// Copyright 2010 The Freetype-Go Authors. All rights reserved. // Use of this source code is governed by your choice of either the // FreeType License or the GNU General Public License version 2 (or // any later version), both of which can be found in the LICENSE file. package raster // Two points are considered practically equal if the square of the distance // between them is less than one quarter (i.e. 16384 / 65536 in Fix64). const epsilon = 16384 // A Capper signifies how to begin or end a stroked path. type Capper interface { // Cap adds a cap to p given a pivot point and the normal vector of a // terminal segment. The normal's length is half of the stroke width. Cap(p Adder, halfWidth Fix32, pivot, n1 Point) } // The CapperFunc type adapts an ordinary function to be a Capper. type CapperFunc func(Adder, Fix32, Point, Point) func (f CapperFunc) Cap(p Adder, halfWidth Fix32, pivot, n1 Point) { f(p, halfWidth, pivot, n1) } // A Joiner signifies how to join interior nodes of a stroked path. type Joiner interface { // Join adds a join to the two sides of a stroked path given a pivot // point and the normal vectors of the trailing and leading segments. // Both normals have length equal to half of the stroke width. Join(lhs, rhs Adder, halfWidth Fix32, pivot, n0, n1 Point) } // The JoinerFunc type adapts an ordinary function to be a Joiner. type JoinerFunc func(lhs, rhs Adder, halfWidth Fix32, pivot, n0, n1 Point) func (f JoinerFunc) Join(lhs, rhs Adder, halfWidth Fix32, pivot, n0, n1 Point) { f(lhs, rhs, halfWidth, pivot, n0, n1) } // RoundCapper adds round caps to a stroked path. var RoundCapper Capper = CapperFunc(roundCapper) func roundCapper(p Adder, halfWidth Fix32, pivot, n1 Point) { // The cubic Bézier approximation to a circle involves the magic number // (√2 - 1) * 4/3, which is approximately 141/256. const k = 141 e := pRot90CCW(n1) side := pivot.Add(e) start, end := pivot.Sub(n1), pivot.Add(n1) d, e := n1.Mul(k), e.Mul(k) p.Add3(start.Add(e), side.Sub(d), side) p.Add3(side.Add(d), end.Add(e), end) } // ButtCapper adds butt caps to a stroked path. var ButtCapper Capper = CapperFunc(buttCapper) func buttCapper(p Adder, halfWidth Fix32, pivot, n1 Point) { p.Add1(pivot.Add(n1)) } // SquareCapper adds square caps to a stroked path. var SquareCapper Capper = CapperFunc(squareCapper) func squareCapper(p Adder, halfWidth Fix32, pivot, n1 Point) { e := pRot90CCW(n1) side := pivot.Add(e) p.Add1(side.Sub(n1)) p.Add1(side.Add(n1)) p.Add1(pivot.Add(n1)) } // RoundJoiner adds round joins to a stroked path. var RoundJoiner Joiner = JoinerFunc(roundJoiner) func roundJoiner(lhs, rhs Adder, haflWidth Fix32, pivot, n0, n1 Point) { dot := pDot(pRot90CW(n0), n1) if dot >= 0 { addArc(lhs, pivot, n0, n1) rhs.Add1(pivot.Sub(n1)) } else { lhs.Add1(pivot.Add(n1)) addArc(rhs, pivot, pNeg(n0), pNeg(n1)) } } // BevelJoiner adds bevel joins to a stroked path. var BevelJoiner Joiner = JoinerFunc(bevelJoiner) func bevelJoiner(lhs, rhs Adder, haflWidth Fix32, pivot, n0, n1 Point) { lhs.Add1(pivot.Add(n1)) rhs.Add1(pivot.Sub(n1)) } // addArc adds a circular arc from pivot+n0 to pivot+n1 to p. The shorter of // the two possible arcs is taken, i.e. the one spanning <= 180 degrees. The // two vectors n0 and n1 must be of equal length. func addArc(p Adder, pivot, n0, n1 Point) { // r2 is the square of the length of n0. r2 := pDot(n0, n0) if r2 < epsilon { // The arc radius is so small that we collapse to a straight