3e38a96419
R=rsc CC=golang-dev, rog http://codereview.appspot.com/1686048
517 lines
13 KiB
Go
517 lines
13 KiB
Go
// Copyright 2010 The Freetype-Go Authors. All rights reserved.
|
|
// Use of this source code is governed by your choice of either the
|
|
// FreeType License or the GNU General Public License version 2,
|
|
// both of which can be found in the LICENSE file.
|
|
|
|
package raster
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
)
|
|
|
|
// A Fix32 is a 24.8 fixed point number.
|
|
type Fix32 int32
|
|
|
|
// A Fix64 is a 48.16 fixed point number.
|
|
type Fix64 int64
|
|
|
|
// String returns a human-readable representation of a 24.8 fixed point number.
|
|
// For example, the number one-and-a-quarter becomes "1:064".
|
|
func (x Fix32) String() string {
|
|
i, f := x/256, x%256
|
|
if f < 0 {
|
|
f = -f
|
|
}
|
|
return fmt.Sprintf("%d:%03d", int32(i), int32(f))
|
|
}
|
|
|
|
// String returns a human-readable representation of a 48.16 fixed point number.
|
|
// For example, the number one-and-a-quarter becomes "1:00064".
|
|
func (x Fix64) String() string {
|
|
i, f := x/65536, x%65536
|
|
if f < 0 {
|
|
f = -f
|
|
}
|
|
return fmt.Sprintf("%d:%05d", int64(i), int64(f))
|
|
}
|
|
|
|
// maxAbs returns the maximum of abs(a) and abs(b).
|
|
func maxAbs(a, b Fix32) Fix32 {
|
|
if a < 0 {
|
|
a = -a
|
|
}
|
|
if b < 0 {
|
|
b = -b
|
|
}
|
|
if a < b {
|
|
return b
|
|
}
|
|
return a
|
|
}
|
|
|
|
// A Point represents a two-dimensional point or vector, in 24.8 fixed point
|
|
// format.
|
|
type Point struct {
|
|
X, Y Fix32
|
|
}
|
|
|
|
// Add returns the vector p + q.
|
|
func (p Point) Add(q Point) Point {
|
|
return Point{p.X + q.X, p.Y + q.Y}
|
|
}
|
|
|
|
// Sub returns the vector p - q.
|
|
func (p Point) Sub(q Point) Point {
|
|
return Point{p.X - q.X, p.Y - q.Y}
|
|
}
|
|
|
|
// Mul returns the vector k * p.
|
|
func (p Point) Mul(k Fix32) Point {
|
|
return Point{p.X * k / 256, p.Y * k / 256}
|
|
}
|
|
|
|
// Neg returns the vector -p, or equivalently p rotated by 180 degrees.
|
|
func (p Point) Neg() Point {
|
|
return Point{-p.X, -p.Y}
|
|
}
|
|
|
|
// Dot returns the dot product p·q.
|
|
func (p Point) Dot(q Point) Fix64 {
|
|
px, py := int64(p.X), int64(p.Y)
|
|
qx, qy := int64(q.X), int64(q.Y)
|
|
return Fix64(px*qx + py*qy)
|
|
}
|
|
|
|
// Len returns the length of the vector p.
|
|
func (p Point) Len() Fix32 {
|
|
// TODO(nigeltao): use fixed point math.
|
|
x := float64(p.X)
|
|
y := float64(p.Y)
|
|
return Fix32(math.Sqrt(x*x + y*y))
|
|
}
|
|
|
|
// Norm returns the vector p normalized to the given length, or the zero Point
|
|
// if p is degenerate.
|
|
func (p Point) Norm(length Fix32) Point {
|
|
d := p.Len()
|
|
if d == 0 {
|
|
return Point{0, 0}
|
|
}
|
|
s, t := int64(length), int64(d)
|
|
x := int64(p.X) * s / t
|
|
y := int64(p.Y) * s / t
|
|
return Point{Fix32(x), Fix32(y)}
|
|
}
|
|
|
|
// Rot45CW returns the vector p rotated clockwise by 45 degrees.
|
|
// Note that the Y-axis grows downwards, so {1, 0}.Rot45CW is {1/√2, 1/√2}.
|
|
func (p Point) Rot45CW() Point {
|
|
// 181/256 is approximately 1/√2, or sin(π/4).
|
|
px, py := int64(p.X), int64(p.Y)
|
|
qx := (+px - py) * 181 / 256
|
|
qy := (+px + py) * 181 / 256
|
|
return Point{Fix32(qx), Fix32(qy)}
|
|
}
|
|
|
|
// Rot90CW returns the vector p rotated clockwise by 90 degrees.
