113 lines
3.4 KiB
Go
113 lines
3.4 KiB
Go
// Copyright 2010 The Freetype-Go Authors. All rights reserved.
|
|
// Use of this source code is governed by your choice of either the
|
|
// FreeType License or the GNU General Public License version 2 (or
|
|
// any later version), both of which can be found in the LICENSE file.
|
|
|
|
//go:build example
|
|
// +build example
|
|
|
|
//
|
|
// This build tag means that "go install github.com/golang/freetype/..."
|
|
// doesn't install this example program. Use "go run main.go" to run it or "go
|
|
// install -tags=example" to install it.
|
|
|
|
// This program visualizes the quadratic approximation to the circle, used to
|
|
// implement round joins when stroking paths. The approximation is used in the
|
|
// stroking code for arcs between 0 and 45 degrees, but is visualized here
|
|
// between 0 and 90 degrees. The discrepancy between the approximation and the
|
|
// true circle is clearly visible at angles above 65 degrees.
|
|
package main
|
|
|
|
import (
|
|
"bufio"
|
|
"fmt"
|
|
"image"
|
|
"image/color"
|
|
"image/draw"
|
|
"image/png"
|
|
"log"
|
|
"math"
|
|
"os"
|
|
|
|
"git.fireandbrimst.one/aw/golang-image/math/fixed"
|
|
"github.com/golang/freetype/raster"
|
|
)
|
|
|
|
// pDot returns the dot product p·q.
|
|
func pDot(p, q fixed.Point26_6) fixed.Int52_12 {
|
|
px, py := int64(p.X), int64(p.Y)
|
|
qx, qy := int64(q.X), int64(q.Y)
|
|
return fixed.Int52_12(px*qx + py*qy)
|
|
}
|
|
|
|
func main() {
|
|
const (
|
|
n = 17
|
|
r = 64 * 80
|
|
)
|
|
s := fixed.Int26_6(r * math.Sqrt(2) / 2)
|
|
t := fixed.Int26_6(r * math.Tan(math.Pi/8))
|
|
|
|
m := image.NewRGBA(image.Rect(0, 0, 800, 600))
|
|
draw.Draw(m, m.Bounds(), image.NewUniform(color.RGBA{63, 63, 63, 255}), image.ZP, draw.Src)
|
|
mp := raster.NewRGBAPainter(m)
|
|
mp.SetColor(image.Black)
|
|
z := raster.NewRasterizer(800, 600)
|
|
|
|
for i := 0; i < n; i++ {
|
|
cx := fixed.Int26_6(6400 + 12800*(i%4))
|
|
cy := fixed.Int26_6(640 + 8000*(i/4))
|
|
c := fixed.Point26_6{X: cx, Y: cy}
|
|
theta := math.Pi * (0.5 + 0.5*float64(i)/(n-1))
|
|
dx := fixed.Int26_6(r * math.Cos(theta))
|
|
dy := fixed.Int26_6(r * math.Sin(theta))
|
|
d := fixed.Point26_6{X: dx, Y: dy}
|
|
// Draw a quarter-circle approximated by two quadratic segments,
|
|
// with each segment spanning 45 degrees.
|
|
z.Start(c)
|
|
z.Add1(c.Add(fixed.Point26_6{X: r, Y: 0}))
|
|
z.Add2(c.Add(fixed.Point26_6{X: r, Y: t}), c.Add(fixed.Point26_6{X: s, Y: s}))
|
|
z.Add2(c.Add(fixed.Point26_6{X: t, Y: r}), c.Add(fixed.Point26_6{X: 0, Y: r}))
|
|
// Add another quadratic segment whose angle ranges between 0 and 90
|
|
// degrees. For an explanation of the magic constants 128, 150, 181 and
|
|
// 256, read the comments in the freetype/raster package.
|
|
dot := 256 * pDot(d, fixed.Point26_6{X: 0, Y: r}) / (r * r)
|
|
multiple := fixed.Int26_6(150-(150-128)*(dot-181)/(256-181)) >> 2
|
|
z.Add2(c.Add(fixed.Point26_6{X: dx, Y: r + dy}.Mul(multiple)), c.Add(d))
|
|
// Close the curve.
|
|
z.Add1(c)
|
|
}
|
|
z.Rasterize(mp)
|
|
|
|
for i := 0; i < n; i++ {
|
|
cx := fixed.Int26_6(6400 + 12800*(i%4))
|
|
cy := fixed.Int26_6(640 + 8000*(i/4))
|
|
for j := 0; j < n; j++ {
|
|
theta := math.Pi * float64(j) / (n - 1)
|
|
dx := fixed.Int26_6(r * math.Cos(theta))
|
|
dy := fixed.Int26_6(r * math.Sin(theta))
|
|
m.Set(int((cx+dx)/64), int((cy+dy)/64), color.RGBA{255, 255, 0, 255})
|
|
}
|
|
}
|
|
|
|
// Save that RGBA image to disk.
|
|
outFile, err := os.Create("out.png")
|
|
if err != nil {
|
|
log.Println(err)
|
|
os.Exit(1)
|
|
}
|
|
defer outFile.Close()
|
|
b := bufio.NewWriter(outFile)
|
|
err = png.Encode(b, m)
|
|
if err != nil {
|
|
log.Println(err)
|
|
os.Exit(1)
|
|
}
|
|
err = b.Flush()
|
|
if err != nil {
|
|
log.Println(err)
|
|
os.Exit(1)
|
|
}
|
|
fmt.Println("Wrote out.png OK.")
|
|
}
|