golang-freetype/freetype/raster/geom.go

517 lines
13 KiB
Go

// Copyright 2010 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2,
// both of which can be found in the LICENSE file.
package raster
import (
"fmt"
"math"
)
// A Fix32 is a 24.8 fixed point number.
type Fix32 int32
// A Fix64 is a 48.16 fixed point number.
type Fix64 int64
// String returns a human-readable representation of a 24.8 fixed point number.
// For example, the number one-and-a-quarter becomes "1:064".
func (x Fix32) String() string {
i, f := x/256, x%256
if f < 0 {
f = -f
}
return fmt.Sprintf("%d:%03d", int32(i), int32(f))
}
// String returns a human-readable representation of a 48.16 fixed point number.
// For example, the number one-and-a-quarter becomes "1:00064".
func (x Fix64) String() string {
i, f := x/65536, x%65536
if f < 0 {
f = -f
}
return fmt.Sprintf("%d:%05d", int64(i), int64(f))
}
// maxAbs returns the maximum of abs(a) and abs(b).
func maxAbs(a, b Fix32) Fix32 {
if a < 0 {
a = -a
}
if b < 0 {
b = -b
}
if a < b {
return b
}
return a
}
// A Point represents a two-dimensional point or vector, in 24.8 fixed point
// format.
type Point struct {
X, Y Fix32
}
// Add returns the vector p + q.
func (p Point) Add(q Point) Point {
return Point{p.X + q.X, p.Y + q.Y}
}
// Sub returns the vector p - q.
func (p Point) Sub(q Point) Point {
return Point{p.X - q.X, p.Y - q.Y}
}
// Mul returns the vector k * p.
func (p Point) Mul(k Fix32) Point {
return Point{p.X * k / 256, p.Y * k / 256}
}
// Neg returns the vector -p, or equivalently p rotated by 180 degrees.
func (p Point) Neg() Point {
return Point{-p.X, -p.Y}
}
// Dot returns the dot product p·q.
func (p Point) Dot(q Point) Fix64 {
px, py := int64(p.X), int64(p.Y)
qx, qy := int64(q.X), int64(q.Y)
return Fix64(px*qx + py*qy)
}
// Len returns the length of the vector p.
func (p Point) Len() Fix32 {
// TODO(nigeltao): use fixed point math.
x := float64(p.X)
y := float64(p.Y)
return Fix32(math.Sqrt(x*x + y*y))
}
// Norm returns the vector p normalized to the given length, or the zero Point
// if p is degenerate.
func (p Point) Norm(length Fix32) Point {
d := p.Len()
if d == 0 {
return Point{0, 0}
}
s, t := int64(length), int64(d)
x := int64(p.X) * s / t
y := int64(p.Y) * s / t
return Point{Fix32(x), Fix32(y)}
}
// Rot45CW returns the vector p rotated clockwise by 45 degrees.
// Note that the Y-axis grows downwards, so {1, 0}.Rot45CW is {1/√2, 1/√2}.
func (p Point) Rot45CW() Point {
// 181/256 is approximately 1/√2, or sin(π/4).
px, py := int64(p.X), int64(p.Y)
qx := (+px - py) * 181 / 256
qy := (+px + py) * 181 / 256
return Point{Fix32(qx), Fix32(qy)}
}
// Rot90CW returns the vector p rotated clockwise by 90 degrees.
// Note that the Y-axis grows downwards, so {1, 0}.Rot90CW is {0, 1}.
func (p Point) Rot90CW() Point {
return Point{-p.Y, p.X}
}
// Rot135CW returns the vector p rotated clockwise by 135 degrees.
// Note that the Y-axis grows downwards, so {1, 0}.Rot135CW is {-1/√2, 1/√2}.
func (p Point) Rot135CW() Point {
// 181/256 is approximately 1/√2, or sin(π/4).
px, py := int64(p.X), int64(p.Y)
qx := (-px - py) * 181 / 256
qy := (+px - py) * 181 / 256
return Point{Fix32(qx), Fix32(qy)}
}
// Rot45CCW returns the vector p rotated counter-clockwise by 45 degrees.
