.pv)
|
|
h.move(p, distance-oldDist)
|
|
|
|
case opMIRP00000, opMIRP00001, opMIRP00010, opMIRP00011,
|
|
opMIRP00100, opMIRP00101, opMIRP00110, opMIRP00111,
|
|
opMIRP01000, opMIRP01001, opMIRP01010, opMIRP01011,
|
|
opMIRP01100, opMIRP01101, opMIRP01110, opMIRP01111,
|
|
opMIRP10000, opMIRP10001, opMIRP10010, opMIRP10011,
|
|
opMIRP10100, opMIRP10101, opMIRP10110, opMIRP10111,
|
|
opMIRP11000, opMIRP11001, opMIRP11010, opMIRP11011,
|
|
opMIRP11100, opMIRP11101, opMIRP11110, opMIRP11111:
|
|
|
|
top -= 2
|
|
i := h.stack[top]
|
|
cvtDist := h.cvt(h.stack[top+1])
|
|
if (cvtDist - h.gs.singleWidth).abs() < h.gs.singleWidthCutIn {
|
|
if cvtDist >= 0 {
|
|
cvtDist = +h.gs.singleWidth
|
|
} else {
|
|
cvtDist = -h.gs.singleWidth
|
|
}
|
|
}
|
|
|
|
if h.gs.zp[1] == 0 {
|
|
// TODO: implement once we have a .ttf file that triggers
|
|
// this, so that we can step through C's freetype.
|
|
return errors.New("truetype: hinting: unimplemented twilight point adjustment")
|
|
}
|
|
|
|
ref := h.point(0, unhinted, h.gs.rp[0])
|
|
p := h.point(1, unhinted, i)
|
|
if ref == nil || p == nil {
|
|
return errors.New("truetype: hinting: point out of range")
|
|
}
|
|
oldDist := dotProduct(f26dot6(p.X-ref.X), f26dot6(p.Y-ref.Y), h.gs.dv)
|
|
|
|
ref = h.point(0, current, h.gs.rp[0])
|
|
p = h.point(1, current, i)
|
|
if ref == nil || p == nil {
|
|
return errors.New("truetype: hinting: point out of range")
|
|
}
|
|
curDist := dotProduct(f26dot6(p.X-ref.X), f26dot6(p.Y-ref.Y), h.gs.dv)
|
|
|
|
if h.gs.autoFlip && oldDist^cvtDist < 0 {
|
|
cvtDist = -cvtDist
|
|
}
|
|
|
|
// Rounding bit.
|
|
// TODO: metrics compensation.
|
|
distance := oldDist
|
|
if opcode&0x04 != 0 {
|
|
distance = h.round(oldDist)
|
|
}
|
|
|
|
// Minimum distance bit.
|
|
if opcode&0x08 != 0 {
|
|
if oldDist >= 0 {
|
|
if distance < h.gs.minDist {
|
|
distance = h.gs.minDist
|
|
}
|
|
} else {
|
|
if distance > -h.gs.minDist {
|
|
distance = -h.gs.minDist
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set-RP0 bit.
|
|
if opcode&0x10 != 0 {
|
|
h.gs.rp[0] = i
|
|
}
|
|
h.gs.rp[1] = h.gs.rp[0]
|
|
h.gs.rp[2] = i
|
|
|
|
// Move the point.
|
|
h.move(p, distance-curDist)
|
|
|
|
default:
|
|
return errors.New("truetype: hinting: unrecognized instruction")
|
|
}
|
|
pc++
|
|
continue
|
|
|
|
ifelse:
|
|
// Skip past bytecode until the next ELSE (if opcode == 0) or the
|
|
// next EIF (for all opcodes). Opcode == 0 means that we have come
|
|
// from an IF. Opcode == 1 means that we have come from an ELSE.
