golang-freetype/raster/stroke.go

484 lines
15 KiB
Go
Raw Normal View History

// Copyright 2010 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
package raster
import (
2018-12-06 17:08:43 +01:00
"git.gutmet.org/golang-image.git/math/fixed"
)
// Two points are considered practically equal if the square of the distance
// between them is less than one quarter (i.e. 1024 / 4096).
const epsilon = fixed.Int52_12(1024)
// A Capper signifies how to begin or end a stroked path.
type Capper interface {
// Cap adds a cap to p given a pivot point and the normal vector of a
// terminal segment. The normal's length is half of the stroke width.
Cap(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6)
}
// The CapperFunc type adapts an ordinary function to be a Capper.
type CapperFunc func(Adder, fixed.Int26_6, fixed.Point26_6, fixed.Point26_6)
func (f CapperFunc) Cap(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
f(p, halfWidth, pivot, n1)
}
// A Joiner signifies how to join interior nodes of a stroked path.
type Joiner interface {
// Join adds a join to the two sides of a stroked path given a pivot
// point and the normal vectors of the trailing and leading segments.
// Both normals have length equal to half of the stroke width.
Join(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6)
}
// The JoinerFunc type adapts an ordinary function to be a Joiner.
type JoinerFunc func(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6)
func (f JoinerFunc) Join(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
f(lhs, rhs, halfWidth, pivot, n0, n1)
}
// RoundCapper adds round caps to a stroked path.
var RoundCapper Capper = CapperFunc(roundCapper)
func roundCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
// The cubic Bézier approximation to a circle involves the magic number
// (√2 - 1) * 4/3, which is approximately 35/64.
const k = 35
e := pRot90CCW(n1)
side := pivot.Add(e)
start, end := pivot.Sub(n1), pivot.Add(n1)
d, e := n1.Mul(k), e.Mul(k)
p.Add3(start.Add(e), side.Sub(d), side)
p.Add3(side.Add(d), end.Add(e), end)
}
// ButtCapper adds butt caps to a stroked path.
var ButtCapper Capper = CapperFunc(buttCapper)
func buttCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
p.Add1(pivot.Add(n1))
}
// SquareCapper adds square caps to a stroked path.
var SquareCapper Capper = CapperFunc(squareCapper)
func squareCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
e := pRot90CCW(n1)
side := pivot.Add(e)
p.Add1(side.Sub(n1))
p.Add1(side.Add(n1))
p.Add1(pivot.Add(n1))
}
// RoundJoiner adds round joins to a stroked path.
var RoundJoiner Joiner = JoinerFunc(roundJoiner)
func roundJoiner(lhs, rhs Adder, haflWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
dot := pDot(pRot90CW(n0), n1)
if dot >= 0 {
addArc(lhs, pivot, n0, n1)
rhs.Add1(pivot.Sub(n1))
} else {
lhs.Add1(pivot.Add(n1))
addArc(rhs, pivot, pNeg(n0), pNeg(n1))
}
}
// BevelJoiner adds bevel joins to a stroked path.
var BevelJoiner Joiner = JoinerFunc(bevelJoiner)
func bevelJoiner(lhs, rhs Adder, haflWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
lhs.Add1(pivot.Add(n1))
rhs.Add1(pivot.Sub(n1))
}
// addArc adds a circular arc from pivot+n0 to pivot+n1 to p. The shorter of
// the two possible arcs is taken, i.e. the one spanning <= 180 degrees. The
// two vectors n0 and n1 must be of equal length.
func addArc(p Adder, pivot, n0, n1 fixed.Point26_6) {
// r2 is the square of the length of n0.
r2 := pDot(n0, n0)
if r2 < epsilon {
// The arc radius is so small that we collapse to a straight line.
p.Add1(pivot.Add(n1))
return
}
// We approximate the arc by 0, 1, 2 or 3 45-degree quadratic segments plus
// a final quadratic segment from s to n1. Each 45-degree segment has
// control points {1, 0}, {1, tan(π/8)} and {1/√2, 1/√2} suitably scaled,
// rotated and translated. tan(π/8) is approximately 27/64.
const tpo8 = 27
var s fixed.Point26_6
// We determine which octant the angle between n0 and n1 is in via three
// dot products. m0, m1 and m2 are n0 rotated clockwise by 45, 90 and 135
// degrees.
m0 := pRot45CW(n0)
m1 := pRot90CW(n0)
m2 := pRot90CW(m0)
if pDot(m1, n1) >= 0 {
if pDot(n0, n1) >= 0 {
if pDot(m2, n1) <= 0 {
// n1 is between 0 and 45 degrees clockwise of n0.