// Note that the Y-axis grows downwards, so {1, 0}.Rot45CCW is {1/√2, -1/√2}.
func (p Point) Rot45CCW() Point {
// 181/256 is approximately 1/√2, or sin(π/4).
px, py := int64(p.X), int64(p.Y)
qx := (+px + py) * 181 / 256
qy := (-px + py) * 181 / 256
return Point{Fix32(qx), Fix32(qy)}
}
// Rot90CCW returns the vector p rotated counter-clockwise by 90 degrees.
// Note that the Y-axis grows downwards, so {1, 0}.Rot90CCW is {0, -1}.
func (p Point) Rot90CCW() Point {
return Point{p.Y, -p.X}
}
// Rot135CCW returns the vector p rotated counter-clockwise by 135 degrees.
// Note that the Y-axis grows downwards, so {1, 0}.Rot135CCW is {-1/√2, -1/√2}.
func (p Point) Rot135CCW() Point {
// 181/256 is approximately 1/√2, or sin(π/4).
px, py := int64(p.X), int64(p.Y)
qx := (-px + py) * 181 / 256
qy := (-px - py) * 181 / 256
return Point{Fix32(qx), Fix32(qy)}
}
// An Adder accumulates points on a curve.
type Adder interface {
// Start starts a new curve at the given point.
Start(a Point)
// Add1 adds a linear segment to the current curve.
Add1(b Point)
// Add2 adds a quadratic segment to the current curve.
Add2(b, c Point)
// Add3 adds a cubic segment to the current curve.
Add3(b, c, d Point)
}
// A Path is a sequence of curves, and a curve is a start point followed by a
// sequence of linear, quadratic or cubic segments.
type Path []Fix32
// String returns a human-readable representation of a Path.
func (p Path) String() string {
s := ""
for i := 0; i < len(p); {
if i != 0 {
s += " "
}
switch p[i] {
case 0:
s += "S0" + fmt.Sprint([]Fix32(p[i+1:i+3]))
i += 4
case 1:
s += "A1" + fmt.Sprint([]Fix32(p[i+1:i+3]))
i += 4
case 2:
s += "A2" + fmt.Sprint([]Fix32(p[i+1:i+5]))
i += 6
case 3:
s += "A3" + fmt.Sprint([]Fix32(p[i+1:i+7]))
i += 8
default:
panic("freetype/raster: bad path")
}
}
return s
}
// grow adds n elements to p.
func (p *Path) grow(n int) {
n += len(*p)
if n > cap(*p) {
old := *p
*p = make([]Fix32, n, 2*n+8)
copy(*p, old)
return
}
*p = (*p)[0:n]
}
// Clear cancels any previous calls to p.Start or p.AddXxx.
func (p *Path) Clear() {
*p = (*p)[0:0]
}
// Start starts a new curve at the given point.
func (p *Path) Start(a Point) {
n := len(*p)
p.grow(4)
(*p)[n] = 0
(*p)[n+1] = a.X
(*p)[n+2] = a.Y
(*p)[n+3] = 0
}
// Add1 adds a linear segment to the current curve.
func (p *Path) Add1(b Point) {
n := len(*p)
p.grow(4)
(*p)[n] = 1
(*p)[n+1] = b.X
(*p)[n+2] = b.Y
(*p)[n+3] = 1
}
// Add2 adds a quadratic segment to the current curve.
func (p *Path) Add2(b, c Point) {
n := len(*p)
p.grow(6)
(*p)[n] = 2
(*p)[n+1] = b.X
(*p)[n+2] = b.Y
(*p)[n+3] = c.X
(*p)[n+4] = c.Y
(*p)[n+5] = 2
}
// Add3 adds a cubic segment to the current curve.
func (p *Path) Add3(b, c, d Point) {
n := len(*p)
p.grow(8)
(*p)[n] = 3
(*p)[n+1] = b.X
(*p)[n+2] = b.Y
(*p)[n+3] = c.X
(*p)[n+4] = c.Y
(*p)[n+5] = d.X
(*p)[n+6] = d.Y
(*p)[n+7] = 3
}
// AddPath adds the Path q to p.
func (p *Path) AddPath(q Path) {
n, m := len(*p), len(q)
p.grow(m)
copy((*p)[n:n+m], q)
}
// TODO(nigeltao): should a Cap be a func rather than an int, so that callers
// can specify custom cap styles? Similarly for Join.
