// Copyright 2010 The Freetype-Go Authors. All rights reserved. // Use of this source code is governed by your choice of either the // FreeType License or the GNU General Public License version 2 (or // any later version), both of which can be found in the LICENSE file. // Package truetype provides a parser for the TTF and TTC file formats. // Those formats are documented at http://developer.apple.com/fonts/TTRefMan/ // and http://www.microsoft.com/typography/otspec/ // // Some of a font's methods provide lengths or co-ordinates, e.g. bounds, font // metrics and control points. All these methods take a scale parameter, which // is the number of device units in 1 em. For example, if 1 em is 10 pixels and // 1 pixel is 64 units, then scale is 640. If the device space involves pixels, // 64 units per pixel is recommended, since that is what the bytecode hinter // uses when snapping point co-ordinates to the pixel grid. // // To measure a TrueType font in ideal FUnit space, use scale equal to // font.FUnitsPerEm(). package truetype import ( "fmt" ) // An Index is a Font's index of a rune. type Index uint16 // A Bounds holds the co-ordinate range of one or more glyphs. // The endpoints are inclusive. type Bounds struct { XMin, YMin, XMax, YMax int32 } // An HMetric holds the horizontal metrics of a single glyph. type HMetric struct { AdvanceWidth, LeftSideBearing int32 } // A VMetric holds the vertical metrics of a single glyph. type VMetric struct { AdvanceHeight, TopSideBearing int32 } // A FormatError reports that the input is not a valid TrueType font. type FormatError string func (e FormatError) Error() string { return "freetype: invalid TrueType format: " + string(e) } // An UnsupportedError reports that the input uses a valid but unimplemented // TrueType feature. type UnsupportedError string func (e UnsupportedError) Error() string { return "freetype: unsupported TrueType feature: " + string(e) } // u32 returns the big-endian uint32 at b[i:]. func u32(b []byte, i int) uint32 { return uint32(b[i])<<24 | uint32(b[i+1])<<16 | uint32(b[i+2])<<8 | uint32(b[i+3]) } // u16 returns the big-endian uint16 at b[i:]. func u16(b []byte, i int) uint16 { return uint16(b[i])<<8 | uint16(b[i+1]) } // readTable returns a slice of the TTF data given by a table's directory entry. func readTable(ttf []byte, offsetLength []byte) ([]byte, error) { offset := int(u32(offsetLength, 0)) if offset < 0 { return nil, FormatError(fmt.Sprintf("offset too large: %d", uint32(offset))) } length := int(u32(offsetLength, 4)) if length < 0 { return nil, FormatError(fmt.Sprintf("length too large: %d", uint32(length))) } end := offset + length if end < 0 || end > len(ttf) { return nil, FormatError(fmt.Sprintf("offset + length too large: %d", uint32(offset)+uint32(length))) } return ttf[offset:end], nil } const ( locaOffsetFormatUnknown int = iota locaOffsetFormatShort locaOffsetFormatLong ) // A cm holds a parsed cmap entry. type cm struct { start, end, delta, offset uint32 } // A Font represents a Truetype font. type Font struct { // Tables sliced from the TTF data. The different tables are documented // at http://developer.apple.com/fonts/TTRefMan/RM06/Chap6.html cmap, cvt, fpgm, glyf, head, hhea, hmtx, kern, loca, maxp, os2, prep, vmtx []byte cmapIndexes []byte // Cached values derived from the raw ttf data. cm []cm locaOffsetFormat int nGlyph, nHMetric, nKern int fUnitsPerEm int32 bounds Bounds // Values from the maxp section. maxTwilightPoints, maxStorage, maxFunctionDefs, maxStackElements uint16 } func (f *Font) parseCmap() error { const ( cmapFormat4 = 4 cmapFormat12 = 12 languageIndependent = 0 // A 32-bit encoding consists of a most-significant 16-bit Platform ID and a // least-significant 16-bit Platform Specific ID. unicodeEncoding = 0x00000003 // PID = 0 (Unicode), PSID = 3 (Unicode 2.0) microsoftUCS2Encoding = 0x00030001 // PID = 3 (Microsoft), PSID = 1 (UCS-2) microsoftUCS4Encoding = 0x0003000a // PID = 3 (Microsoft), PSID = 10 (UCS-4) ) if len(f.cmap) < 4 { return FormatError("cmap too short") } nsubtab := int(u16(f.cmap, 2)) if len(f.cmap) < 8*nsubtab+4 { return FormatError("cmap too short") } offset, found, x := 0, false, 4 for i := 0; i < nsubtab; i++ { // We read the 16-bit Platform ID and 16-bit Platform Specific ID as a single uint32. // All values are big-endian. pidPsid, o := u32(f.cmap, x), u32(f.cmap, x+4) x += 8 // We prefer the Unicode cmap encoding. Failing to find that, we fall // back onto the Microsoft cmap encoding. if pidPsid == unicodeEncoding { offset, found = int(o), true break } else if pidPsid == microsoftUCS2Encoding || pidPsid == microsoftUCS4Encoding { offset, found = int(o), true // We don't break out of the for loop, so that Unicode can override Microsoft. } } if !found { return UnsupportedError("cmap encoding") } if offset <= 0 || offset > len(f.cmap) { return FormatError("bad cmap offset") } cmapFormat := u16(f.cmap, offset) switch cmapFormat { case cmapFormat4: language := u16(f.cmap, offset+4) if language != languageIndependent { return UnsupportedError(fmt.Sprintf("language: %d", language)) } segCountX2 := int(u16(f.cmap, offset+6)) if segCountX2%2 == 1 { return FormatError(fmt.Sprintf("bad segCountX2: %d", segCountX2)) } segCount := segCountX2 / 2 offset += 14 f.cm = make([]cm, segCount) for i := 0; i < segCount; i++ { f.cm[i].end = uint32(u16(f.cmap, offset)) offset += 2 } offset += 2 for i := 0; i < segCount; i++ { f.cm[i].start = uint32(u16(f.cmap, offset)) offset += 2 } for i := 0; i < segCount; i++ { f.cm[i].delta = uint32(u16(f.cmap, offset)) offset += 2 } for i := 0; i < segCount; i++ { f.cm[i].offset = uint32(u16(f.cmap, offset)) offset += 2 } f.cmapIndexes = f.cmap[offset:] return nil case cmapFormat12: if u16(f.cmap, offset+2) != 0 { return FormatError(fmt.Sprintf("cmap format: % x", f.cmap[offset:offset+4])) } length := u32(f.cmap, offset+4) language := u32(f.cmap, offset+8) if language != languageIndependent { return UnsupportedError(fmt.Sprintf("language: %d", language)) } nGroups := u32(f.cmap, offset+12) if length != 12*nGroups+16 { return FormatError("inconsistent cmap length") } offset += 16 f.cm = make([]cm, nGroups) for i := uint32(0); i < nGroups; i++ { f.cm[i].start = u32(f.cmap, offset+0) f.cm[i].end = u32(f.cmap, offset+4) f.cm[i].delta = u32(f.cmap, offset+8) - f.cm[i].start offset += 12 } return nil } return UnsupportedError(fmt.Sprintf("cmap format: %d", cmapFormat)) } func (f *Font) parseHead() error { if len(f.head) != 54 { return FormatError(fmt.Sprintf("bad head length: %d", len(f.head))) } f.fUnitsPerEm = int32(u16(f.head, 18)) f.bounds.XMin = int32(int16(u16(f.head, 36))) f.bounds.YMin = int32(int16(u16(f.head, 38))) f.bounds.XMax = int32(int16(u16(f.head, 40))) f.bounds.YMax = int32(int16(u16(f.head, 42))) switch i := u16(f.head, 50); i { case 0: f.locaOffsetFormat = locaOffsetFormatShort case 1: f.locaOffsetFormat = locaOffsetFormatLong default: return FormatError(fmt.Sprintf("bad indexToLocFormat: %d", i)) } return nil } func (f *Font) parseHhea() error { if len(f.hhea) != 36 { return FormatError(fmt.Sprintf("bad hhea length: %d", len(f.hhea))) } f.nHMetric = int(u16(f.hhea, 34)) if 4*f.nHMetric+2*(f.nGlyph-f.nHMetric) != len(f.hmtx) { return FormatError(fmt.Sprintf("bad hmtx length: %d", len(f.hmtx))) } return nil } func (f *Font) parseKern() error { // Apple's TrueType documentation (http://developer.apple.com/fonts/TTRefMan/RM06/Chap6kern.html) says: // "Previous versions of the 'kern' table defined both the version and nTables fields in the header // as UInt16 values and not UInt32 values. Use of the older format on the Mac OS is discouraged // (although AAT can sense an old kerning table and