|
|
{
|
|
ifelseloop:
|
|
for depth := 0; ; {
|
|
pc++
|
|
if pc >= len(program) {
|
|
return errors.New("truetype: hinting: unbalanced IF or ELSE")
|
|
}
|
|
switch program[pc] {
|
|
case opIF:
|
|
depth++
|
|
case opELSE:
|
|
if depth == 0 && opcode == 0 {
|
|
break ifelseloop
|
|
}
|
|
case opEIF:
|
|
depth--
|
|
if depth < 0 {
|
|
break ifelseloop
|
|
}
|
|
default:
|
|
var ok bool
|
|
pc, ok = skipInstructionPayload(program, pc)
|
|
if !ok {
|
|
return errors.New("truetype: hinting: unbalanced IF or ELSE")
|
|
}
|
|
}
|
|
}
|
|
pc++
|
|
continue
|
|
}
|
|
|
|
push:
|
|
// Push n elements from the program to the stack, where n is the low 7 bits of
|
|
// opcode. If the low 7 bits are zero, then n is the next byte from the program.
|
|
// The high bit being 0 means that the elements are zero-extended bytes.
|
|
// The high bit being 1 means that the elements are sign-extended words.
|
|
{
|
|
width := 1
|
|
if opcode&0x80 != 0 {
|
|
opcode &^= 0x80
|
|
width = 2
|
|
}
|
|
if opcode == 0 {
|
|
pc++
|
|
if pc >= len(program) {
|
|
return errors.New("truetype: hinting: insufficient data")
|
|
}
|
|
opcode = program[pc]
|
|
}
|
|
pc++
|
|
if top+int(opcode) > len(h.stack) {
|
|
return errors.New("truetype: hinting: stack overflow")
|
|
}
|
|
if pc+width*int(opcode) > len(program) {
|
|
return errors.New("truetype: hinting: insufficient data")
|
|
}
|
|
for ; opcode > 0; opcode-- {
|
|
if width == 1 {
|
|
h.stack[top] = int32(program[pc])
|
|
} else {
|
|
h.stack[top] = int32(int8(program[pc]))<<8 | int32(program[pc+1])
|
|
}
|
|
top++
|
|
pc += width
|
|
}
|
|
continue
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// cvt returns the scaled value from the font's Control Value Table.
|
|
func (h *Hinter) cvt(i int32) f26dot6 {
|
|
i *= 2
|
|
if i < 0 || len(h.font.cvt) < int(i) {
|
|
return 0
|
|
}
|
|
cv := uint16(h.font.cvt[i])<<8 | uint16(h.font.cvt[i+1])
|
|
return f26dot6(h.font.scale(h.scale * int32(int16(cv))))
|
|
}
|
|
|
|
type pointType uint32
|
|
|
|
const (
|
|
current pointType = 0
|
|
unhinted pointType = 1
|
|
inFontUnits pointType = 2
|
|
)
|
|
|
|
func (h *Hinter) point(zone uint32, pt pointType, i int32) *Point {
|
|
points := h.points(zone, pt)
|
|
if i < 0 || len(points) <= int(i) {
|
|
return nil
|
|
}
|
|
return &points[i]
|
|
}
|
|
|
|
func (h *Hinter) points(zone uint32, pt pointType) []Point {
|
|
if h.gs.zp[zone] == 0 {
|
|
switch pt {
|
|
case unhinted:
|
|
return h.twilightUnhinted
|
|
case inFontUnits:
|
|
return h.twilightInFontUnits
|
|
}
|
|
return h.twilightPoint
|
|
}
|
|
switch pt {
|
|
case unhinted:
|
|
return h.g.Unhinted
|
|
case inFontUnits:
|
|
return h.g.InFontUnits
|
|
}
|
|
return h.g.Point
|
|
}
|
|
|
|
func (h *Hinter) move(p *Point, distance f26dot6) {
|
|
if h.gs.fv[0] == 0 {
|
|
p.Y += int32(distance)
|
|
p.Flags |= flagTouchedY
|
|
