// Copyright 2010 The Freetype-Go Authors. All rights reserved. // Use of this source code is governed by your choice of either the // FreeType License or the GNU General Public License version 2 (or // any later version), both of which can be found in the LICENSE file. package truetype // A Point is a co-ordinate pair plus whether it is ``on'' a contour or an // ``off'' control point. type Point struct { X, Y int32 // The Flags' LSB means whether or not this Point is ``on'' the contour. // Other bits are reserved for internal use. Flags uint32 } // A GlyphBuf holds a glyph's contours. A GlyphBuf can be re-used to load a // series of glyphs from a Font. type GlyphBuf struct { // B is the glyph's bounding box. B Bounds // Point contains all Points from all contours of the glyph. If a // Hinter was used to load a glyph then Unhinted contains those // Points before they were hinted, and InFontUnits contains those // Points before they were hinted and scaled. Point, Unhinted, InFontUnits []Point // End is the point indexes of the end point of each countour. The // length of End is the number of contours in the glyph. The i'th // contour consists of points Point[End[i-1]:End[i]], where End[-1] // is interpreted to mean zero. End []int font *Font hinter *Hinter scale int32 // pp1x is the X co-ordinate of the first phantom point. pp1x int32 // metricsSet is whether the glyph's metrics have been set yet. For a // compound glyph, a sub-glyph may override the outer glyph's metrics. metricsSet bool // tmp is a scratch buffer. tmp []Point } // Flags for decoding a glyph's contours. These flags are documented at // http://developer.apple.com/fonts/TTRefMan/RM06/Chap6glyf.html. const ( flagOnCurve = 1 << iota flagXShortVector flagYShortVector flagRepeat flagPositiveXShortVector flagPositiveYShortVector // The remaining flags are for internal use. flagTouchedX flagTouchedY ) // The same flag bits (0x10 and 0x20) are overloaded to have two meanings, // dependent on the value of the flag{X,Y}ShortVector bits. const ( flagThisXIsSame = flagPositiveXShortVector flagThisYIsSame = flagPositiveYShortVector ) // Load loads a glyph's contours from a Font, overwriting any previously // loaded contours for this GlyphBuf. scale is the number of 26.6 fixed point // units in 1 em. The Hinter is optional; if non-nil, then the resulting glyph // will be hinted by the Font's bytecode instructions. func (g *GlyphBuf) Load(f *Font, scale int32, i Index, h *Hinter) error { g.B = Bounds{} g.Point = g.Point[:0] g.Unhinted = g.Unhinted[:0] g.InFontUnits = g.InFontUnits[:0] g.End = g.End[:0] g.font = f g.hinter = h g.scale = scale g.pp1x = 0 g.metricsSet = false if h != nil { if err := h.init(f, scale); err != nil { return err } } if err := g.load(0, i, true); err != nil { return err } if g.pp1x != 0 { for i := range g.Point { g.Point[i].X -= g.pp1x } // TODO: also adjust g.B? } return nil } func (g *GlyphBuf) load(recursion int32, i Index, useMyMetrics bool) (err error) { // The recursion limit here is arbitrary, but defends against malformed glyphs. if recursion >= 32 { return UnsupportedError("excessive compound glyph recursion") } // Find the relevant slice of g.font.glyf. var g0, g1 uint32 if g.font.locaOffsetFormat == locaOffsetFormatShort { g0 = 2 * uint32(u16(g.font.loca, 2*int(i))) g1 = 2 * uint32(u16(g.font.loca, 2*int(i)+2)) } else { g0 = u32(g.font.loca, 4*int(i)) g1 = u32(g.font.loca, 4*int(i)+4) } if g0 == g1 { return nil } glyf := g.font.glyf[g0:g1] // Decode the contour end indices. ne := int(int16(u16(glyf, 0))) b := Bounds{ XMin: int32(int16(u16(glyf, 2))), YMin: int32(int16(u16(glyf, 4))), XMax: int32(int16(u16(glyf, 6))), YMax: int32(int16(u16(glyf, 8))), } uhm, pp1x := g.font.unscaledHMetric(i), int32(0) if ne < 0 { if ne != -1 { // http://developer.apple.com/fonts/TTRefMan/RM06/Chap6glyf.html says that // "the values -2, -3, and so forth, are reserved for future use." return UnsupportedError("negative number of contours") } pp1x = g.font.scale(g.scale * (b.XMin - uhm.LeftSideBearing)) if err := g.loadCompound(recursion, b, uhm, i, glyf, useMyMetrics); err != nil { return err } } else { np0, ne0 := len(g.Point), len(g.End) program := g.loadSimple(glyf, ne) g.addPhantomsAndScale(b, uhm, i, np0, true) pp1x = g.Point[len(g.Point)-4].X if g.hinter != nil { if len(program) != 0 { err := g.hinter.run( program, g.Point[np0:], g.Unhinted[np0:], g.InFontUnits[np0:], g.End[ne0:], ) if err != nil { return err } } // Drop the four phantom points. g.InFontUnits = g.InFontUnits[:len(g.InFontUnits)-4] g.Unhinted = g.Unhinted[:len(g.Unhinted)-4] } g.Point = g.Point[:len(g.Point)-4] if np0 != 0 { // The hinting program expects the []End values to be indexed relative // to the inner glyph, not the outer glyph, so we delay adding np0 until // after the hinting program (if any) has run. for i := ne0; i < len(g.End); i++ { g.End[i] += np0 } } } if useMyMetrics && !g.metricsSet { g.metricsSet = true g.B.XMin = g.font.scale(g.scale * b.XMin) g.B.YMin = g.font.scale(g.scale * b.YMin) g.B.XMax = g.font.scale(g.scale * b.XMax) g.B.YMax = g.font.scale(g.scale * b.YMax) g.pp1x = pp1x } return nil } // loadOffset is the initial offset for loadSimple and loadCompound. The first // 10 bytes are the number of contours and the bounding box. const loadOffset = 10 func (g *GlyphBuf) loadSimple(glyf []byte, ne int) (program []byte) { offset := loadOffset for i := 0; i < ne; i++ { g.End = append(g.End, 1+int(u16(glyf, offset))) offset += 2 } // Note the TrueType hinting instructions. instrLen := int(u16(glyf, offset)) offset += 2 program = glyf[offset : offset+instrLen] offset += instrLen np0 := len(g.Point) np1 := np0 + int(g.End[len(g.End)-1]) // Decode the flags. for i := np0; i < np1; { c := uint32(glyf[offset]) offset++ g.Point = append(g.Point, Point{Flags: c}) i++ if c&flagRepeat != 0 { count := glyf[offset] offset++ for ; count > 0; count-- { g.Point = append(g.Point, Point{Flags: c}) i++ } } } // Decode the co-ordinates. var x int16 for i := np0; i < np1; i++ { f := g.Point[i].Flags if f&flagXShortVector != 0 { dx := int16(glyf[offset]) offset++ if f&flagPositiveXShortVector == 0 { x -= dx } else { x += dx } } else if f&flagThisXIsSame == 0 { x += int16(u16(glyf, offset)) offset += 2 } g.Point[i].X = int32(x) } var y int16 for i := np0; i < np1; i++ { f := g.Point[i].Flags if f&flagYShortVector != 0 { dy := int16(glyf[offset]) offset++ if f&flagPositiveYShortVector == 0 { y -= dy } else { y += dy } } else if f&flagThisYIsSame == 0 { y += int16(u16(glyf, offset)) offset += 2 } g.Point[i].Y = int32(y) } return program } func (g *GlyphBuf) loadCompound(recursion int32, b Bounds, uhm HMetric, i Index, glyf []byte, useMyMetrics bool) error { // Flags for decoding a compound glyph. These flags are documented at // http://developer.apple.com/fonts/TTRefMan/RM06/Chap6glyf.html. const ( flagArg1And2AreWords = 1 << iota flagArgsAreXYValues flagRoundXYToGrid flagWeHaveAScale flagUnused flagMoreComponents flagWeHaveAnXAndYScale flagWeHaveATwoByTwo flagWeHaveInstructions flagUseMyMetrics flagOverlapCompound ) np0, ne0 := len(g.Point), len(g.End) offset := loadOffset for { flags := u16(glyf, offset) component := Index(u16(glyf, offset+2)) dx, dy, transform, hasTransform := int32(0), int32(0), [4]int32{}, false if flags&flagArg1And2AreWords != 0 { dx = int32(int16(u16(glyf, offset+4))) dy = int32(int16(u16(glyf, offset+6))) offset += 8 } else { dx = int32(int16(int8(glyf[offset+4]))) dy = int32(int16(int8(glyf[offset+5]))) offset += 6 } if flags&flagArgsAreXYValues == 0 { return UnsupportedError("compound glyph transform vector") } if flags&(flagWeHaveAScale|flagWeHaveAnXAndYScale|flagWeHaveATwoByTwo) != 0 { hasTransform = true switch { case flags&flagWeHaveAScale != 0: transform[0] = int32(int16(u16(glyf, offset+0))) transform[3] = transform[0] offset += 2 case flags&flagWeHaveAnXAndYScale != 0: transform[0] = int32(int16(u16(glyf, offset+0))) transform[3] = int32(int16(u16(glyf, offset+2))) offset += 4 case flags&flagWeHaveATwoByTwo != 0: transform[0] = int32(int16(u16(glyf, offset+0))) transform[1] = int32(int16(u16(glyf, offset+2))) transform[2] = int32(int16(u16(glyf, offset+4))) transform[3] = int32(int16(u16(glyf, offset+6))) offset += 8 } } np0 := len(g.Point) componentUMM := useMyMetrics && (flags&flagUseMyMetrics != 0) if err := g.load(recursion+1, component, componentUMM); err != nil { return err } if hasTransform { for j := np0; j < len(g.Point); j++ { p := &g.Point[j] newX := int32((int64(p.X)*int64(transform[0])+1<<13)>>14) + int32((int64(p.Y)*int64(transform[2])+1<<13)>>14) newY := int32((int64(p.X)*int64(transform[1])+1<<13)>>14) + int32((int64(p.Y)*int64(transform[3])+1<<13)>>14) p.X, p.Y = newX, newY } } dx = g.font.scale(g.scale * dx) dy = g.font.scale(g.scale * dy) if flags&flagRoundXYToGrid != 0 { dx = (dx + 32) &^ 63 dy = (dy + 32) &^ 63 } for j := np0; j < len(g.Point); j++ { p := &g.Point[j] p.X += dx p.Y += dy } // TODO: also adjust g.InFontUnits and g.Unhinted? if flags&flagMoreComponents == 0 { break } } // Hint the compound glyph. if g.hinter == nil || offset+2 > len(glyf) { return nil } instrLen := int(u16(glyf, offset)) offset += 2 if instrLen == 0 { return nil } program := glyf[offset : offset+instrLen] g.addPhantomsAndScale(b, uhm, i, len(g.Point), false) points, ends := g.Point[np0:], g.End[ne0:] g.Point = g.Point[:len(g.Point)-4] for j := range points { points[j].Flags &^= flagTouchedX | flagTouchedY } // Temporarily adjust the ends to be relative to this compound glyph. if np0 != 0 { for i := range ends { ends[i] -= np0 } } // Hinting instructions of a composite glyph completely refer to the // (already) hinted subglyphs. g.tmp = append(g.tmp[:0], points...) if err := g.hinter.run(program, points, g.tmp, g.tmp, ends); err != nil { return err } if np0 != 0 { for i := range ends { ends[i] += np0 } } return nil } func (g *GlyphBuf) addPhantomsAndScale(b Bounds, uhm HMetric, i Index, np0 int, simple bool) { // Add the four phantom points. uvm := g.font.unscaledVMetric(i) g.Point = append(g.Point, Point{X: b.XMin - uhm.LeftSideBearing}, Point{X: b.XMin - uhm.LeftSideBearing + uhm.AdvanceWidth}, Point{Y: b.YMax + uvm.TopSideBearing}, Point{Y: b.YMax + uvm.TopSideBearing - uvm.AdvanceHeight}, ) // Scale the points. if simple && g.hinter != nil { g.InFontUnits = append(g.InFontUnits, g.Point[np0:]...) } for i := np0; i < len(g.Point); i++ { p := &g.Point[i] p.X = g.font.scale(g.scale * p.X) p.Y = g.font.scale(g.scale * p.Y) } if simple && g.hinter != nil { g.Unhinted = append(g.Unhinted, g.Point[np0:]...) // Round the 1st phantom point to the grid, shifting all other points equally. pp1x := g.Point[len(g.Point)-4].X if dx := ((pp1x + 32) &^ 63) - pp1x; dx != 0 { for i := np0; i < len(g.Point); i++ { g.Point[i].X += dx } } } // Round the 2nd and 4th phantom point to the grid. p := &g.Point[len(g.Point)-3] p.X = (p.X + 32) &^ 63 p = &g.Point[len(g.Point)-1] p.Y = (p.Y + 32) &^ 63 } // TODO: is this necessary? The zero-valued GlyphBuf is perfectly usable. // NewGlyphBuf returns a newly allocated GlyphBuf. func NewGlyphBuf() *GlyphBuf { return &GlyphBuf{ Point: make([]Point, 0, 256), End: make([]int, 0, 32), } }