still make correct use of it). Microsoft // Windows still uses the older format for the 'kern' table and will not recognize the newer one. // Fonts targeted for the Mac OS only should use the new format; fonts targeted for both the Mac OS // and Windows should use the old format." // Since we expect that almost all fonts aim to be Windows-compatible, we only parse the "older" format, // just like the C Freetype implementation. if len(f.kern) == 0 { if f.nKern != 0 { return FormatError("bad kern table length") } return nil } if len(f.kern) < 18 { return FormatError("kern data too short") } version, offset := u16(f.kern, 0), 2 if version != 0 { return UnsupportedError(fmt.Sprintf("kern version: %d", version)) } n, offset := u16(f.kern, offset), offset+2 if n != 1 { return UnsupportedError(fmt.Sprintf("kern nTables: %d", n)) } offset += 2 length, offset := int(u16(f.kern, offset)), offset+2 coverage, offset := u16(f.kern, offset), offset+2 if coverage != 0x0001 { // We only support horizontal kerning. return UnsupportedError(fmt.Sprintf("kern coverage: 0x%04x", coverage)) } f.nKern, offset = int(u16(f.kern, offset)), offset+2 if 6*f.nKern != length-14 { return FormatError("bad kern table length") } return nil } func (f *Font) parseMaxp() error { if len(f.maxp) != 32 { return FormatError(fmt.Sprintf("bad maxp length: %d", len(f.maxp))) } f.nGlyph = int(u16(f.maxp, 4)) f.maxTwilightPoints = u16(f.maxp, 16) f.maxStorage = u16(f.maxp, 18) f.maxFunctionDefs = u16(f.maxp, 20) f.maxStackElements = u16(f.maxp, 24) return nil } // scale returns x divided by f.fUnitsPerEm, rounded to the nearest integer. func (f *Font) scale(x int32) int32 { if x >= 0 { x += f.fUnitsPerEm / 2 } else { x -= f.fUnitsPerEm / 2 } return x / f.fUnitsPerEm } // Bounds returns the union of a Font's glyphs' bounds. func (f *Font) Bounds(scale int32) Bounds { b := f.bounds b.XMin = f.scale(scale * b.XMin) b.YMin = f.scale(scale * b.YMin) b.XMax = f.scale(scale * b.XMax) b.YMax = f.scale(scale * b.YMax) return b } // FUnitsPerEm returns the number of FUnits in a Font's em-square's side. func (f *Font) FUnitsPerEm() int32 { return f.fUnitsPerEm } // Index returns a Font's index for the given rune. func (f *Font) Index(x rune) Index { c := uint32(x) for i, j := 0, len(f.cm); i < j; { h := i + (j-i)/2 cm := &f.cm[h] if c < cm.start { j = h } else if cm.end < c { i = h + 1 } else if cm.offset == 0 { return Index(c + cm.delta) } else { offset := int(cm.offset) + 2*(h-len(f.cm)+int(c-cm.start)) return Index(u16(f.cmapIndexes, offset)) } } return 0 } // unscaledHMetric returns the unscaled horizontal metrics for the glyph with // the given index. func (f *Font) unscaledHMetric(i Index) (h HMetric) { j := int(i) if j < 0 || f.nGlyph <= j { return HMetric{} } if j >= f.nHMetric { p := 4 * (f.nHMetric - 1) return HMetric{ AdvanceWidth: int32(u16(f.hmtx, p)), LeftSideBearing: int32(int16(u16(f.hmtx, p+2*(j-f.nHMetric)+4))), } } return HMetric{ AdvanceWidth: int32(u16(f.hmtx, 4*j)), LeftSideBearing: int32(int16(u16(f.hmtx, 4*j+2))), } } // HMetric returns the horizontal metrics for the glyph with the given index. func (f *Font) HMetric(scale int32, i Index) HMetric { h := f.unscaledHMetric(i) h.AdvanceWidth = f.scale(scale * h.AdvanceWidth) h.LeftSideBearing = f.scale(scale * h.LeftSideBearing) return h } // unscaledVMetric returns the unscaled vertical metrics for the glyph with // the given index. yMax is the top of the glyph's bounding box. func (f *Font) unscaledVMetric(i Index, yMax int32) (v VMetric) { j := int(i) if j < 0 || f.nGlyph <= j { return VMetric{} } if 4*j+4 <= len(f.vmtx) { return VMetric{ AdvanceHeight: int32(u16(f.vmtx, 4*j)), TopSideBearing: int32(int16(u16(f.vmtx, 4*j+2))), } } // The OS/2 table has grown over time. // https://developer.apple.com/fonts/TTRefMan/RM06/Chap6OS2.html // says that it was