// Copyright 2010 The Freetype-Go Authors. All rights reserved. // Use of this source code is governed by your choice of either the // FreeType License or the GNU General Public License version 2 (or // any later version), both of which can be found in the LICENSE file. package truetype // A Point is a co-ordinate pair plus whether it is ``on'' a contour or an // ``off'' control point. type Point struct { X, Y int32 // The Flags' LSB means whether or not this Point is ``on'' the contour. // Other bits are reserved for internal use. Flags uint32 } // A GlyphBuf holds a glyph's contours. A GlyphBuf can be re-used to load a // series of glyphs from a Font. type GlyphBuf struct { // AdvanceWidth is the glyph's advance width. AdvanceWidth int32 // B is the glyph's bounding box. B Bounds // Point contains all Points from all contours of the glyph. If a // Hinter was used to load a glyph then Unhinted contains those // Points before they were hinted, and InFontUnits contains those // Points before they were hinted and scaled. Point, Unhinted, InFontUnits []Point // End is the point indexes of the end point of each countour. The // length of End is the number of contours in the glyph. The i'th // contour consists of points Point[End[i-1]:End[i]], where End[-1] // is interpreted to mean zero. End []int font *Font hinter *Hinter scale int32 // phantomPoints are the co-ordinates of the synthetic phantom points // used for hinting and bounding box calculations. phantomPoints [4]Point // pp1x is the X co-ordinate of the first phantom point. The '1' is // using 1-based indexing; pp1x is almost always phantomPoints[0].X. // TODO: eliminate this and consistently use phantomPoints[0].X. pp1x int32 // metricsSet is whether the glyph's metrics have been set yet. For a // compound glyph, a sub-glyph may override the outer glyph's metrics. metricsSet bool // tmp is a scratch buffer. tmp []Point } // Flags for decoding a glyph's contours. These flags are documented at // http://developer.apple.com/fonts/TTRefMan/RM06/Chap6glyf.html. const ( flagOnCurve = 1 << iota flagXShortVector flagYShortVector flagRepeat flagPositiveXShortVector flagPositiveYShortVector // The remaining flags are for internal use. flagTouchedX flagTouchedY ) // The same flag bits (0x10 and 0x20) are overloaded to have two meanings, // dependent on the value of the flag{X,Y}ShortVector bits. const ( flagThisXIsSame = flagPositiveXShortVector flagThisYIsSame = flagPositiveYShortVector ) // Load loads a glyph's contours from a Font, overwriting any previously // loaded contours for this GlyphBuf. scale is the number of 26.6 fixed point // units in 1 em. The Hinter is optional; if non-nil, then the resulting glyph // will be hinted by the Font's bytecode instructions. func (g *GlyphBuf) Load(f *Font, scale int32, i Index, h *Hinter) error { g.Point = g.Point[:0] g.Unhinted = g.Unhinted[:0] g.InFontUnits = g.InFontUnits[:0] g.End = g.End[:0] g.font = f g.hinter = h g.scale = scale g.pp1x = 0 g.phantomPoints = [4]Point{} g.metricsSet = false if h != nil { if err := h.init(f, scale); err != nil { return err } } if err := g.load(0, i, true); err != nil { return err } // TODO: this selection of either g.pp1x or g.phantomPoints[0].X isn't ideal, // and should be cleaned up once we have all the testScaling tests passing, // plus additional tests for Freetype-Go's bounding boxes matching C Freetype's. pp1x := g.pp1x if h != nil { pp1x = g.phantomPoints[0].X } if pp1x != 0 { for i := range g.Point { g.Point[i].X -= pp1x } } advanceWidth := g.phantomPoints[1].X - g.phantomPoints[0].X if h != nil { if len(f.hdmx) >= 8 { if n := u32(f.hdmx, 4); n > 3+uint32(i) { for hdmx := f.hdmx[8:]; uint32(len(hdmx)) >= n; hdmx = hdmx[n:] { if int32(hdmx[0]) == scale>>6 { advanceWidth = int32(hdmx[2+i]) << 6 break } } } } advanceWidth = (advanceWidth + 32) &^ 63 } g.AdvanceWidth = advanceWidth // Set g.B to the 'control box', which is the bounding box of the Bézier // curves' control points. This is easier to calculate, no smaller than // and often equal to the tightest possible bounding box of the curves // themselves. This approach is what C Freetype does. We can't just scale // the nominal bounding box in the glyf data as the hinting process and // phantom point adjustment may move points outside of that box. if len(g.Point) == 0 { g.B = Bounds{} } else { p := g.Point[0] g.B.XMin = p.X g.B.XMax = p.X g.B.YMin = p.Y g.B.YMax = p.Y for _, p := range g.Point[1:] { if g.B.XMin > p.X { g.B.XMin = p.X } else if g.B.XMax < p.X { g.B.XMax = p.X } if g.B.YMin > p.Y { g.B.YMin = p.Y } else if g.B.YMax < p.Y { g.B.YMax = p.Y } } // Snap the box to the grid, if hinting is on. if h != nil { g.B.XMin &^= 63 g.B.YMin &^= 63 g.B.XMax += 63 g.B.XMax &^= 63 g.B.YMax += 63 g.B.YMax &^= 63 } } return nil } func (g *GlyphBuf) load(recursion int32, i Index, useMyMetrics bool) (err error) { // The recursion limit here is arbitrary, but defends against malformed glyphs. if recursion >= 32 { return UnsupportedError("excessive compound glyph recursion") } // Find the relevant slice of g.font.glyf. var g0, g1 uint32 if g.font.locaOffsetFormat == locaOffsetFormatShort { g0 = 2 * uint32(u16(g.font.loca, 2*int(i))) g1 = 2 * uint32(u16(g.font.loca, 2*int(i)+2)) } else { g0 = u32(g.font.loca, 4*int(i)) g1 = u32(g.font.loca, 4*int(i)+4) } // Decode the contour count and nominal bounding box, from the first // 10 bytes of the glyf data. boundsYMin and boundsXMax, at offsets 4 // and 6, are unused. glyf, ne, boundsXMin, boundsYMax := []byte(nil), 0, int32(0), int32(0) if g0+10 <= g1 { glyf = g.font.glyf[g0:g1] ne = int(int16(u16(glyf, 0))) boundsXMin = int32(int16(u16(glyf, 2))) boundsYMax = int32(int16(u16(glyf, 8))) } // Create the phantom points. uhm, pp1x := g.font.unscaledHMetric(i), int32(0) uvm := g.font.unscaledVMetric(i, boundsYMax) g.phantomPoints = [4]Point{ {X: boundsXMin - uhm.LeftSideBearing}, {X: boundsXMin - uhm.LeftSideBearing + uhm.AdvanceWidth}, {X: uhm.AdvanceWidth / 2, Y: boundsYMax + uvm.TopSideBearing}, {X: uhm.AdvanceWidth / 2, Y: boundsYMax + uvm.TopSideBearing - uvm.AdvanceHeight}, } if len(glyf) == 0 { g.addPhantomsAndScale(len(g.Point), len(g.Point), true, true) copy(g.phantomPoints[:], g.Point[len(g.Point)-4:]) g.Point = g.Point[:len(g.Point)-4] return nil } // Load and hint the contours. if ne < 0 { if ne != -1 { // http://developer.apple.com/fonts/TTRefMan/RM06/Chap6glyf.html says that // "the values -2, -3, and so forth, are reserved for future use." return UnsupportedError("negative number of contours") } pp1x = g.font.scale(g.scale * (boundsXMin - uhm.LeftSideBearing)) if err := g.loadCompound(recursion, uhm, i, glyf, useMyMetrics); err != nil { return err } } else { np0, ne0 := len(g.Point), len(g.End) program := g.loadSimple(glyf, ne) g.addPhantomsAndScale(np0, np0, true, true) pp1x = g.Point[len(g.Point)-4].X if g.hinter != nil { if len(program) != 0 { err := g.hinter.run( program, g.Point[np0:], g.Unhinted[np0:], g.InFontUnits[np0:], g.End[ne0:], ) if