return
|
|
}
|
|
if h.gs.fv[1] == 0 {
|
|
p.X += int32(distance)
|
|
p.Flags |= flagTouchedX
|
|
return
|
|
}
|
|
fvx := int64(h.gs.fv[0])
|
|
fvy := int64(h.gs.fv[1])
|
|
pvx := int64(h.gs.pv[0])
|
|
pvy := int64(h.gs.pv[1])
|
|
fvDotPv := (fvx*pvx + fvy*pvy) >> 14
|
|
p.X += int32(int64(distance) * fvx / fvDotPv)
|
|
p.Y += int32(int64(distance) * fvy / fvDotPv)
|
|
p.Flags |= flagTouchedX | flagTouchedY
|
|
}
|
|
|
|
func (h *Hinter) iupInterp(interpY bool, p1, p2, ref1, ref2 int) {
|
|
if p1 > p2 {
|
|
return
|
|
}
|
|
if ref1 >= len(h.g.Point) || ref2 >= len(h.g.Point) {
|
|
return
|
|
}
|
|
|
|
var ifu1, ifu2 int32
|
|
if interpY {
|
|
ifu1 = h.g.InFontUnits[ref1].Y
|
|
ifu2 = h.g.InFontUnits[ref2].Y
|
|
} else {
|
|
ifu1 = h.g.InFontUnits[ref1].X
|
|
ifu2 = h.g.InFontUnits[ref2].X
|
|
}
|
|
if ifu1 > ifu2 {
|
|
ifu1, ifu2 = ifu2, ifu1
|
|
ref1, ref2 = ref2, ref1
|
|
}
|
|
|
|
var unh1, unh2, delta1, delta2 int32
|
|
if interpY {
|
|
unh1 = h.g.Unhinted[ref1].Y
|
|
unh2 = h.g.Unhinted[ref2].Y
|
|
delta1 = h.g.Point[ref1].Y - unh1
|
|
delta2 = h.g.Point[ref2].Y - unh2
|
|
} else {
|
|
unh1 = h.g.Unhinted[ref1].X
|
|
unh2 = h.g.Unhinted[ref2].X
|
|
delta1 = h.g.Point[ref1].X - unh1
|
|
delta2 = h.g.Point[ref2].X - unh2
|
|
}
|
|
|
|
var xy, ifuXY int32
|
|
if ifu1 == ifu2 {
|
|
for i := p1; i <= p2; i++ {
|
|
if interpY {
|
|
xy = h.g.Unhinted[i].Y
|
|
} else {
|
|
xy = h.g.Unhinted[i].X
|
|
}
|
|
|
|
if xy <= unh1 {
|
|
xy += delta1
|
|
} else {
|
|
xy += delta2
|
|
}
|
|
|
|
if interpY {
|
|
h.g.Point[i].Y = xy
|
|
} else {
|
|
h.g.Point[i].X = xy
|
|
}
|
|
}
|
|
|
|
} else {
|
|
scale, scaleOK := int64(0), false
|
|
for i := p1; i <= p2; i++ {
|
|
if interpY {
|
|
xy = h.g.Unhinted[i].Y
|
|
ifuXY = h.g.InFontUnits[i].Y
|
|
} else {
|
|
xy = h.g.Unhinted[i].X
|
|
ifuXY = h.g.InFontUnits[i].X
|
|
}
|
|
|
|
if xy <= unh1 {
|
|
xy += delta1
|
|
} else if xy >= unh2 {
|
|
xy += delta2
|
|
} else {
|
|
if !scaleOK {
|
|
scaleOK = true
|
|
denom := int64(ifu2 - ifu1)
|
|
scale = (int64(unh2+delta2-unh1-delta1)*0x10000 + denom/2) / denom
|
|
}
|
|
xy = unh1 + delta1 + int32((int64(ifuXY-ifu1)*scale+0x8000)/0x10000)
|
|
}
|
|
|
|
if interpY {
|
|
h.g.Point[i].Y = xy
|
|
} else {
|
|
h.g.Point[i].X = xy
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func (h *Hinter) iupShift(interpY bool, p1, p2, p int) {
|
|
var delta int32
|
|
if interpY {
|
|
delta = h.g.Point[p].Y - h.g.Unhinted[p].Y
|
|
} else {
|
|
delta = h.g.Point[p].X - h.g.Unhinted[p].X
|
|
}
|
|
if delta == 0 {
|
|
return
|
|
}
|
|
for i := p1; i < p2; i++ {
|
|
if i == p {
|
|
continue
|
|
}
|
|
if interpY {
|
|
h.g.Point[i].Y += delta
|
|
} else {
|
|
h.g.Point[i].X += delta
|
|
}
|
|
}
|
|
}
|
|
|
|
// skipInstructionPayload increments pc by the extra data that follows a
|
|
// variable length PUSHB or PUSHW instruction.