|
|
// Note that the Y-axis grows downwards, so {1, 0}.Rot90CW is {0, 1}.
|
|
func (p Point) Rot90CW() Point {
|
|
return Point{-p.Y, p.X}
|
|
}
|
|
|
|
// Rot135CW returns the vector p rotated clockwise by 135 degrees.
|
|
// Note that the Y-axis grows downwards, so {1, 0}.Rot135CW is {-1/√2, 1/√2}.
|
|
func (p Point) Rot135CW() Point {
|
|
// 181/256 is approximately 1/√2, or sin(π/4).
|
|
px, py := int64(p.X), int64(p.Y)
|
|
qx := (-px - py) * 181 / 256
|
|
qy := (+px - py) * 181 / 256
|
|
return Point{Fix32(qx), Fix32(qy)}
|
|
}
|
|
|
|
// Rot45CCW returns the vector p rotated counter-clockwise by 45 degrees.
|
|
// Note that the Y-axis grows downwards, so {1, 0}.Rot45CCW is {1/√2, -1/√2}.
|
|
func (p Point) Rot45CCW() Point {
|
|
// 181/256 is approximately 1/√2, or sin(π/4).
|
|
px, py := int64(p.X), int64(p.Y)
|
|
qx := (+px + py) * 181 / 256
|
|
qy := (-px + py) * 181 / 256
|
|
return Point{Fix32(qx), Fix32(qy)}
|
|
}
|
|
|
|
// Rot90CCW returns the vector p rotated counter-clockwise by 90 degrees.
|
|
// Note that the Y-axis grows downwards, so {1, 0}.Rot90CCW is {0, -1}.
|
|
func (p Point) Rot90CCW() Point {
|
|
return Point{p.Y, -p.X}
|
|
}
|
|
|
|
// Rot135CCW returns the vector p rotated counter-clockwise by 135 degrees.
|
|
// Note that the Y-axis grows downwards, so {1, 0}.Rot135CCW is {-1/√2, -1/√2}.
|
|
func (p Point) Rot135CCW() Point {
|
|
// 181/256 is approximately 1/√2, or sin(π/4).
|
|
px, py := int64(p.X), int64(p.Y)
|
|
qx := (-px + py) * 181 / 256
|
|
qy := (-px - py) * 181 / 256
|
|
return Point{Fix32(qx), Fix32(qy)}
|
|
}
|
|
|
|
// An Adder accumulates points on a curve.
|
|
type Adder interface {
|
|
// Start starts a new curve at the given point.
|
|
Start(a Point)
|
|
// Add1 adds a linear segment to the current curve.
|
|
Add1(b Point)
|
|
// Add2 adds a quadratic segment to the current curve.
|
|
Add2(b, c Point)
|
|
// Add3 adds a cubic segment to the current curve.
|
|
Add3(b, c, d Point)
|
|
}
|
|
|
|
// A Path is a sequence of curves, and a curve is a start point followed by a
|
|
// sequence of linear, quadratic or cubic segments.
|
|
type Path []Fix32
|
|
|
|
// String returns a human-readable representation of a Path.
|
|
func (p Path) String() string {
|
|
s := ""
|
|
for i := 0; i < len(p); {
|
|
if i != 0 {
|
|
s += " "
|
|
}
|
|
switch p[i] {
|
|
case 0:
|
|
s += "S0" + fmt.Sprint([]Fix32(p[i+1:i+3]))
|
|
i += 4
|
|
case 1:
|
|
s += "A1" + fmt.Sprint([]Fix32(p[i+1:i+3]))
|
|
i += 4
|
|
case 2:
|
|
s += "A2" + fmt.Sprint([]Fix32(p[i+1:i+5]))
|
|
i += 6
|
|
case 3:
|
|
s += "A3" + fmt.Sprint([]Fix32(p[i+1:i+7]))
|
|
i += 8
|
|
default:
|
|
panic("freetype/raster: bad path")
|
|
}
|
|
}
|
|
return s
|
|
}
|
|
|
|
// grow adds n elements to p.
|
|
func (p *Path) grow(n int) {
|
|
n += len(*p)
|
|
if n > cap(*p) {
|
|
old := *p
|
|
*p = make([]Fix32, n, 2*n+8)
|
|
copy(*p, old)
|
|
return
|
|
}
|
|
*p = (*p)[0:n]
|
|
}
|
|
|
|
// Clear cancels any previous calls to p.Start or p.AddXxx.