line. p.Add1(pivot.Add(n1)) return } // We approximate the arc by 0, 1, 2 or 3 45-degree quadratic segments plus // a final quadratic segment from s to n1. Each 45-degree segment has // control points {1, 0}, {1, tan(π/8)} and {1/√2, 1/√2} suitably scaled, // rotated and translated. tan(π/8) is approximately 106/256. const tpo8 = 106 var s Point // We determine which octant the angle between n0 and n1 is in via three // dot products. m0, m1 and m2 are n0 rotated clockwise by 45, 90 and 135 // degrees. m0 := pRot45CW(n0) m1 := pRot90CW(n0) m2 := pRot90CW(m0) if pDot(m1, n1) >= 0 { if pDot(n0, n1) >= 0 { if pDot(m2, n1) <= 0 { // n1 is between 0 and 45 degrees clockwise of n0. s = n0 } else { // n1 is between 45 and 90 degrees clockwise of n0. p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0)) s = m0 } } else { pm1, n0t := pivot.Add(m1), n0.Mul(tpo8) p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0)) p.Add2(pm1.Add(n0t), pm1) if pDot(m0, n1) >= 0 { // n1 is between 90 and 135 degrees clockwise of n0. s = m1 } else { // n1 is between 135 and 180 degrees clockwise of n0. p.Add2(pm1.Sub(n0t), pivot.Add(m2)) s = m2 } } } else { if pDot(n0, n1) >= 0 { if pDot(m0, n1) >= 0 { // n1 is between 0 and 45 degrees counter-clockwise of n0. s = n0 } else { // n1 is between 45 and 90 degrees counter-clockwise of n0. p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2)) s = pNeg(m2) } } else { pm1, n0t := pivot.Sub(m1), n0.Mul(tpo8) p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2)) p.Add2(pm1.Add(n0t), pm1) if pDot(m2, n1) <= 0 { // n1 is between 90 and 135 degrees counter-clockwise of n0. s = pNeg(m1) } else { // n1 is between 135 and 180 degrees counter-clockwise of n0. p.Add2(pm1.Sub(n0t), pivot.Sub(m0)) s = pNeg(m0) } } } // The final quadratic segment has two endpoints s and n1 and the middle // control point is a multiple of s.Add(n1), i.e. it is on the angle // bisector of those two points. The multiple ranges between 128/256 and // 150/256 as the angle between s and n1 ranges between 0 and 45 degrees. // // When the angle is 0 degrees (i.e. s and n1 are coincident) then // s.Add(n1) is twice s and so the middle control point of the degenerate // quadratic segment should be half s.Add(n1), and half = 128/256. // // When the angle is 45 degrees then 150/256 is the ratio of the lengths of // the two vectors {1, tan(π/8)} and {1 + 1/√2, 1/√2}. // // d is the normalized dot product between s and n1. Since the angle ranges // between 0 and 45 degrees then d ranges between 256/256 and 181/256. d := 256 * pDot(s, n1) / r2 multiple := Fix32(150 - 22*(d-181)/(256-181)) p.Add2(pivot.Add(s.Add(n1).Mul(multiple)), pivot.Add(n1)) } // midpoint returns the midpoint of two Points. func midpoint(a, b Point) Point { return Point{(a.X + b.X) / 2, (a.Y + b.Y) / 2} } // angleGreaterThan45 returns whether the angle between two vectors is more // than 45 degrees. func angleGreaterThan45(v0, v1 Point) bool { v := pRot45CCW(v0) return pDot(v, v1) < 0 || pDot(pRot90CW(v), v1) < 0 } // interpolate returns the point (1-t)*a + t*b. func interpolate(a, b Point, t Fix64) Point { s := 1<<16 - t x := s*Fix64(a.X) + t*Fix64(b.X) y := s*Fix64(a.Y) + t*Fix64(b.Y) return Point{Fix32(x >> 16), Fix32(y >> 16)} } // curviest2 returns the value of t for which the quadratic parametric curve // (1-t)²*a + 2*t*(1-t).b + t²*c has maximum curvature. // // The curvature of the parametric curve f(t) = (x(t), y(t)) is // |x′y″-y′x″| / (x′²+y′²)^(3/2). // // Let