/* Copyright (c) 2012, Jan Schlicht Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ package resize import ( "image" "image/color" "math" ) // color.RGBA64 as array type rgba16 [4]uint16 // build rgba16 from an arbitrary color func toRgba16(c color.Color) rgba16 { r, g, b, a := c.RGBA() return rgba16{uint16(r), uint16(g), uint16(b), uint16(a)} } func clampToUint16(x float32) (y uint16) { y = uint16(x) if x < 0 { y = 0 } else if x > float32(0xfffe) { y = 0xffff } return } type filterModel struct { src image.Image factor [2]float32 kernel func(float32) float32 tempRow, tempCol []rgba16 } func (f *filterModel) convolution1d(x float32, p []rgba16, isRow bool) (c rgba16) { var k float32 var sum float32 = 0 l := [4]float32{0.0, 0.0, 0.0, 0.0} var index uint if isRow { index = 0 } else { index = 1 } for j := range p { k = f.kernel((x - float32(j)) / f.factor[index]) sum += k for i := range c { l[i] += float32(p[j][i]) * k } } for i := range c { c[i] = clampToUint16(l[i] / sum) } return } func (f *filterModel) Interpolate(x, y float32) color.RGBA64 { xf, yf := int(x)-len(f.tempRow)/2+1, int(y)-len(f.tempCol)/2+1 x -= float32(xf) y -= float32(yf) for i := 0; i < len(f.tempCol); i++ { for j := 0; j < len(f.tempRow); j++ { f.tempRow[j] = toRgba16(f.src.At(xf+j, yf+i)) } f.tempCol[i] = f.convolution1d(x, f.tempRow, true) } c := f.convolution1d(y, f.tempCol, false) return color.RGBA64{c[0], c[1], c[2], c[3]} } func createFilter(img image.Image, factor [2]float32, size int, kernel func(float32) float32) Filter { sizeX := size * (int(math.Ceil(float64(factor[0])))) sizeY := size * (int(math.Ceil(float64(factor[1])))) return &filterModel{img, factor, kernel, make([]rgba16, sizeX), make([]rgba16, sizeY)} } // Nearest-neighbor interpolation func NearestNeighbor(img image.Image, factor [2]float32) Filter { return createFilter(img, factor, 2, func(x float32) (y float32) { if x >= -0.5 && x < 0.5 { y = 1 } else { y = 0 } return }) } // Bilinear interpolation func Bilinear(img image.Image, factor [2]float32) Filter { return createFilter(img, factor, 2, func(x float32) float32 { return 1 - float32(math.Abs(float64(x))) }) } // Bicubic interpolation (with cubic hermite spline) func Bicubic(img image.Image, factor [2]float32) Filter { return createFilter(img, factor, 4, func(x float32) (y float32) { absX := float32(math.Abs(float64(x))) if absX <= 1 { y = absX*absX*(1.5*absX-2.5) + 1 } else { y = absX*(absX*(2.5-0.5*absX)-4) + 2 } return }) } func MitchellNetravali(img image.Image, factor [2]float32) Filter { return createFilter(img, factor, 4, func(x float32) (y float32) { absX := float32(math.Abs(float64(x))) if absX <= 1 { y = absX*absX*(7*absX-12) + 16.0/3 } else { y = -(absX - 2) * (absX - 2) / 3 * (7*absX - 8) } return }) } func lanczosKernel(a uint) func(float32) float32 { return func(x float32) float32 { return float32(Sinc(float64(x))) * float32(Sinc(float64(x/float32(a)))) } } // Lanczos interpolation (a=2). func Lanczos2(img image.Image, factor [2]float32) Filter { return createFilter(img, factor, 4, lanczosKernel(2)) } // Lanczos interpolation (a=3). func Lanczos3(img image.Image, factor [2]float32) Filter { return createFilter(img, factor, 6, lanczosKernel(3)) }