// Copyright 2010 The Freetype-Go Authors. All rights reserved. // Use of this source code is governed by your choice of either the // FreeType License or the GNU General Public License version 2, // both of which can be found in the LICENSE file. // The truetype package provides a parser for the TTF file format. That format // is documented at http://developer.apple.com/fonts/TTRefMan/ and // http://www.microsoft.com/typography/otspec/ // // All numbers (e.g. bounds, point co-ordinates, font metrics) are measured in // FUnits. To convert from FUnits to pixels, scale by // (pointSize * resolution) / (font.UnitsPerEm() * 72dpi) // For example, 550 FUnits at 18pt, 72dpi and 2048upe is 4.83 pixels. package truetype import ( "fmt" "os" ) // An Index is a Font's index of a Unicode code point. type Index uint16 // A Bounds holds the co-ordinate range of one or more glyphs. // The endpoints are inclusive. type Bounds struct { XMin, YMin, XMax, YMax int16 } // An HMetric holds the horizontal metrics of a single glyph. type HMetric struct { AdvanceWidth uint16 LeftSideBearing int16 } // A FormatError reports that the input is not a valid TrueType font. type FormatError string func (e FormatError) String() string { return "freetype: invalid TrueType format: " + string(e) } // An UnsupportedError reports that the input uses a valid but unimplemented // TrueType feature. type UnsupportedError string func (e UnsupportedError) String() string { return "freetype: unsupported TrueType feature: " + string(e) } // data interprets a byte slice as a stream of integer values. type data []byte // u32 returns the next big-endian uint32. func (d *data) u32() uint32 { x := uint32((*d)[0])<<24 | uint32((*d)[1])<<16 | uint32((*d)[2])<<8 | uint32((*d)[3]) *d = (*d)[4:] return x } // u16 returns the next big-endian uint16. func (d *data) u16() uint16 { x := uint16((*d)[0])<<8 | uint16((*d)[1]) *d = (*d)[2:] return x } // u8 returns the next uint8. func (d *data) u8() uint8 { x := (*d)[0] *d = (*d)[1:] return x } // skip skips the next n bytes. func (d *data) skip(n int) { *d = (*d)[n:] } // readTable returns a slice of the TTF data given by a table's directory entry. func readTable(ttf []byte, offsetLength []byte) ([]byte, os.Error) { d := data(offsetLength) offset := int(d.u32()) if offset < 0 || offset > 1<<24 || offset > len(ttf) { return nil, FormatError(fmt.Sprintf("offset too large: %d", offset)) } length := int(d.u32()) if length < 0 || length > 1<<24 || offset+length > len(ttf) { return nil, FormatError(fmt.Sprintf("length too large: %d", length)) } return ttf[offset : offset+length], nil } const ( locaOffsetFormatUnknown int = iota locaOffsetFormatShort locaOffsetFormatLong ) // A cm holds a parsed cmap entry. type cm struct { start, end, delta, offset uint16 } // A Font represents a Truetype font. type Font struct { // Tables sliced from the TTF data. The different tables are documented // at http://developer.apple.com/fonts/TTRefMan/RM06/Chap6.html cmap, glyf, head, hhea, hmtx, kern, loca, maxp []byte cmapIndexes []byte // Cached values derived from the raw ttf data. cm []cm locaOffsetFormat int nGlyph, nHMetric, nKern int unitsPerEm int bounds Bounds } func (f *Font) parseCmap() os.Error { const ( cmapFormat4 = 4 languageIndependent = 0 // A 32-bit encoding