// A Cap signifies how to begin or end a stroked curve.
type Cap int
const (
RoundCap Cap = iota
ButtCap
SquareCap
)
// A Join signifies how to join interior nodes of a stroked curve.
type Join int
const (
RoundJoin Join = iota
BevelJoin
MiterJoin
)
// AddStroke adds a stroked Path.
func (p *Path) AddStroke(q Path, width Fix32, cap Cap, join Join) {
Stroke(p, q, width, cap, join)
}
// Stroke adds the stroked Path q to p. The resultant stroked path is typically
// self-intersecting and should be rasterized with UseNonZeroWinding.
func Stroke(p Adder, q Path, width Fix32, cap Cap, join Join) {
if len(q) == 0 {
return
}
if q[0] != 0 {
panic("freetype/raster: bad path")
}
i := 0
for j := 4; j < len(q); {
switch q[j] {
case 0:
stroke(p, q[i:j], width, cap, join)
i, j = j, j+4
case 1:
j += 4
case 2:
j += 6
case 3:
j += 8
}
}
stroke(p, q[i:len(q)], width, cap, join)
}
func addCap(p Adder, cap Cap, center, end Point) {
switch cap {
case RoundCap:
// The cubic Bézier approximation to a circle involves the magic number
// (√2 - 1) * 4/3, which is approximately 141/256.
const k = 141
d := end.Sub(center)
e := d.Rot90CCW()
side := center.Add(e)
start := center.Sub(d)
d, e = d.Mul(k), e.Mul(k)
p.Add3(start.Add(e), side.Sub(d), side)
p.Add3(side.Add(d), end.Add(e), end)
case ButtCap:
p.Add1(end)
case SquareCap:
d := end.Sub(center)
e := d.Rot90CCW()
side := center.Add(e)
p.Add1(side.Sub(d))
p.Add1(side.Add(d))
p.Add1(end)
}
}
func addJoin(lhs, rhs Adder, join Join, a, anorm, bnorm Point) {
switch join {
case RoundJoin:
dot := anorm.Rot90CW().Dot(bnorm)
if dot >= 0 {
addArc(lhs, a, anorm, bnorm)
rhs.Add1(a.Sub(bnorm))
} else {
lhs.Add1(a.Add(bnorm))
addArc(rhs, a, anorm.Neg(), bnorm.Neg())
}
case BevelJoin:
lhs.Add1(a.Add(bnorm))
rhs.Add1(a.Sub(bnorm))
case MiterJoin:
panic("freetype/raster: miter join unimplemented")
}
}
// addArc adds a circular arc from pivot+n0 to pivot+n1 to p. The shorter of
// the two possible arcs is taken, i.e. the one spanning <= 180 degrees.
// The two vectors n0 and n1 must be of equal length.
func addArc(p Adder, pivot, n0, n1 Point) {
// r2 is the square of the length of n0.
r2 := n0.Dot(n0)
if r2 < 4096 {
// The arc radius is so small that we collapse to a straight line.
p.Add1(pivot.Add(n1))
return
}
// We approximate the arc by 0, 1, 2 or 3 45-degree quadratic segments plus
// a final quadratic segment from s to n1. Each 45-degree segment has control
// points {1, 0}, {1, tan(π/8)} and {1/√2, 1/√2} suitably scaled, rotated and
// translated. tan(π/8) is approximately 106/256.
const t = 106
var s Point
// We determine which octant the angle between n0 and n1 is in via three dot products.
// m0, m1 and m2 are n0 rotated clockwise by 45, 90 and 135 degrees.
m0 := n0.Rot45CW()
m1 := n0.Rot90CW()
m2 := m0.Rot90CW()
if m1.Dot(n1) >= 0 {
if n0.Dot(n1) >= 0 {
if m2.Dot(n1) <= 0 {
// n1 is between 0 and 45 degrees clockwise of n0.
s = n0
} else {
// n1 is between 45 and 90 degrees clockwise of n0.
p.Add2(pivot.Add(n0).Add(m1.Mul(t)), pivot.Add(m0))
s = m0
}
} else {
pm1, n0t := pivot.Add(m1), n0.Mul(t)
p.Add2(pivot.Add(n0).Add(m1.Mul(t)), pivot.Add(m0))
p.Add2(pm1.Add(n0t), pm1)
if m0.Dot(n1) >= 0 {
// n1 is between 90 and 135 degrees clockwise of n0.
s = m1
} else {
// n1 is between 135 and 180 degrees clockwise of n0.