|
|
func (p *Path) Clear() {
|
|
*p = (*p)[0:0]
|
|
}
|
|
|
|
// Start starts a new curve at the given point.
|
|
func (p *Path) Start(a Point) {
|
|
n := len(*p)
|
|
p.grow(4)
|
|
(*p)[n] = 0
|
|
(*p)[n+1] = a.X
|
|
(*p)[n+2] = a.Y
|
|
(*p)[n+3] = 0
|
|
}
|
|
|
|
// Add1 adds a linear segment to the current curve.
|
|
func (p *Path) Add1(b Point) {
|
|
n := len(*p)
|
|
p.grow(4)
|
|
(*p)[n] = 1
|
|
(*p)[n+1] = b.X
|
|
(*p)[n+2] = b.Y
|
|
(*p)[n+3] = 1
|
|
}
|
|
|
|
// Add2 adds a quadratic segment to the current curve.
|
|
func (p *Path) Add2(b, c Point) {
|
|
n := len(*p)
|
|
p.grow(6)
|
|
(*p)[n] = 2
|
|
(*p)[n+1] = b.X
|
|
(*p)[n+2] = b.Y
|
|
(*p)[n+3] = c.X
|
|
(*p)[n+4] = c.Y
|
|
(*p)[n+5] = 2
|
|
}
|
|
|
|
// Add3 adds a cubic segment to the current curve.
|
|
func (p *Path) Add3(b, c, d Point) {
|
|
n := len(*p)
|
|
p.grow(8)
|
|
(*p)[n] = 3
|
|
(*p)[n+1] = b.X
|
|
(*p)[n+2] = b.Y
|
|
(*p)[n+3] = c.X
|
|
(*p)[n+4] = c.Y
|
|
(*p)[n+5] = d.X
|
|
(*p)[n+6] = d.Y
|
|
(*p)[n+7] = 3
|
|
}
|
|
|
|
// AddPath adds the Path q to p.
|
|
func (p *Path) AddPath(q Path) {
|
|
n, m := len(*p), len(q)
|
|
p.grow(m)
|
|
copy((*p)[n:n+m], q)
|
|
}
|
|
|
|
// TODO(nigeltao): should a Cap be a func rather than an int, so that callers
|
|
// can specify custom cap styles? Similarly for Join.
|
|
|
|
// A Cap signifies how to begin or end a stroked curve.
|
|
type Cap int
|
|
|
|
const (
|
|
RoundCap Cap = iota
|
|
ButtCap
|
|
SquareCap
|
|
)
|
|
|
|
// A Join signifies how to join interior nodes of a stroked curve.
|
|
type Join int
|
|
|
|
const (
|
|
RoundJoin Join = iota
|
|
BevelJoin
|
|
MiterJoin
|
|
)
|
|
|
|
// AddStroke adds a stroked Path.
|
|
func (p *Path) AddStroke(q Path, width Fix32, cap Cap, join Join) {
|
|
Stroke(p, q, width, cap, join)
|
|
}
|
|
|
|
// Stroke adds the stroked Path q to p. The resultant stroked path is typically
|
|
// self-intersecting and should be rasterized with UseNonZeroWinding.
|
|
func Stroke(p Adder, q Path, width Fix32, cap Cap, join Join) {
|
|
if len(q) == 0 {
|
|
return
|
|
}
|
|
if q[0] != 0 {
|
|
panic("freetype/raster: bad path")
|
|
}
|
|
i := 0
|
|
for j := 4; j < len(q); {
|
|
switch q[j] {
|
|
case 0:
|
|
stroke(p, q[i:j], width, cap, join)
|
|
i, j = j, j+4
|
|
case 1:
|
|
j += 4
|
|
case 2:
|
|
j += 6
|
|
case 3:
|
|
j += 8
|
|
}
|
|
}
|
|
stroke(p, q[i:len(q)], width, cap, join)
|
|
}
|
|
|
|
func addCap(p Adder, cap Cap, center, end Point) {
|
|
switch cap {
|
|
case RoundCap:
|
|
// The cubic Bézier approximation to a circle involves the magic number
|
|
// (√2 - 1) * 4/3, which is approximately 141/256.