consists of a most-significant 16-bit Platform ID and a // least-significant 16-bit Platform Specific ID. unicodeEncoding = 0x00000003 // PID = 0 (Unicode), PSID = 3 (Unicode 2.0) microsoftEncoding = 0x00030001 // PID = 3 (Microsoft), PSID = 1 (UCS-2) ) if len(f.cmap) < 4 { return FormatError("cmap too short") } d := data(f.cmap[2:]) nsubtab := int(d.u16()) if len(f.cmap) < 8*nsubtab+4 { return FormatError("cmap too short") } offset, found := 0, false for i := 0; i < nsubtab; i++ { // We read the 16-bit Platform ID and 16-bit Platform Specific ID as a single uint32. // All values are big-endian. pidPsid, o := d.u32(), d.u32() // We prefer the Unicode cmap encoding. Failing to find that, we fall // back onto the Microsoft cmap encoding. if pidPsid == unicodeEncoding { offset, found = int(o), true break } else if pidPsid == microsoftEncoding { offset, found = int(o), true // We don't break out of the for loop, so that Unicode can override Microsoft. } } if !found { return UnsupportedError("cmap encoding") } if offset <= 0 || offset > len(f.cmap) { return FormatError("bad cmap offset") } d = data(f.cmap[offset:]) cmapFormat := d.u16() if cmapFormat != cmapFormat4 { return UnsupportedError(fmt.Sprintf("cmap format: %d", cmapFormat)) } d.skip(2) language := d.u16() if language != languageIndependent { return UnsupportedError(fmt.Sprintf("language: %d", language)) } segCountX2 := int(d.u16()) if segCountX2%2 == 1 { return FormatError(fmt.Sprintf("bad segCountX2: %d", segCountX2)) } segCount := segCountX2 / 2 d.skip(6) f.cm = make([]cm, segCount) for i := 0; i < segCount; i++ { f.cm[i].end = d.u16() } d.skip(2) for i := 0; i < segCount; i++ { f.cm[i].start = d.u16() } for i := 0; i < segCount; i++ { f.cm[i].delta = d.u16() } for i := 0; i < segCount; i++ { f.cm[i].offset = d.u16() } f.cmapIndexes = []byte(d) return nil } func (f *Font) parseHead() os.Error { if len(f.head) != 54 { return FormatError(fmt.Sprintf("bad head length: %d", len(f.head))) } d := data(f.head[18:]) f.unitsPerEm = int(d.u16()) d.skip(16) f.bounds.XMin = int16(d.u16()) f.bounds.YMin = int16(d.u16()) f.bounds.XMax = int16(d.u16()) f.bounds.YMax = int16(d.u16()) d.skip(6) switch i := d.u16(); i { case 0: f.locaOffsetFormat = locaOffsetFormatShort case 1: f.locaOffsetFormat = locaOffsetFormatLong default: return FormatError(fmt.Sprintf("bad indexToLocFormat: %d", i)) } return nil } func (f *Font) parseHhea() os.Error { if len(f.hhea) != 36 { return FormatError(fmt.Sprintf("bad hhea length: %d", len(f.hhea))) } d := data(f.hhea[34:]) f.nHMetric = int(d.u16()) if 4*f.nHMetric+2*(f.nGlyph-f.nHMetric) != len(f.hmtx) { return FormatError(fmt.Sprintf("bad hmtx length: %d", len(f.hmtx))) } return nil } func (f *Font) parseKern() os.Error { // Apple's TrueType documentation (http://developer.apple.com/fonts/TTRefMan/RM06/Chap6kern.html) says: // "Previous versions of the 'kern' table defined both the version and nTables fields in the header // as UInt16 values and not UInt32 values. Use of the older format on the Mac OS is discouraged // (although AAT can sense an old kerning table and still make correct use of it). Microsoft // Windows still uses the older format for the 'kern' table and will not recognize the newer one. // Fonts targeted for the Mac OS only should use the new format; fonts