/* Copyright (c) 2012, Jan Schlicht Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ // Package resize implements various image resizing methods. // // The package works with the Image interface described in the image package. // Various interpolation methods are provided and multiple processors may be // utilized in the computations. // // Example: // imgResized := resize.Resize(1000, 0, imgOld, Lanczos3) package resize import ( "image" "image/color" "runtime" ) // Trans2 is a 2-dimensional linear transformation. type Trans2 [6]float32 // Apply the transformation to a point (x,y). func (t *Trans2) Eval(x, y float32) (u, v float32) { u = t[0]*x + t[1]*y + t[2] v = t[3]*x + t[4]*y + t[5] return } // Filter can interpolate at points (x,y) type Filter interface { Interpolate(x, y float32) color.RGBA64 } // InterpolationFunction return a Filter implementation // that operates on an image type InterpolationFunction func(image.Image) Filter // Resize an image to new width and height using the interpolation function interp. // A new image with the given dimensions will be returned. // If one of the parameters width or height is set to 0, its size will be calculated so that // the aspect ratio is that of the originating image. // The resizing algorithm uses channels for parallel computation. func Resize(width, height uint, img image.Image, interp InterpolationFunction) image.Image { oldBounds := img.Bounds() oldWidth := float32(oldBounds.Dx()) oldHeight := float32(oldBounds.Dy()) scaleX, scaleY := calcFactors(width, height, oldWidth, oldHeight) t := Trans2{scaleX, 0, float32(oldBounds.Min.X), 0, scaleY, float32(oldBounds.Min.Y)} resizedImg := image.NewRGBA64(image.Rect(0, 0, int(oldWidth/scaleX), int(oldHeight/scaleY))) b := resizedImg.Bounds() n := numJobs(b.Dy()) c := make(chan int, n) for i := 0; i < n; i++ { go func(b image.Rectangle, c chan int) { filter := interp(img) var u, v float32 for y := b.Min.Y; y < b.Max.Y; y++ { for x := b.Min.X; x < b.Max.X; x++ { u, v = t.Eval(float32(x), float32(y)) resizedImg.SetRGBA64(x, y, filter.Interpolate(u, v)) } } c <- 1 }(image.Rect(b.Min.X, b.Min.Y+i*(b.Dy())/n, b.Max.X, b.Min.Y+(i+1)*(b.Dy())/n), c) } for i := 0; i < n; i++ { <-c } return resizedImg } // Calculate scaling factors using old and new image dimensions. func calcFactors(width, height uint, oldWidth, oldHeight float32) (scaleX, scaleY float32) { if width == 0 { if height == 0 { scaleX = 1.0 scaleY = 1.0 } else { scaleY = oldHeight / float32(height) scaleX = scaleY } } else { scaleX = oldWidth / float32(width) if height == 0 { scaleY = scaleX } else { scaleY = oldHeight / float32(height) } } return } // Set number of parallel jobs // but prevent resize from doing too much work // if #CPUs > width func numJobs(d int) (n int) { n = runtime.NumCPU() if n > d { n = d } return }