|
|
const k = 141
|
|
d := end.Sub(center)
|
|
e := d.Rot90CCW()
|
|
side := center.Add(e)
|
|
start := center.Sub(d)
|
|
d, e = d.Mul(k), e.Mul(k)
|
|
p.Add3(start.Add(e), side.Sub(d), side)
|
|
p.Add3(side.Add(d), end.Add(e), end)
|
|
case ButtCap:
|
|
p.Add1(end)
|
|
case SquareCap:
|
|
d := end.Sub(center)
|
|
e := d.Rot90CCW()
|
|
side := center.Add(e)
|
|
p.Add1(side.Sub(d))
|
|
p.Add1(side.Add(d))
|
|
p.Add1(end)
|
|
}
|
|
}
|
|
|
|
func addJoin(lhs, rhs Adder, join Join, a, anorm, bnorm Point) {
|
|
switch join {
|
|
case RoundJoin:
|
|
dot := anorm.Rot90CW().Dot(bnorm)
|
|
if dot >= 0 {
|
|
addArc(lhs, a, anorm, bnorm)
|
|
rhs.Add1(a.Sub(bnorm))
|
|
} else {
|
|
lhs.Add1(a.Add(bnorm))
|
|
addArc(rhs, a, anorm.Neg(), bnorm.Neg())
|
|
}
|
|
case BevelJoin:
|
|
lhs.Add1(a.Add(bnorm))
|
|
rhs.Add1(a.Sub(bnorm))
|
|
case MiterJoin:
|
|
panic("freetype/raster: miter join unimplemented")
|
|
}
|
|
}
|
|
|
|
// addArc adds a circular arc from pivot+n0 to pivot+n1 to p. The shorter of
|
|
// the two possible arcs is taken, i.e. the one spanning <= 180 degrees.
|
|
// The two vectors n0 and n1 must be of equal length.
|
|
func addArc(p Adder, pivot, n0, n1 Point) {
|
|
// r2 is the square of the length of n0.
|
|
r2 := n0.Dot(n0)
|
|
if r2 < 4096 {
|
|
// The arc radius is so small that we collapse to a straight line.
|
|
p.Add1(pivot.Add(n1))
|
|
return
|
|
}
|
|
// We approximate the arc by 0, 1, 2 or 3 45-degree quadratic segments plus
|
|
// a final quadratic segment from s to n1. Each 45-degree segment has control
|
|
// points {1, 0}, {1, tan(π/8)} and {1/√2, 1/√2} suitably scaled, rotated and
|
|
// translated. tan(π/8) is approximately 106/256.
|
|
const t = 106
|
|
var s Point
|
|
// We determine which octant the angle between n0 and n1 is in via three dot products.
|
|
// m0, m1 and m2 are n0 rotated clockwise by 45, 90 and 135 degrees.
|
|
m0 := n0.Rot45CW()
|
|
m1 := n0.Rot90CW()
|
|
m2 := m0.Rot90CW()
|
|
if m1.Dot(n1) >= 0 {
|
|
if n0.Dot(n1) >= 0 {
|
|
if m2.Dot(n1) <= 0 {
|
|
// n1 is between 0 and 45 degrees clockwise of n0.
|
|
s = n0
|
|
} else {
|
|
// n1 is between 45 and 90 degrees clockwise of n0.
|
|
p.Add2(pivot.Add(n0).Add(m1.Mul(t)), pivot.Add(m0))
|
|
s = m0
|
|
}
|
|
} else {
|
|
pm1, n0t := pivot.Add(m1), n0.Mul(t)
|
|
p.Add2(pivot.Add(n0).Add(m1.Mul(t)), pivot.Add(m0))
|
|
p.Add2(pm1.Add(n0t), pm1)
|
|
if m0.Dot(n1) >= 0 {
|
|
// n1 is between 90 and 135 degrees clockwise of n0.
|
|
s = m1
|
|
} else {
|
|
// n1 is between 135 and 180 degrees clockwise of n0.
|
|
p.Add2(pm1.Sub(n0t), pivot.Add(m2))
|
|
s = m2
|
|
}
|
|
}
|
|
} else {
|
|
if n0.Dot(n1) >= 0 {
|
|
if m0.Dot(n1) >= 0 {
|
|
// n1 is between 0 and 45 degrees counter-clockwise of n0.
|
|
s = n0
|
|
} else {
|
|
// n1 is between 45 and 90 degrees counter-clockwise of n0.
|
|
p.Add2(pivot.Add(n0).Sub(m1.Mul(t)), pivot.Sub(m2))
|
|
s = m2.Neg()
|
|
}
|
|
} else {
|
|
pm1, n0t := pivot.Sub(m1), n0.Mul(t)
|
|
p.Add2(pivot.Add(n0).Sub(m1.Mul(t)), pivot.Sub(m2))
|
|
p.Add2(pm1.Add(n0t), pm1)
|
|
if m2.Dot(n1) <= 0 {
|
|
// n1 is between 90 and 135 degrees counter-clockwise of n0.