s = n0
} else {
// n1 is between 45 and 90 degrees clockwise of n0.
p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0))
s = m0
}
} else {
pm1, n0t := pivot.Add(m1), n0.Mul(tpo8)
p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0))
p.Add2(pm1.Add(n0t), pm1)
if pDot(m0, n1) >= 0 {
// n1 is between 90 and 135 degrees clockwise of n0.
s = m1
} else {
// n1 is between 135 and 180 degrees clockwise of n0.
p.Add2(pm1.Sub(n0t), pivot.Add(m2))
s = m2
}
}
} else {
if pDot(n0, n1) >= 0 {
if pDot(m0, n1) >= 0 {
// n1 is between 0 and 45 degrees counter-clockwise of n0.
s = n0
} else {
// n1 is between 45 and 90 degrees counter-clockwise of n0.
p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2))
s = pNeg(m2)
}
} else {
pm1, n0t := pivot.Sub(m1), n0.Mul(tpo8)
p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2))
p.Add2(pm1.Add(n0t), pm1)
if pDot(m2, n1) <= 0 {
// n1 is between 90 and 135 degrees counter-clockwise of n0.
s = pNeg(m1)
} else {
// n1 is between 135 and 180 degrees counter-clockwise of n0.
p.Add2(pm1.Sub(n0t), pivot.Sub(m0))
s = pNeg(m0)
}
}
}
// The final quadratic segment has two endpoints s and n1 and the middle
// control point is a multiple of s.Add(n1), i.e. it is on the angle
// bisector of those two points. The multiple ranges between 128/256 and
// 150/256 as the angle between s and n1 ranges between 0 and 45 degrees.
//
// When the angle is 0 degrees (i.e. s and n1 are coincident) then
// s.Add(n1) is twice s and so the middle control point of the degenerate
// quadratic segment should be half s.Add(n1), and half = 128/256.
//
// When the angle is 45 degrees then 150/256 is the ratio of the lengths of
// the two vectors {1, tan(π/8)} and {1 + 1/√2, 1/√2}.
//
// d is the normalized dot product between s and n1. Since the angle ranges
// between 0 and 45 degrees then d ranges between 256/256 and 181/256.
d := 256 * pDot(s, n1) / r2
multiple := fixed.Int26_6(150-(150-128)*(d-181)/(256-181)) >> 2
p.Add2(pivot.Add(s.Add(n1).Mul(multiple)), pivot.Add(n1))
}
// midpoint returns the midpoint of two Points.
func midpoint(a, b fixed.Point26_6) fixed.Point26_6 {
return fixed.Point26_6{(a.X + b.X) / 2, (a.Y + b.Y) / 2}
}
// angleGreaterThan45 returns whether the angle between two vectors is more
// than 45 degrees.
func angleGreaterThan45(v0, v1 fixed.Point26_6) bool {
v := pRot45CCW(v0)
return pDot(v, v1) < 0 || pDot(pRot90CW(v), v1) < 0
}
// interpolate returns the point (1-t)*a + t*b.
func interpolate(a, b fixed.Point26_6, t fixed.Int52_12) fixed.Point26_6 {
s := 1<<12 - t
x := s*fixed.Int52_12(a.X) + t*fixed.Int52_12(b.X)
y := s*fixed.Int52_12(a.Y) + t*fixed.Int52_12(b.Y)
return fixed.Point26_6{fixed.Int26_6(x >> 12), fixed.Int26_6(y >> 12)}
}
// curviest2 returns the value of t for which the quadratic parametric curve
// (1-t)²*a + 2*t*(1-t).b + t²*c has maximum curvature.
//
// The curvature of the parametric curve f(t) = (x(t), y(t)) is
// |xy″-yx″| / (x²+y²)^(3/2).
//
// Let d = b-a and e = c-2*b+a, so that f(t) = 2*d+2*e*t and f″(t) = 2*e.
// The curvature's numerator is (2*dx+2*ex*t)*(2*ey)-(2*dy+2*ey*t)*(2*ex),
// which simplifies to 4*dx*ey-4*dy*ex, which is constant with respect to t.
//
// Thus, curvature is extreme where the denominator is extreme, i.e. where
// (x²+y²) is extreme. The first order condition is that
// 2*x*x″+2*y*y″ = 0, or (dx+ex*t)*ex + (dy+ey*t)*ey = 0.