originally 68 bytes. Optional fields, including // the ascender and descender, are described at // http://www.microsoft.com/typography/otspec/os2.htm if len(f.os2) >= 72 { sTypoAscender := int32(int16(u16(f.os2, 68))) sTypoDescender := int32(int16(u16(f.os2, 70))) return VMetric{ AdvanceHeight: sTypoAscender - sTypoDescender, TopSideBearing: sTypoAscender - yMax, } } return VMetric{ AdvanceHeight: f.fUnitsPerEm, TopSideBearing: 0, } } // VMetric returns the vertical metrics for the glyph with the given index. func (f *Font) VMetric(scale int32, i Index) VMetric { // TODO: should 0 be bounds.YMax? v := f.unscaledVMetric(i, 0) v.AdvanceHeight = f.scale(scale * v.AdvanceHeight) v.TopSideBearing = f.scale(scale * v.TopSideBearing) return v } // Kerning returns the kerning for the given glyph pair. func (f *Font) Kerning(scale int32, i0, i1 Index) int32 { if f.nKern == 0 { return 0 } g := uint32(i0)<<16 | uint32(i1) lo, hi := 0, f.nKern for lo < hi { i := (lo + hi) / 2 ig := u32(f.kern, 18+6*i) if ig < g { lo = i + 1 } else if ig > g { hi = i } else { return f.scale(scale * int32(int16(u16(f.kern, 22+6*i)))) } } return 0 } // Parse returns a new Font for the given TTF or TTC data. // // For TrueType Collections, the first font in the collection is parsed. func Parse(ttf []byte) (font *Font, err error) { return parse(ttf, 0) } func parse(ttf []byte, offset int) (font *Font, err error) { if len(ttf)-offset < 12 { err = FormatError("TTF data is too short") return } originalOffset := offset magic, offset := u32(ttf, offset), offset+4 switch magic { case 0x00010000: // No-op. case 0x74746366: // "ttcf" as a big-endian uint32. if originalOffset != 0 { err = FormatError("recursive TTC") return } ttcVersion, offset := u32(ttf, offset), offset+4 if ttcVersion != 0x00010000 { // TODO: support TTC version 2.0, once I have such a .ttc file to test with. err = FormatError("bad TTC version") return } numFonts, offset := int(u32(ttf, offset)), offset+4 if numFonts <= 0 { err = FormatError("bad number of TTC fonts") return } if len(ttf[offset:])/4 < numFonts { err = FormatError("TTC offset table is too short") return } // TODO: provide an API to select which font in a TrueType collection to return, // not just the first one. This may require an API to parse a TTC's name tables, // so users of this package can select the font in a TTC by name. offset = int(u32(ttf, offset)) if offset <= 0 || offset > len(ttf) { err = FormatError("bad TTC offset") return } return parse(ttf, offset) default: err = FormatError("bad TTF version") return } n, offset := int(u16(ttf, offset)), offset+2 if len(ttf) < 16*n+12 { err = FormatError("TTF data is too short") return } f := new(Font) // Assign the table slices. for i := 0; i < n; i++ { x := 16*i + 12 switch string(ttf[x : x+4]) { case "cmap": f.cmap, err = readTable(ttf, ttf[x+8:x+16]) case "cvt ": f.cvt, err = readTable(ttf, ttf[x+8:x+16]) case "fpgm": f.fpgm, err = readTable(ttf, ttf[x+8:x+16]) case "glyf": f.glyf, err = readTable(ttf, ttf[x+8:x+16]) case "head": f.head, err = readTable(ttf, ttf[x+8:x+16]) case "hhea": f.hhea, err = readTable(ttf, ttf[x+8:x+16]) case "hmtx": f.hmtx, err = readTable(ttf, ttf[x+8:x+16]) case "kern": f.kern, err = readTable(ttf, ttf[x+8:x+16]) case "loca": f.loca, err = readTable(ttf, ttf[x+8:x+16]) case "maxp": f.maxp, err = readTable(ttf, ttf[x+8:x+16]) case "OS/2": f.os2, err = readTable(ttf, ttf[x+8:x+16]) case "prep": f.prep, err = readTable(ttf, ttf[x+8:x+16]) case "vmtx": f.vmtx, err = readTable(ttf, ttf[x+8:x+16]) } if err != nil { return } } // Parse and sanity-check the TTF data. if err = f.parseHead(); err != nil { return } if err = f.parseMaxp(); err != nil { return } if err = f.parseCmap(); err != nil { return } if err = f.parseKern(); err != nil { return } if err = f.parseHhea(); err != nil { return } font = f return }