// Copyright 2010 The Freetype-Go Authors. All rights reserved. // Use of this source code is governed by your choice of either the // FreeType License or the GNU General Public License version 2 (or // any later version), both of which can be found in the LICENSE file. package raster import ( "fmt" "math" ) // A Fix32 is a 24.8 fixed point number. type Fix32 int32 // A Fix64 is a 48.16 fixed point number. type Fix64 int64 // String returns a human-readable representation of a 24.8 fixed point number. // For example, the number one-and-a-quarter becomes "1:064". func (x Fix32) String() string { if x < 0 { x = -x return fmt.Sprintf("-%d:%03d", int32(x/256), int32(x%256)) } return fmt.Sprintf("%d:%03d", int32(x/256), int32(x%256)) } // String returns a human-readable representation of a 48.16 fixed point number. // For example, the number one-and-a-quarter becomes "1:16384". func (x Fix64) String() string { if x < 0 { x = -x return fmt.Sprintf("-%d:%05d", int64(x/65536), int64(x%65536)) } return fmt.Sprintf("%d:%05d", int64(x/65536), int64(x%65536)) } // maxAbs returns the maximum of abs(a) and abs(b). func maxAbs(a, b Fix32) Fix32 { if a < 0 { a = -a } if b < 0 { b = -b } if a < b { return b } return a } // A Point represents a two-dimensional point or vector, in 24.8 fixed point // format. type Point struct { X, Y Fix32 } // String returns a human-readable representation of a Point. func (p Point) String() string { return "(" + p.X.String() + ", " + p.Y.String() + ")" } // Add returns the vector p + q. func (p Point) Add(q Point) Point { return Point{p.X + q.X, p.Y + q.Y} } // Sub returns the vector p - q. func (p Point) Sub(q Point) Point { return Point{p.X - q.X, p.Y - q.Y} } // Mul returns the vector k * p. func (p Point) Mul(k Fix32) Point { return Point{p.X * k / 256, p.Y * k / 256} } // Neg returns the vector -p, or equivalently p rotated by 180 degrees. func (p Point) Neg() Point { return Point{-p.X, -p.Y} } // Dot returns the dot product p·q. func (p Point) Dot(q Point) Fix64 { px, py := int64(p.X), int64(p.Y) qx, qy := int64(q.X), int64(q.Y) return Fix64(px*qx + py*qy) } // Len returns the length of the vector p. func (p Point) Len() Fix32 { // TODO(nigeltao): use fixed point math. x := float64(p.X) y := float64(p.Y) return Fix32(math.Sqrt(x*x + y*y)) } // Norm returns the vector p normalized to the given length, or the zero Point // if p is degenerate. func (p Point) Norm(length Fix32) Point { d := p.Len() if d == 0 { return Point{0, 0} } s, t := int64(length), int64(d) x := int64(p.X) * s / t y := int64(p.Y) * s / t return Point{Fix32(x), Fix32(y)} } // Rot45CW returns the vector p rotated clockwise by 45 degrees. // Note that the Y-axis grows downwards, so {1, 0}.Rot45CW is {1/√2, 1/√2}. func (p Point) Rot45CW() Point { // 181/256 is approximately 1/√2, or sin(π/4). px, py := int64(p.X), int64(p.Y) qx := (+px - py) * 181 / 256 qy := (+px + py) * 181 / 256 return Point{Fix32(qx), Fix32(qy)} } // Rot90CW returns the vector p rotated clockwise by 90 degrees. // Note that the Y-axis grows downwards, so {1, 0}.Rot90CW is {0, 1}. func (p Point) Rot90CW() Point { return Point{-p.Y, p.X} } // Rot135CW returns the vector p rotated clockwise by 135 degrees. // Note that the Y-axis grows downwards, so {1, 0}.Rot135CW is {-1/√2, 1/√2}. func (p Point) Rot135CW() Point { // 181/256 is approximately 1/√2, or sin(π/4). px, py := int64(p.X), int64(p.Y) qx := (-px - py) * 181 / 256 qy := (+px - py) * 181 / 256 return Point{Fix32(qx), Fix32(qy)} } // Rot45CCW returns the vector p rotated counter-clockwise by 45 degrees. // Note that the Y-axis grows downwards, so {1, 0}.Rot45CCW is {1/√2, -1/√2}. func (p Point) Rot45CCW() Point { // 181/256 is approximately 1/√2, or sin(π/4). px, py := int64(p.X), int64(p.Y) qx := (+px + py) * 181 / 256 qy := (-px + py) * 181 / 256 return Point{Fix32(qx), Fix32(qy)} } // Rot90CCW returns the vector p rotated counter-clockwise by 90 degrees. // Note that the Y-axis grows downwards, so {1, 0}.Rot90CCW is {0, -1}. func (p Point) Rot90CCW() Point { return Point{p.Y, -p.X} } // Rot135CCW returns the vector p rotated counter-clockwise by 135 degrees. // Note that the Y-axis grows downwards, so {1, 0}.Rot135CCW is {-1/√2, -1/√2}. func (p Point) Rot135CCW() Point { // 181/256 is approximately 1/√2, or sin(π/4). px, py := int64(p.X), int64(p.Y) qx := (-px + py) * 181 / 256 qy := (-px - py) * 181 / 256 return Point{Fix32(qx), Fix32(qy)} } // An Adder accumulates points on a curve. type Adder interface { // Start starts a new curve at the given point. Start(a Point) // Add1 adds a linear segment to the current curve. Add1(b Point) // Add2 adds a quadratic segment to the current curve. Add2(b, c Point) // Add3 adds a cubic segment to the current curve. Add3(b, c, d Point) } // A Path is a sequence of curves, and a curve is a start point followed by a // sequence of linear, quadratic or cubic segments. type Path []Fix32 // String returns a human-readable representation of a Path. func (p Path) String() string { s := "" for i := 0; i < len(p); { if i != 0 { s += " " } switch p[i] { case 0: s += "S0" + fmt.Sprint([]Fix32(p[i+1:i+3])) i += 4 case 1: s += "A1" + fmt.Sprint([]Fix32(p[i+1:i+3])) i += 4 case 2: s += "A2" + fmt.Sprint([]Fix32(p[i+1:i+5])) i += 6 case 3: s += "A3" + fmt.Sprint([]Fix32(p[i+1:i+7])) i += 8 default: panic("freetype/raster: bad path") } } return s } // grow adds n elements to p. func (p *Path) grow(n int) { n += len(*p) if n > cap(*p) { old := *p *p = make([]Fix32, n, 2*n+8) copy(*p, old) return } *p = (*p)[0:n] } // Clear cancels any previous calls to p.Start or p.AddXxx. func (p *Path) Clear() { *p = (*p)[0:0] } // Start starts a new curve at the given point. func (p *Path) Start(a Point) { n := len(*p) p.grow(4) (*p)[n] = 0 (*p)[n+1] = a.X (*p)[n+2] = a.Y (*p)[n+3] = 0 } // Add1 adds a linear segment to the current curve. func (p *Path) Add1(b Point) { n := len(*p) p.grow(4) (*p)[n] = 1 (*p)[n+1] = b.X (*p)[n+2] = b.Y (*p)[n+3] = 1 } // Add2 adds a quadratic segment to the current curve. func (p *Path) Add2(b, c Point) { n := len(*p) p.grow(6) (*p)[n] = 2 (*p)[n+1] = b.X (*p)[n+2] = b.Y (*p)[n+3] = c.X (*p)[n+4] = c.Y (*p)[n+5] = 2 } // Add3 adds a cubic segment to the current curve. func (p *Path) Add3(b, c, d Point) { n := len(*p) p.grow(8) (*p)[n] = 3 (*p)[n+1] = b.X (*p)[n+2] = b.Y (*p)[n+3] = c.X (*p)[n+4] = c.Y (*p)[n+5] = d.X (*p)[n+6] = d.Y (*p)[n+7] = 3 } // AddPath adds the Path q to p. func (p *Path) AddPath(q Path) { n, m := len(*p), len(q) p.grow(m) copy((*p)[n:n+m], q) } // AddStroke adds a stroked Path. func (p *Path) AddStroke(q Path, width Fix32, cr Capper, jr Joiner) { Stroke(p, q, width, cr, jr) } // firstPoint returns the first point in a non-empty Path. func (p Path) firstPoint() Point { return Point{p[1], p[2]} } // lastPoint returns the last point in a non-empty Path. func (p Path) lastPoint() Point { return Point{p[len(p)-3], p[len(p)-2]} } // addPathReversed adds q reversed to p. // For example, if q consists of a linear segment from A to B followed by a // quadratic segment from B to C to D, then the values of q looks like: // index: 01234567890123 // value: 0AA01BB12CCDD2 // So, when adding q backwards to p, we want to Add2(C, B) followed by Add1(A). func addPathReversed(p Adder, q Path) { if len(q) == 0 { return } i := len(q) - 1 for { switch q[i] { case 0: return case 1: i -= 4 p.Add1(Point{q[i-2], q[i-1]}) case 2: i -= 6 p.Add2(Point{q[i+2], q[i+3]}, Point{q[i-2], q[i-1]}) case 3: i -= 8 p.Add3(Point{q[i+4], q[i+5]}, Point{q[i+2], q[i+3]}, Point{q[i-2], q[i-1]}) default: panic("freetype/raster: bad path") } } }