err != nil { return err } } // Drop the four phantom points. g.InFontUnits = g.InFontUnits[:len(g.InFontUnits)-4] g.Unhinted = g.Unhinted[:len(g.Unhinted)-4] } if useMyMetrics { copy(g.phantomPoints[:], g.Point[len(g.Point)-4:]) } g.Point = g.Point[:len(g.Point)-4] if np0 != 0 { // The hinting program expects the []End values to be indexed relative // to the inner glyph, not the outer glyph, so we delay adding np0 until // after the hinting program (if any) has run. for i := ne0; i < len(g.End); i++ { g.End[i] += np0 } } } if useMyMetrics && !g.metricsSet { g.metricsSet = true g.pp1x = pp1x } return nil } // loadOffset is the initial offset for loadSimple and loadCompound. The first // 10 bytes are the number of contours and the bounding box. const loadOffset = 10 func (g *GlyphBuf) loadSimple(glyf []byte, ne int) (program []byte) { offset := loadOffset for i := 0; i < ne; i++ { g.End = append(g.End, 1+int(u16(glyf, offset))) offset += 2 } // Note the TrueType hinting instructions. instrLen := int(u16(glyf, offset)) offset += 2 program = glyf[offset : offset+instrLen] offset += instrLen np0 := len(g.Point) np1 := np0 + int(g.End[len(g.End)-1]) // Decode the flags. for i := np0; i < np1; { c := uint32(glyf[offset]) offset++ g.Point = append(g.Point, Point{Flags: c}) i++ if c&flagRepeat != 0 { count := glyf[offset] offset++ for ; count > 0; count-- { g.Point = append(g.Point, Point{Flags: c}) i++ } } } // Decode the co-ordinates. var x int16 for i := np0; i < np1; i++ { f := g.Point[i].Flags if f&flagXShortVector != 0 { dx := int16(glyf[offset]) offset++ if f&flagPositiveXShortVector == 0 { x -= dx } else { x += dx } } else if f&flagThisXIsSame == 0 { x += int16(u16(glyf, offset)) offset += 2 } g.Point[i].X = int32(x) } var y int16 for i := np0; i < np1; i++ { f := g.Point[i].Flags if f&flagYShortVector != 0 { dy := int16(glyf[offset]) offset++ if f&flagPositiveYShortVector == 0 { y -= dy } else { y += dy } } else if f&flagThisYIsSame == 0 { y += int16(u16(glyf, offset)) offset += 2 } g.Point[i].Y = int32(y) } return program } func (g *GlyphBuf) loadCompound(recursion int32, uhm HMetric, i Index, glyf []byte, useMyMetrics bool) error { // Flags for decoding a compound glyph. These flags are documented at // http://developer.apple.com/fonts/TTRefMan/RM06/Chap6glyf.html. const ( flagArg1And2AreWords = 1 << iota flagArgsAreXYValues flagRoundXYToGrid flagWeHaveAScale flagUnused flagMoreComponents flagWeHaveAnXAndYScale flagWeHaveATwoByTwo flagWeHaveInstructions flagUseMyMetrics flagOverlapCompound ) np0, ne0 := len(g.Point), len(g.End) offset := loadOffset for { flags := u16(glyf, offset) component := Index(u16(glyf, offset+2)) dx, dy, transform, hasTransform := int32(0), int32(0), [4]int32{}, false if flags&flagArg1And2AreWords != 0 { dx = int32(int16(u16(glyf, offset+4))) dy = int32(int16(u16(glyf, offset+6))) offset += 8 } else { dx = int32(int16(int8(glyf[offset+4]))) dy = int32(int16(int8(glyf[offset+5]))) offset += 6 } if flags&flagArgsAreXYValues == 0 { return UnsupportedError("compound glyph transform vector") } if flags&(flagWeHaveAScale|flagWeHaveAnXAndYScale|flagWeHaveATwoByTwo) != 0 { hasTransform = true switch { case flags&flagWeHaveAScale != 0: transform[0] = int32(int16(u16(glyf, offset+0))) transform[3] = transform[0] offset += 2 case flags&flagWeHaveAnXAndYScale != 0: transform[0] = int32(int16(u16(glyf, offset+0))) transform[3] = int32(int16(u16(glyf, offset+2))) offset += 4 case flags&flagWeHaveATwoByTwo != 0: transform[0] = int32(int16(u16(glyf, offset+0))) transform[1] = int32(int16(u16(glyf, offset+2))) transform[2] = int32(int16(u16(glyf, offset+4))) transform[3] = int32(int16(u16(glyf, offset+6))) offset += 8 } } savedPP := g.phantomPoints np0 := len(g.Point) componentUMM := useMyMetrics && (flags&flagUseMyMetrics != 0) if err := g.load(recursion+1, component, componentUMM); err != nil { return err } if flags&flagUseMyMetrics == 0 { g.phantomPoints = savedPP } if hasTransform { for j := np0; j < len(g.Point); j++ { p := &g.Point[j] newX := int32((int64(p.X)*int64(transform[0])+1<<13)>>14) + int32((int64(p.Y)*int64(transform[2])+1<<13)>>14) newY := int32((int64(p.X)*int64(transform[1])+1<<13)>>14) + int32((int64(p.Y)*int64(transform[3])+1<<13)>>14) p.X, p.Y = newX, newY } } dx = g.font.scale(g.scale * dx) dy = g.font.scale(g.scale * dy) if flags&flagRoundXYToGrid != 0 { dx = (dx + 32) &^ 63 dy = (dy + 32) &^ 63 } for j := np0; j < len(g.Point); j++ { p := &g.Point[j] p.X += dx p.Y += dy } // TODO: also adjust g.InFontUnits and g.Unhinted? if flags&flagMoreComponents == 0 { break } } instrLen := 0 if g.hinter != nil && offset+2 <= len(glyf) { instrLen = int(u16(glyf, offset)) offset += 2 } g.addPhantomsAndScale(np0, len(g.Point), false, instrLen > 0) points, ends := g.Point[np0:], g.End[ne0:] g.Point = g.Point[:len(g.Point)-4] for j := range points { points[j].Flags &^= flagTouchedX | flagTouchedY } if instrLen == 0 { if !g.metricsSet { copy(g.phantomPoints[:], points[len(points)-4:]) } return nil } // Hint the compound glyph. program := glyf[offset : offset+instrLen] // Temporarily adjust the ends to be relative to this compound glyph. if np0 != 0 { for i := range ends { ends[i] -= np0 } } // Hinting instructions of a composite glyph completely refer to the // (already) hinted subglyphs. g.tmp = append(g.tmp[:0], points...) if err := g.hinter.run(program, points, g.tmp, g.tmp, ends); err != nil { return err } if np0 != 0 { for i := range ends { ends[i] += np0 } } if !g.metricsSet { copy(g.phantomPoints[:], points[len(points)-4:]) } return nil } func (g *GlyphBuf) addPhantomsAndScale(np0, np1 int, simple, adjust bool) { // Add the four phantom points. g.Point = append(g.Point, g.phantomPoints[:]...) // Scale the points. if simple && g.hinter != nil { g.InFontUnits = append(g.InFontUnits, g.Point[np1:]...) } for i := np1; i < len(g.Point); i++ { p := &g.Point[i] p.X = g.font.scale(g.scale * p.X) p.Y = g.font.scale(g.scale * p.Y) } if g.hinter == nil { return } // Round the 1st phantom point to the grid, shifting all other points equally. // Note that "all other points" starts from np0, not np1. // TODO: delete this adjustment and the np0/np1 distinction, when // we update the compatibility tests to C Freetype 2.5.3. // See http://git.savannah.gnu.org/cgit/freetype/freetype2.git/commit/?id=05c786d990390a7ca18e62962641dac740bacb06 if adjust { pp1x := g.Point[len(g.Point)-4].X if dx := ((pp1x + 32) &^ 63) - pp1x; dx != 0 { for i := np0; i < len(g.Point); i++ { g.Point[i].X += dx } } } if simple { g.Unhinted = append(g.Unhinted, g.Point[np1:]...) } // Round the 2nd and 4th phantom point to the grid. p := &g.Point[len(g.Point)-3] p.X = (p.X + 32) &^ 63 p = &g.Point[len(g.Point)-1] p.Y = (p.Y + 32) &^ 63 } // TODO: is this necessary? The zero-valued GlyphBuf is perfectly usable. // NewGlyphBuf returns a newly allocated GlyphBuf. func NewGlyphBuf() *GlyphBuf { return &GlyphBuf{ Point: make([]Point, 0, 256), End: make([]int, 0, 32), } }