|
|
s = m1.Neg()
|
|
} else {
|
|
// n1 is between 135 and 180 degrees counter-clockwise of n0.
|
|
p.Add2(pm1.Sub(n0t), pivot.Sub(m0))
|
|
s = m0.Neg()
|
|
}
|
|
}
|
|
}
|
|
// The final quadratic segment has two endpoints s and n1 and the middle
|
|
// control point is a multiple of s.Add(n1), i.e. it is on the angle bisector
|
|
// of those two points. The multiple ranges between 128/256 and 150/256 as
|
|
// the angle between s and n1 ranges between 0 and 45 degrees.
|
|
// When the angle is 0 degrees (i.e. s and n1 are coincident) then s.Add(n1)
|
|
// is twice s and so the middle control point of the degenerate quadratic
|
|
// segment should be half s.Add(n1), and half = 128/256.
|
|
// When the angle is 45 degrees then 150/256 is the ratio of the lengths of
|
|
// the two vectors {1, tan(π/8)} and {1 + 1/√2, 1/√2}.
|
|
// d is the normalized dot product between s and n1. Since the angle ranges
|
|
// between 0 and 45 degrees then d ranges between 256/256 and 181/256.
|
|
d := 256 * s.Dot(n1) / r2
|
|
multiple := Fix32(150 - 22*(d-181)/(256-181))
|
|
p.Add2(pivot.Add(s.Add(n1).Mul(multiple)), pivot.Add(n1))
|
|
}
|
|
|
|
// stroke adds the stroked Path q to p, where q consists of exactly one curve.
|
|
func stroke(p Adder, q Path, width Fix32, cap Cap, join Join) {
|
|
// Stroking is implemented by deriving two paths each width/2 apart from q.
|
|
// The left-hand-side path is added immediately to p; the right-hand-side
|
|
// path is accumulated in r, and once we've finished adding the LHS to p
|
|
// we add the RHS in reverse order.
|
|
r := Path(make([]Fix32, 0, len(q)))
|
|
var start, anorm Point
|
|
a := Point{q[1], q[2]}
|
|
i := 4
|
|
for i < len(q) {
|
|
switch q[i] {
|
|
case 1:
|
|
b := Point{q[i+1], q[i+2]}
|
|
bnorm := b.Sub(a).Norm(width / 2).Rot90CCW()
|
|
if i == 4 {
|
|
start = a.Add(bnorm)
|
|
p.Start(start)
|
|
r.Start(a.Sub(bnorm))
|
|
} else {
|
|
addJoin(p, &r, join, a, anorm, bnorm)
|
|
}
|
|
p.Add1(b.Add(bnorm))
|
|
r.Add1(b.Sub(bnorm))
|
|
a, anorm = b, bnorm
|
|
i += 4
|
|
case 2:
|
|
panic("freetype/raster: stroke unimplemented for quadratic segments")
|
|
case 3:
|
|
panic("freetype/raster: stroke unimplemented for cubic segments")
|
|
default:
|
|
panic("freetype/raster: bad path")
|
|
}
|
|
}
|
|
i = len(r) - 1
|
|
addCap(p, cap, Point{q[len(q)-3], q[len(q)-2]}, Point{r[i-2], r[i-1]})
|
|
// Add r reversed to p.
|
|
// For example, if r consists of a linear segment from A to B followed by a
|
|
// quadratic segment from B to C to D, then the values of r looks like:
|
|
// index: 01234567890123
|
|
// value: 0AA01BB12CCDD2
|
|
// So, when adding r backwards to p, we want to Add2(C, B) followed by Add1(A).
|
|
loop:
|
|
for {
|
|
switch r[i] {
|
|
case 0:
|
|
break loop
|
|
case 1:
|
|
i -= 4
|
|
p.Add1(Point{r[i-2], r[i-1]})
|
|
case 2:
|
|
i -= 6
|
|
p.Add2(Point{r[i+2], r[i+3]}, Point{r[i-2], r[i-1]})
|
|
case 3:
|
|
i -= 8
|
|
p.Add3(Point{r[i+4], r[i+5]}, Point{r[i+2], r[i+3]}, Point{r[i-2], r[i-1]})
|
|
default:
|
|
panic("freetype/raster: bad path")
|
|
}
|
|
}
|
|
// TODO(nigeltao): if q is a closed path then we should join the first and
|
|
// last segments instead of capping them.
|
|
addCap(p, cap, Point{q[1], q[2]}, start)
|
|
}
|