// Solving for t gives t = -(dx*ex+dy*ey) / (ex*ex+ey*ey).
func curviest2(a, b, c fixed.Point26_6) fixed.Int52_12 {
dx := int64(b.X - a.X)
dy := int64(b.Y - a.Y)
ex := int64(c.X - 2*b.X + a.X)
ey := int64(c.Y - 2*b.Y + a.Y)
if ex == 0 && ey == 0 {
return 2048
}
return fixed.Int52_12(-4096 * (dx*ex + dy*ey) / (ex*ex + ey*ey))
}
// A stroker holds state for stroking a path.
type stroker struct {
// p is the destination that records the stroked path.
p Adder
// u is the half-width of the stroke.
u fixed.Int26_6
// cr and jr specify how to end and connect path segments.
cr Capper
jr Joiner
// r is the reverse path. Stroking a path involves constructing two
// parallel paths 2*u apart. The first path is added immediately to p,
// the second path is accumulated in r and eventually added in reverse.
r Path
// a is the most recent segment point. anorm is the segment normal of
// length u at that point.
a, anorm fixed.Point26_6
}
// addNonCurvy2 adds a quadratic segment to the stroker, where the segment
// defined by (k.a, b, c) achieves maximum curvature at either k.a or c.
func (k *stroker) addNonCurvy2(b, c fixed.Point26_6) {
// We repeatedly divide the segment at its middle until it is straight
// enough to approximate the stroke by just translating the control points.
// ds and ps are stacks of depths and points. t is the top of the stack.
const maxDepth = 5
var (
ds [maxDepth + 1]int
ps [2*maxDepth + 3]fixed.Point26_6
t int
)
// Initially the ps stack has one quadratic segment of depth zero.
ds[0] = 0
ps[2] = k.a
ps[1] = b
ps[0] = c
anorm := k.anorm
var cnorm fixed.Point26_6
for {
depth := ds[t]
a := ps[2*t+2]
b := ps[2*t+1]
c := ps[2*t+0]
ab := b.Sub(a)
bc := c.Sub(b)
abIsSmall := pDot(ab, ab) < fixed.Int52_12(1<<12)
bcIsSmall := pDot(bc, bc) < fixed.Int52_12(1<<12)
if abIsSmall && bcIsSmall {
// Approximate the segment by a circular arc.
cnorm = pRot90CCW(pNorm(bc, k.u))
mac := midpoint(a, c)
addArc(k.p, mac, anorm, cnorm)
addArc(&k.r, mac, pNeg(anorm), pNeg(cnorm))
} else if depth < maxDepth && angleGreaterThan45(ab, bc) {
// Divide the segment in two and push both halves on the stack.
mab := midpoint(a, b)
mbc := midpoint(b, c)
t++
ds[t+0] = depth + 1
ds[t-1] = depth + 1
ps[2*t+2] = a
ps[2*t+1] = mab
ps[2*t+0] = midpoint(mab, mbc)
ps[2*t-1] = mbc
continue
} else {
// Translate the control points.
bnorm := pRot90CCW(pNorm(c.Sub(a), k.u))
cnorm = pRot90CCW(pNorm(bc, k.u))
k.p.Add2(b.Add(bnorm), c.Add(cnorm))
k.r.Add2(b.Sub(bnorm), c.Sub(cnorm))
}
if t == 0 {
k.a, k.anorm = c, cnorm
return
}
t--
anorm = cnorm
}
panic("unreachable")
}
// Add1 adds a linear segment to the stroker.
func (k *stroker) Add1(b fixed.Point26_6) {
bnorm := pRot90CCW(pNorm(b.Sub(k.a), k.u))
if len(k.r) == 0 {
k.p.Start(k.a.Add(bnorm))
k.r.Start(k.a.Sub(bnorm))
} else {
k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, bnorm)
}
k.p.Add1(b.Add(bnorm))
k.r.Add1(b.Sub(bnorm))
k.a, k.anorm = b, bnorm
}
// Add2 adds a quadratic segment to the stroker.
func (k *stroker) Add2(b, c fixed.Point26_6) {
ab := b.Sub(k.a)
bc := c.Sub(b)
abnorm := pRot90CCW(pNorm(ab, k.u))
if len(k.r) == 0 {
k.p.Start(k.a.Add(abnorm))
k.r.Start(k.a.Sub(abnorm))
} else {
k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, abnorm)
}
// Approximate nearly-degenerate quadratics by linear segments.
abIsSmall := pDot(ab, ab) < epsilon
bcIsSmall := pDot(bc, bc) < epsilon
if abIsSmall || bcIsSmall {
acnorm := pRot90CCW(pNorm(c.Sub(k.a), k.u))
k.p.Add1(c.Add(acnorm))
k.r.Add1(c.Sub(acnorm))
k.a, k.anorm = c, acnorm
return
}
// The quadratic segment (k.a, b, c) has a point of maximum curvature.