|
|
func skipInstructionPayload(program []byte, pc int) (newPC int, ok bool) {
|
|
switch program[pc] {
|
|
case opNPUSHB:
|
|
pc++
|
|
if pc >= len(program) {
|
|
return 0, false
|
|
}
|
|
pc += int(program[pc])
|
|
case opNPUSHW:
|
|
pc++
|
|
if pc >= len(program) {
|
|
return 0, false
|
|
}
|
|
pc += 2 * int(program[pc])
|
|
case opPUSHB000, opPUSHB001, opPUSHB010, opPUSHB011,
|
|
opPUSHB100, opPUSHB101, opPUSHB110, opPUSHB111:
|
|
pc += int(program[pc] - (opPUSHB000 - 1))
|
|
case opPUSHW000, opPUSHW001, opPUSHW010, opPUSHW011,
|
|
opPUSHW100, opPUSHW101, opPUSHW110, opPUSHW111:
|
|
pc += 2 * int(program[pc]-(opPUSHW000-1))
|
|
}
|
|
return pc, true
|
|
}
|
|
|
|
// f2dot14 is a 2.14 fixed point number.
|
|
type f2dot14 int16
|
|
|
|
// f26dot6 is a 26.6 fixed point number.
|
|
type f26dot6 int32
|
|
|
|
// abs returns abs(x) in 26.6 fixed point arithmetic.
|
|
func (x f26dot6) abs() f26dot6 {
|
|
if x < 0 {
|
|
return -x
|
|
}
|
|
return x
|
|
}
|
|
|
|
// div returns x/y in 26.6 fixed point arithmetic.
|
|
func (x f26dot6) div(y f26dot6) f26dot6 {
|
|
return f26dot6((int64(x) << 6) / int64(y))
|
|
}
|
|
|
|
// mul returns x*y in 26.6 fixed point arithmetic.
|
|
func (x f26dot6) mul(y f26dot6) f26dot6 {
|
|
return f26dot6(int64(x) * int64(y) >> 6)
|
|
}
|
|
|
|
func dotProduct(x, y f26dot6, q [2]f2dot14) f26dot6 {
|
|
px := int64(x)
|
|
py := int64(y)
|
|
qx := int64(q[0])
|
|
qy := int64(q[1])
|
|
return f26dot6((px*qx + py*qy) >> 14)
|
|
}
|
|
|
|
// round rounds the given number. The rounding algorithm is described at
|
|
// https://developer.apple.com/fonts/TTRefMan/RM02/Chap2.html#rounding
|
|
func (h *Hinter) round(x f26dot6) f26dot6 {
|
|
if h.gs.roundPeriod == 0 {
|
|
return x
|
|
}
|
|
neg := x < 0
|
|
x -= h.gs.roundPhase
|
|
x += h.gs.roundThreshold
|
|
if x >= 0 {
|
|
x = (x / h.gs.roundPeriod) * h.gs.roundPeriod
|
|
} else {
|
|
x -= h.gs.roundPeriod
|
|
x += 1
|
|
x = (x / h.gs.roundPeriod) * h.gs.roundPeriod
|
|
}
|
|
x += h.gs.roundPhase
|
|
if neg {
|
|
if x >= 0 {
|
|
x = h.gs.roundPhase - h.gs.roundPeriod
|
|
}
|
|
} else if x < 0 {
|
|
x = h.gs.roundPhase
|
|
}
|
|
return x
|
|
}
|
|
|
|
func bool2int32(b bool) int32 {
|
|
if b {
|
|
return 1
|
|
}
|
|
return 0
|
|
}
|