p.Add2(pm1.Sub(n0t), pivot.Add(m2))
s = m2
}
}
} else {
if n0.Dot(n1) >= 0 {
if m0.Dot(n1) >= 0 {
// n1 is between 0 and 45 degrees counter-clockwise of n0.
s = n0
} else {
// n1 is between 45 and 90 degrees counter-clockwise of n0.
p.Add2(pivot.Add(n0).Sub(m1.Mul(t)), pivot.Sub(m2))
s = m2.Neg()
}
} else {
pm1, n0t := pivot.Sub(m1), n0.Mul(t)
p.Add2(pivot.Add(n0).Sub(m1.Mul(t)), pivot.Sub(m2))
p.Add2(pm1.Add(n0t), pm1)
if m2.Dot(n1) <= 0 {
// n1 is between 90 and 135 degrees counter-clockwise of n0.
s = m1.Neg()
} else {
// n1 is between 135 and 180 degrees counter-clockwise of n0.
p.Add2(pm1.Sub(n0t), pivot.Sub(m0))
s = m0.Neg()
}
}
}
// The final quadratic segment has two endpoints s and n1 and the middle
// control point is a multiple of s.Add(n1), i.e. it is on the angle bisector
// of those two points. The multiple ranges between 128/256 and 150/256 as
// the angle between s and n1 ranges between 0 and 45 degrees.
// When the angle is 0 degrees (i.e. s and n1 are coincident) then s.Add(n1)
// is twice s and so the middle control point of the degenerate quadratic
// segment should be half s.Add(n1), and half = 128/256.
// When the angle is 45 degrees then 150/256 is the ratio of the lengths of
// the two vectors {1, tan(π/8)} and {1 + 1/√2, 1/√2}.
// d is the normalized dot product between s and n1. Since the angle ranges
// between 0 and 45 degrees then d ranges between 256/256 and 181/256.
d := 256 * s.Dot(n1) / r2
multiple := Fix32(150 - 22*(d-181)/(256-181))
p.Add2(pivot.Add(s.Add(n1).Mul(multiple)), pivot.Add(n1))
}
// stroke adds the stroked Path q to p, where q consists of exactly one curve.
func stroke(p Adder, q Path, width Fix32, cap Cap, join Join) {
// Stroking is implemented by deriving two paths each width/2 apart from q.
// The left-hand-side path is added immediately to p; the right-hand-side
// path is accumulated in r, and once we've finished adding the LHS to p
// we add the RHS in reverse order.
r := Path(make([]Fix32, 0, len(q)))
var start, anorm Point
a := Point{q[1], q[2]}
i := 4
for i < len(q) {
switch q[i] {
case 1:
b := Point{q[i+1], q[i+2]}
bnorm := b.Sub(a).Norm(width / 2).Rot90CCW()
if i == 4 {
start = a.Add(bnorm)
p.Start(start)
r.Start(a.Sub(bnorm))
} else {
addJoin(p, &r, join, a, anorm, bnorm)
}
p.Add1(b.Add(bnorm))
r.Add1(b.Sub(bnorm))
a, anorm = b, bnorm
i += 4
case 2:
panic("freetype/raster: stroke unimplemented for quadratic segments")
case 3:
panic("freetype/raster: stroke unimplemented for cubic segments")
default:
panic("freetype/raster: bad path")
}
}
i = len(r) - 1
addCap(p, cap, Point{q[len(q)-3], q[len(q)-2]}, Point{r[i-2], r[i-1]})
// Add r reversed to p.
// For example, if r consists of a linear segment from A to B followed by a
// quadratic segment from B to C to D, then the values of r looks like:
// index: 01234567890123
// value: 0AA01BB12CCDD2
// So, when adding r backwards to p, we want to Add2(C, B) followed by Add1(A).
loop:
for {
switch r[i] {
case 0:
break loop
case 1:
i -= 4
p.Add1(Point{r[i-2], r[i-1]})
case 2:
i -= 6
p.Add2(Point{r[i+2], r[i+3]}, Point{r[i-2], r[i-1]})
case 3:
i -= 8
p.Add3(Point{r[i+4], r[i+5]}, Point{r[i+2], r[i+3]}, Point{r[i-2], r[i-1]})
default:
panic("freetype/raster: bad path")
}
}
// TODO(nigeltao): if q is a closed path then we should join the first and
// last segments instead of capping them.
addCap(p, cap, Point{q[1], q[2]}, start)
}