// If this occurs at an end point, we process the segment as a whole.
t := curviest2(k.a, b, c)
if t <= 0 || 4096 <= t {
k.addNonCurvy2(b, c)
return
}
// Otherwise, we perform a de Casteljau decomposition at the point of
// maximum curvature and process the two straighter parts.
mab := interpolate(k.a, b, t)
mbc := interpolate(b, c, t)
mabc := interpolate(mab, mbc, t)
// If the vectors ab and bc are close to being in opposite directions,
// then the decomposition can become unstable, so we approximate the
// quadratic segment by two linear segments joined by an arc.
bcnorm := pRot90CCW(pNorm(bc, k.u))
if pDot(abnorm, bcnorm) < -fixed.Int52_12(k.u)*fixed.Int52_12(k.u)*2047/2048 {
pArc := pDot(abnorm, bc) < 0
k.p.Add1(mabc.Add(abnorm))
if pArc {
z := pRot90CW(abnorm)
addArc(k.p, mabc, abnorm, z)
addArc(k.p, mabc, z, bcnorm)
}
k.p.Add1(mabc.Add(bcnorm))
k.p.Add1(c.Add(bcnorm))
k.r.Add1(mabc.Sub(abnorm))
if !pArc {
z := pRot90CW(abnorm)
addArc(&k.r, mabc, pNeg(abnorm), z)
addArc(&k.r, mabc, z, pNeg(bcnorm))
}
k.r.Add1(mabc.Sub(bcnorm))
k.r.Add1(c.Sub(bcnorm))
k.a, k.anorm = c, bcnorm
return
}
// Process the decomposed parts.
k.addNonCurvy2(mab, mabc)
k.addNonCurvy2(mbc, c)
}
// Add3 adds a cubic segment to the stroker.
func (k *stroker) Add3(b, c, d fixed.Point26_6) {
panic("freetype/raster: stroke unimplemented for cubic segments")
}
// stroke adds the stroked Path q to p, where q consists of exactly one curve.
func (k *stroker) stroke(q Path) {
// Stroking is implemented by deriving two paths each k.u apart from q.
// The left-hand-side path is added immediately to k.p; the right-hand-side
// path is accumulated in k.r. Once we've finished adding the LHS to k.p,
// we add the RHS in reverse order.
k.r = make(Path, 0, len(q))
k.a = fixed.Point26_6{q[1], q[2]}
for i := 4; i < len(q); {
switch q[i] {
case 1:
k.Add1(
fixed.Point26_6{q[i+1], q[i+2]},
)
i += 4
case 2:
k.Add2(
fixed.Point26_6{q[i+1], q[i+2]},
fixed.Point26_6{q[i+3], q[i+4]},
)
i += 6
case 3:
k.Add3(
fixed.Point26_6{q[i+1], q[i+2]},
fixed.Point26_6{q[i+3], q[i+4]},
fixed.Point26_6{q[i+5], q[i+6]},
)
i += 8
default:
panic("freetype/raster: bad path")
}
}
if len(k.r) == 0 {
return
}
// TODO(nigeltao): if q is a closed curve then we should join the first and
// last segments instead of capping them.
k.cr.Cap(k.p, k.u, q.lastPoint(), pNeg(k.anorm))
addPathReversed(k.p, k.r)
pivot := q.firstPoint()
k.cr.Cap(k.p, k.u, pivot, pivot.Sub(fixed.Point26_6{k.r[1], k.r[2]}))
}
// Stroke adds q stroked with the given width to p. The result is typically
// self-intersecting and should be rasterized with UseNonZeroWinding.
// cr and jr may be nil, which defaults to a RoundCapper or RoundJoiner.
func Stroke(p Adder, q Path, width fixed.Int26_6, cr Capper, jr Joiner) {
if len(q) == 0 {
return
}
if cr == nil {
cr = RoundCapper
}
if jr == nil {
jr = RoundJoiner
}
if q[0] != 0 {
panic("freetype/raster: bad path")
}
s := stroker{p: p, u: width / 2, cr: cr, jr: jr}
i := 0
for j := 4; j < len(q); {
switch q[j] {
case 0:
s.stroke(q[i:j])
i, j = j, j+4
case 1:
j += 4
case 2:
j += 6
case 3:
j += 8
default:
panic("freetype/raster: bad path")
}
}
s.stroke(q[i:])
}