d = b-a and e = c-2*b+a, so that f′(t) = 2*d+2*e*t and f″(t) = 2*e. // The curvature's numerator is (2*dx+2*ex*t)*(2*ey)-(2*dy+2*ey*t)*(2*ex), // which simplifies to 4*dx*ey-4*dy*ex, which is constant with respect to t. // // Thus, curvature is extreme where the denominator is extreme, i.e. where // (x′²+y′²) is extreme. The first order condition is that // 2*x′*x″+2*y′*y″ = 0, or (dx+ex*t)*ex + (dy+ey*t)*ey = 0. // Solving for t gives t = -(dx*ex+dy*ey) / (ex*ex+ey*ey). func curviest2(a, b, c Point) Fix64 { dx := int64(b.X - a.X) dy := int64(b.Y - a.Y) ex := int64(c.X - 2*b.X + a.X) ey := int64(c.Y - 2*b.Y + a.Y) if ex == 0 && ey == 0 { return 32768 } return Fix64(-65536 * (dx*ex + dy*ey) / (ex*ex + ey*ey)) } // A stroker holds state for stroking a path. type stroker struct { // p is the destination that records the stroked path. p Adder // u is the half-width of the stroke. u Fix32 // cr and jr specify how to end and connect path segments. cr Capper jr Joiner // r is the reverse path. Stroking a path involves constructing two // parallel paths 2*u apart. The first path is added immediately to p, // the second path is accumulated in r and eventually added in reverse. r Path // a is the most recent segment point. anorm is the segment normal of // length u at that point. a, anorm Point } // addNonCurvy2 adds a quadratic segment to the stroker, where the segment // defined by (k.a, b, c) achieves maximum curvature at either k.a or c. func (k *stroker) addNonCurvy2(b, c Point) { // We repeatedly divide the segment at its middle until it is straight // enough to approximate the stroke by just translating the control points. // ds and ps are stacks of depths and points. t is the top of the stack. const maxDepth = 5 var ( ds [maxDepth + 1]int ps [2*maxDepth + 3]Point t int ) // Initially the ps stack has one quadratic segment of depth zero. ds[0] = 0 ps[2] = k.a ps[1] = b ps[0] = c anorm := k.anorm var cnorm Point for { depth := ds[t] a := ps[2*t+2] b := ps[2*t+1] c := ps[2*t+0] ab := b.Sub(a) bc := c.Sub(b) abIsSmall := pDot(ab, ab) < Fix64(1<<16) bcIsSmall := pDot(bc, bc) < Fix64(1<<16) if abIsSmall && bcIsSmall { // Approximate the segment by a circular arc. cnorm = pRot90CCW(pNorm(bc, k.u)) mac := midpoint(a, c) addArc(k.p, mac, anorm, cnorm) addArc(&k.r, mac, pNeg(anorm), pNeg(cnorm)) } else if depth < maxDepth && angleGreaterThan45(ab, bc) { // Divide the segment in two and push both halves on the stack. mab := midpoint(a, b) mbc := midpoint(b, c) t++ ds[t+0] = depth + 1 ds[t-1] = depth + 1 ps[2*t+2] = a ps[2*t+1] = mab ps[2*t+0] = midpoint(mab, mbc) ps[2*t-1] = mbc continue } else { // Translate the control points. bnorm := pRot90CCW(pNorm(c.Sub(a), k.u)) cnorm = pRot90CCW(pNorm(bc, k.u)) k.p.Add2(b.Add(bnorm), c.Add(cnorm)) k.r.Add2(b.Sub(bnorm), c.Sub(cnorm)) } if t == 0 { k.a, k.anorm = c, cnorm return } t-- anorm = cnorm } panic("unreachable") } // Add1 adds a linear segment to the stroker. func (k *stroker) Add1(b Point) { bnorm := pRot90CCW(pNorm(b.Sub(k.a), k.u)) if len(k.r) == 0 { k.p.Start(k.a.Add(bnorm)) k.r.Start(k.a.Sub(bnorm)) } else { k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, bnorm) } k.p.Add1(b.Add(bnorm)) k.r.Add1(b.Sub(bnorm)) k.a, k.anorm = b, bnorm } // Add2 adds a quadratic segment to the stroker. func (k *stroker) Add2(b, c Point) { ab := b.Sub(k.a) bc := c.Sub(b) abnorm := pRot90CCW(pNorm(ab, k.u)) if len(k.r) == 0 { k.p.Start(k.a.Add(abnorm)) k.r.Start(k.a.Sub(abnorm)) } else { k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, abnorm) } // Approximate nearly-degenerate quadratics by linear segments. abIsSmall := pDot(ab, ab) < epsilon bcIsSmall := pDot(bc, bc) < epsilon if abIsSmall || bcIsSmall { acnorm := pRot90CCW(pNorm(c.Sub(k.a), k.u)) k.p.Add1(c.Add(acnorm)) k.r.Add1(c.Sub(acnorm)) k.a, k.anorm = c, acnorm return } // The quadratic segment (k.a, b, c) has a point of maximum curvature. // If this occurs at an end point, we process the segment as a whole. t := curviest2(k.a, b, c) if t <= 0 || 65536 <= t { k.addNonCurvy2(b, c) return } // Otherwise, we perform a de Casteljau decomposition at the point of // maximum curvature and process the two straighter parts. mab := interpolate(k.a, b, t) mbc := interpolate(b, c, t) mabc := interpolate(mab, mbc, t) // If the vectors ab and bc are close to being in opposite directions, // then the decomposition can become unstable, so we approximate the // quadratic segment by two linear segments joined by an arc. bcnorm := pRot90CCW(pNorm(bc, k.u)) if pDot(abnorm, bcnorm) < -Fix64(k.u)*Fix64(k.u)*2047/2048 { pArc := pDot(abnorm, bc) < 0 k.p.Add1(mabc.Add(abnorm)) if pArc { z := pRot90CW(abnorm) addArc(k.p, mabc, abnorm, z) addArc(k.p, mabc, z, bcnorm) } k.p.Add1(mabc.Add(bcnorm)) k.p.Add1(c.Add(bcnorm)) k.r.Add1(mabc.Sub(abnorm)) if !pArc { z := pRot90CW(abnorm) addArc(&k.r, mabc, pNeg(abnorm), z) addArc(&k.r, mabc, z, pNeg(bcnorm)) } k.r.Add1(mabc.Sub(bcnorm)) k.r.Add1(c.Sub(bcnorm)) k.a, k.anorm = c, bcnorm return } // Process the decomposed parts. k.addNonCurvy2(mab, mabc) k.addNonCurvy2(mbc, c) } // Add3 adds a cubic segment to the stroker. func (k *stroker) Add3(b, c, d Point) { panic("freetype/raster: stroke unimplemented for cubic segments") } // stroke adds the stroked Path q to p, where q consists of exactly one curve. func (k *stroker) stroke(q Path) { // Stroking is implemented by deriving two paths each k.u apart from q. // The left-hand-side path is added immediately to k.p; the right-hand-side // path is accumulated in k.r. Once we've finished adding the LHS to k.p, // we add the RHS in reverse order. k.r = make(Path, 0, len(q)) k.a = Point{q[1], q[2]} for i := 4; i < len(q); { switch q[i] { case 1: k.Add1(Point{q[i+1], q[i+2]}) i += 4 case 2: k.Add2(Point{q[i+1], q[i+2]}, Point{q[i+3], q[i+4]}) i += 6 case 3: k.Add3(Point{q[i+1], q[i+2]}, Point{q[i+3], q[i+4]}, Point{q[i+5], q[i+6]}) i += 8 default: panic("freetype/raster: bad path") } } if len(k.r) == 0 { return } // TODO(nigeltao): if q is a closed curve then we should join the first and // last segments instead of capping them. k.cr.Cap(k.p, k.u, q.lastPoint(), pNeg(k.anorm)) addPathReversed(k.p, k.r) pivot := q.firstPoint() k.cr.Cap(k.p, k.u, pivot, pivot.Sub(Point{k.r[1], k.r[2]})) } // Stroke adds q stroked with the given width to p. The result is typically // self-intersecting and should be rasterized with UseNonZeroWinding. // cr and jr may be nil, which defaults to a RoundCapper or RoundJoiner. func Stroke(p Adder, q Path, width Fix32, cr Capper, jr Joiner) { if len(q) == 0 { return } if cr == nil { cr = RoundCapper } if jr == nil { jr = RoundJoiner } if q[0] != 0 { panic("freetype/raster: bad path") } s := stroker{p: p, u: width / 2, cr: cr, jr: jr} i := 0 for j := 4; j < len(q); { switch q[j] { case 0: s.stroke(q[i:j]) i, j = j, j+4 case 1: j += 4 case 2: j += 6 case 3: j += 8 default: panic("freetype/raster: bad path") } } s.stroke(q[i:]) }