targeted for both the Mac OS // and Windows should use the old format." // Since we expect that almost all fonts aim to be Windows-compatible, we only parse the "older" format, // just like the C Freetype implementation. if len(f.kern) == 0 { if f.nKern != 0 { return FormatError("bad kern table length") } return nil } if len(f.kern) < 18 { return FormatError("kern data too short") } d := data(f.kern[0:]) version := d.u16() if version != 0 { return UnsupportedError(fmt.Sprintf("kern version: %d", version)) } n := d.u16() if n != 1 { return UnsupportedError(fmt.Sprintf("kern nTables: %d", n)) } d.skip(2) length := int(d.u16()) coverage := d.u16() if coverage != 0x0001 { // We only support horizontal kerning. return UnsupportedError(fmt.Sprintf("kern coverage: 0x%04x", coverage)) } f.nKern = int(d.u16()) if 6*f.nKern != length-14 { return FormatError("bad kern table length") } return nil } func (f *Font) parseMaxp() os.Error { if len(f.maxp) != 32 { return FormatError(fmt.Sprintf("bad maxp length: %d", len(f.maxp))) } d := data(f.maxp[4:]) f.nGlyph = int(d.u16()) return nil } // Bounds returns the union of a Font's glyphs' bounds. func (f *Font) Bounds() Bounds { return f.bounds } // UnitsPerEm returns the number of FUnits in a Font's em-square. func (f *Font) UnitsPerEm() int { return f.unitsPerEm } // Index returns a Font's index for the given Unicode code point. func (f *Font) Index(codePoint int) Index { c := uint16(codePoint) n := len(f.cm) for i := 0; i < n; i++ { if f.cm[i].start <= c && c <= f.cm[i].end { if f.cm[i].offset == 0 { return Index(c + f.cm[i].delta) } offset := int(f.cm[i].offset) + 2*(i-n+int(c-f.cm[i].start)) d := data(f.cmapIndexes[offset:]) return Index(d.u16()) } } return Index(0) } // HMetric returns the horizontal metrics for the glyph with the given index. func (f *Font) HMetric(i Index) HMetric { j := int(i) if j >= f.nGlyph { return HMetric{} } if j >= f.nHMetric { var hm HMetric p := 4 * (f.nHMetric - 1) d := data(f.hmtx[p:]) hm.AdvanceWidth = d.u16() p += 2*(j-f.nHMetric) + 4 d = data(f.hmtx[p:]) hm.LeftSideBearing = int16(d.u16()) return hm } d := data(f.hmtx[4*j:]) return HMetric{d.u16(), int16(d.u16())} } // Kerning returns the kerning for the given glyph pair. func (f *Font) Kerning(i0, i1 Index) int16 { if f.nKern == 0 { return 0 } g := uint32(i0)<<16 | uint32(i1) lo, hi := 0, f.nKern for lo < hi { i := (lo + hi) / 2 d := data(f.kern[18+6*i:]) ig := d.u32() if ig < g { lo = i + 1 } else if ig > g { hi = i } else { return int16(d.u16()) } } return 0 } // Parse returns a new Font for the given TTF data. func Parse(ttf []byte) (font *Font, err os.Error) { if len(ttf) < 12 { err = FormatError("TTF data is too short") return } d := data(ttf[0:]) if d.u32() != 0x00010000 { err = FormatError("bad version") return } n := int(d.u16()) if len(ttf) < 16*n+12 { err = FormatError("TTF data is too short") return } f := new(Font) // Assign the table slices. for i := 0; i < n; i++ { x := 16*i + 12 switch string(ttf[x : x+4]) { case "cmap": f.cmap, err = readTable(ttf, ttf[x+8:x+16]) case "glyf": f.glyf, err = readTable(ttf, ttf[x+8:x+16]) case "head": f.head, err = readTable(ttf, ttf[x+8:x+16]) case "hhea": f.hhea, err = readTable(ttf, ttf[x+8:x+16]) case "hmtx": f.hmtx, err = readTable(ttf, ttf[x+8:x+16]) case "kern": f.kern, err = readTable(ttf, ttf[x+8:x+16]) case "loca": f.loca, err = readTable(ttf, ttf[x+8:x+16]) case "maxp": f.maxp, err = readTable(ttf, ttf[x+8:x+16]) } if err != nil { return } } // Parse and sanity-check the TTF data. if err = f.parseHead(); err != nil { return } if err = f.parseMaxp(); err != nil { return } if err = f.parseCmap(); err != nil { return } if err = f.parseKern(); err != nil { return } if err = f.parseHhea(); err != nil { return } font = f return } // A Point is a co-ordinate pair plus whether it is ``on'' a contour or an // ``off'' control point. type Point struct { X, Y int16 // The Flags' LSB means whether or not this Point is ``on'' the contour. // Other bits are reserved for internal use. Flags uint8 } // A Glyph holds a glyph's contours. A Glyph can be re-used to load a series // of glyphs from a Font. type Glyph struct { // The glyph's bounding box. B Bounds // Point contains all Points from all contours of the glyph. Point []Point // The length of End is the number of contours in the glyph. The i'th // contour consists of points Point[End[i-1]:End[i]], where End[-1] // is interpreted to mean zero. End []int } // decodeFlags decodes a glyph's run-length encoded flags, // and returns the remaining data. func (g *Glyph) decodeFlags(d data) data { for i := 0; i < len(g.Point); { c := d.u8() g.Point[i].Flags = c i++ if c&0x08 != 0 { count := d.u8() for ; count > 0; count-- { g.Point[i].Flags = c i++ } } } return d } // decodeCoords decodes a glyph's delta encoded co-ordinates. func (g *Glyph) decodeCoords(d data) { var x int16 for i := 0; i < len(g.Point); i++ { f := g.Point[i].Flags if f&0x02 != 0 { dx := int16(d.u8()) if f&0x10 == 0 { x -= dx } else { x += dx } } else if f&0x10 == 0 { x += int16(d.u16()) } g.Point[i].X = x } var y int16 for i := 0; i < len(g.Point); i++ { f := g.Point[i].Flags if f&0x04 != 0 { dy := int16(d.u8()) if f&0x20 == 0 { y -= dy } else { y += dy } } else if f&0x20 == 0 { y += int16(d.u16()) } g.Point[i].Y = y } } // Load loads a glyph's contours from a Font, overwriting any previously // loaded contours for this Glyph. func (g *Glyph) Load(f *Font, i Index) os.Error { // Reset the Glyph. g.B = Bounds{} g.Point = g.Point[0:0] g.End = g.End[0:0] // Find the relevant slice of f.glyf. var g0, g1 uint32 if f.locaOffsetFormat == locaOffsetFormatShort { d := data(f.loca[2*i:]) g0 = 2 * uint32(d.u16()) g1 = 2 * uint32(d.u16()) } else { d := data(f.loca[4*i:]) g0 = d.u32() g1 = d.u32() } if g0 == g1 { return nil } d := data(f.glyf[g0:g1]) // Decode the contour end indices. ne := int(d.u16()) if ne == 1<<16-1 { return UnsupportedError("compound glyph") } g.B.XMin = int16(d.u16()) g.B.YMin = int16(d.u16()) g.B.XMax = int16(d.u16()) g.B.YMax = int16(d.u16()) if ne <= cap(g.End) { g.End = g.End[0:ne] } else { g.End = make([]int, ne, ne*2) } for i := 0; i < ne; i++ { g.End[i] = 1 + int(d.u16()) } // Skip the TrueType hinting instructions. instrLen := int(d.u16()) d.skip(instrLen) // Decode the points. np := int(g.End[ne-1]) if np <= cap(g.Point) { g.Point = g.Point[0:np] } else { g.Point = make([]Point, np, np*2) } d = g.decodeFlags(d) g.decodeCoords(d) return nil } // NewGlyph returns a newly allocated Glyph. func NewGlyph() *Glyph { g := new(Glyph) g.Point = make([]Point, 0, 256) g.End = make([]int, 0, 32) return g }